电动汽车整车控制系统介绍

电动汽车整车控制系统介绍
电动汽车整车控制系统介绍

电动汽车整车控制系统介绍

本文主要探讨纯电动汽车整车控制系统功能及研发流程。根据用途,整个电气系统可分为动力系统、能源系统、底盘电子控制系统、照明指示系统、仪表显示系统、辅助系统、整车综合控制系统、空调系统和舒适性安全系统等子系统。其中很多功能模块都需要和整车综合控制系统相关。整车电气系统列出如表1所示。

整车综合控制系统根据驾驶员的操作指示(油门、刹车等),综合汽车当前的状态解释出驾驶员的意图,并根据各个单元的当前状态作出最优协调控制。

1 整车控制器系统配置

整车控制器与整车其他电气系统连接如图1所示。整车控制器通过CAN总线与电池ECU、电机ECU、电源分配ECU、ABS系统、中控门锁、仪表显示系统连接。与其余的电气系统通过IO端口连接(也可使用CAN通讯)。下面分别对各电气单元的功能要求分别叙述。

1.1 动力系统提供整车的动力输出,其核心是驱动电机和电机驱动ECU

电机驱动ECU通过CAN总线与整车综合控制器通讯。应能提供电机转速、转矩、功率、电压、电流、水温、工作模式等参数。并应该能接受整车控制器发来的控制命令。

1.2 能源系统包括电池、电池管理单元和电源分配系统

与整车控制器通讯的有电池管理ECU和电源分配ECU。

电池管理ECU对电池进行充放电管理及保护。它应能提供电池组总电压、电流、单体电池电压、温度、剩余电量、电池健康状态、故障类型等信息。

电源分配ECU应能提供各个子电源的电压、电流和工作温度以及故障类型等信息。

1.3 ABS系统应能提供各个车轮的转速、液压系统状态、各个制

动阀的状态以及自身的工作状态等信息

1.4 中控门锁,应提供各车门状态等信息

1.5 仪表显示系统,应向整车控制系统提供所显示信息的全部内容

1.6 照明指示系统,可以通过CAN总线来控制,也可以通过IO来指示照明指示系统的运行状态

1.7 转向助力、制动助力、变速箱需提供档位位置、液压压力、工作状态等信息

可以是简单的开关量也可以用CAN总线通讯。

1.8 驾驶员的油门踏板和制动踏板经信号调理后接入到整车控制器内

2 整车控制器详细功能

纯电动汽车的整车控制器的主要功能包括:汽车驱动控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视、行车记录等。整车控制器功能框图如图2所示。整车控制器通过CAN总线和IO端口来获得如加速踏板开度、电池SOC、车速等信息,并根据这些信息输出不同的控制动作。

下面分别介绍各部分实现的具体功能。

2.1 汽车驱动控制

根据司机的驾驶要求、车辆状态等状况,经分析和处理,向电机控制器发出指令,满足驾驶工况要求。包括启动、前进、倒退、回馈制动、故障检测和处理等工况。

2.2 整车能量优化管理

通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载能源动力系统(如空调)的协调和管理,以获得最佳的能量利用率。

2.3 网络管理

整车控制器作为信息控制中心,负责组织信息传输,网络状态监控,网络节点管理等功能,网络故障诊断和处理。

2.4 回馈制动控制

根据制动踏板和加速踏板信息、车辆行驶状态信息、蓄电池状态信息,向电机控制器发出制动指令,在不影响原车制动性能的前提下,回收部分能量。

2.5 故障诊断和处理

连续监视整车电控系统,进行故障诊断。存储故障码,供维修时查看。故障指示灯指示出故障类别和部分故障码。根据故障内容,及时进行相应安全保护处理。对于不太严重的故障,能做到“跛行回家”。

2.6 车辆状态监测和显示

整车控制器通过传感器和CAN总线,检测车辆状态及其各子系统状态信息,驱动显示仪表,将状态信息和故障诊断信息经过显示仪表显示出来。显示内容包括:车速,里程,电机的转速、温度,电池的电量、电压、电流,故障信息等。

2.7 行车记录

行车记录记录一段时期内的整车运行数据记录,包括电池电压、电流、SOC、各单元温度、油门踏板/刹车踏板状态、车速等信息。

3 整车控制器研发流程

整车控制器的主要功能是根据整车设计要求及选择的各单元总成的性能,采用适当的控制方法,使整车的整体功能/性能达到设计要求,并满足相关国标/行标要求。因此,整车控制器的功能/性能试验是和整车试验结合在一起的。而整车试验需经过多种试验方式,因而整车控制系统的试验也需经过多种试验过程。由于整车性能试验比较耗时耗力,因此有必要在整车道路试验前,尽量进行完备的仿真、测试和试验。因此,整车控制器研发过程中,仿真和测试是很重要的手段。整车控制器研发过程可分为参数计算、系统仿真、半实物在环系统仿真、台架及道路试验这四个阶段。

3.1 参数计算

参数计算阶段要根据整车设计提出的性能要求及各总成单元的性能,进行验证计算,并选择适当的控制参数及策略,使整车性能达到设

计要求。和整车控制器相关的计算参数包括汽车一般参数、动力性参数、制动性参数。

整车设计总体要求及关键技术涉及的参数参见附录1。附录1中列出了纯电动汽车整车方案设计中各总成的技术参数。我们可根据附录1中所列出参数,选择适当的控制策略和控制参数,计算得到整车续行里程、动力特性、爬坡能力、加速能力、制动能力等参数。

3.2 系统建模仿真

系统仿真阶段可根据整车各总成建立相应模型,仿真验证参数计算的结果,并优化相关控制策略。一般EV常采用的仿真软件有Advisor、PSAT等。

仿真软件可以提供如下仿真功能。

3.2.1 道路仿真

仿真软件可提供道路循环、多重循环和测试过程三种仿真工况来仿真车辆的性能。

(1)道路循环提供了CYC_ECE、CYC_ FTP和CYC_1015等56种国外标准的道路循环供用户选择,另外提供了行程设计器可以将多达八种不同的道路循环任意组合在一起,综合仿真车辆的性能。

(2)多重循环功能可以用批处理的方式以相同的初始条件,快速计算和保存不同的道路循环情况下的仿真结果,并将它们显示在一起,供用户进行比较。

(3)测试过程包括TEST_CITY_HWY和TEST_FTP等八种标准的测试过程供用户选择仿真。

3.2.2 加速度性能仿真

该功能可以仿真以下车辆性能:三组从初速度加速到末速度所需要的最短时间、某一时间段内车辆行驶的最大距离、行驶某一段距离所需要的最短时间、最大加速度和最大速度。

3.2.3 爬坡能力仿真

在设置车辆速度、持续时间、质量和多能源动力系统等参数后,可以仿真出车辆在给定速度下的爬坡性能。

3.2.4 参数研究

该功能可以选择1~3个部件参数,在三维坐标图上用不同的颜色代表不同数值的方式,来分析这些参数对车辆的能源经济性和环保特性等性能的影响。

3.2.5 计算辅助电器的负荷

该功能可以计算车辆上辅助电器的能源消耗。这些电器设备包括除霜设备、收音机和照明设备等。用户定义这些设备的电流一电压特性和与道路循环相关联的使用时间等数据后,就可以仿真出辅助电器的负荷。

3.2.6 交互式仿真

该功能由系统控制、车辆控制与显示和仿真输出三部分组成,它支持实时地输入道路循环和动态显示每个仿真计算步长的结果。系统控制部分负责控制仿真速度和动态输入当前仿真时间步长的道路循环,它包括请求速度和坡度。车辆控制与显示部分模拟显示出车辆内部发动机转速表、车辆速度表、燃油表、能源储存系统的SOC表、加速踏板和换挡开关等仪表和控制开关的动态变化,用可视化的形式输出仿真结果。

3.3 半实物在环系统仿真

仿真技术是研究整车控制器的重要手段。但是,采用计算机仿真很难准确地反映实际情况,但随着计算机技术的高速发展和车辆动力学模型的不断完善,混合仿真技术已逐渐成为整车控制器开发的重要手段。这种技术是一种实时仿真技术,它把部分实际产品利用计算机接口嵌入到软件环境中去,并要求系统的软件和硬件都要实时运行,从而模拟整个系统的运行状态。

对电动汽车整车控制器进行半实物在环仿真,以模拟汽车驾驶环境为基础,通过模拟驾驶台,可以进行电动汽车的主要驾驶操作,并可得到车辆的主要响应信息。它可完成整车控制器软件调试、策略研究和功能测试等功能。其中软件调试要达到评估整车控制器的整车控制与调度的管理能力的目的,策略研究则要对主控制系统的策略可行性以

及实用性提出意见。半实物在环系统仿真系统构成如图3所示。

3.4 台架及道路试验

试验是控制系统开发的重要手段,对于整车控制器必须进行完备的实验。一般试验分为台架试验和道路试验。为了保证上车之后的安全可靠,同时也可以避免上车调试的诸多不便,在上车调试之前,有必要进行台架试验。在保证各种控制逻辑和故障处理的正确性,优化整个控制系统和控制参数,以求达到提高整车的能量利用率的结果。台架试验结束后可进行整车道路试验。

3.4.1 台架试验

台架试验系统主要由整车控制器、电机、电机控制器、电池、电池管理系统等组成。电机和1台电力测功机相连,能实现对电机扭矩的测量和倒拖电机以实现回馈制动。电机控制器控制电机的一切操作,并管理电机的冷却风扇。电池管理系统负责对电池状态的监视和管理。整车控制器负责协调整车电器状态和电机扭矩的分配。

测功机可以根据试验要求对电机施加不同的扭矩,从而可以进行各种功能测试和路况模拟测试。

3.4.2 道路试验

尽管台架试验可模拟道路情况,但台架不能完全代替道路的实际情况。为了真正检验动力系统的在实际道路上的性能,需要进行实际道路试验。在实际的道路试验中,根据试验效果,可对驱动策略参数、制动回馈策略参数、能量管理策略参数以及CAN通讯调度参数等进行优化匹配。

3.4.3 车载监控及标定系统

为了配合台架及道路试验,需要一套车载监控及标定系统,来完成对整车实时监控及在线数据匹配标定功能。其主要功能包括:

(1)可以实时显示CAN总线上全部的通信内容,并依据应用协议进行解释,通过CAN总线可以监控车辆系统的全部信息。

(2)查看CAN总线网络的通信状况,包括网络负载情况、网络故障显示等。

(3)可以不丢帧地将CAN总线上的全部通信消息记录于硬盘。

(4)可以按实际运行状态,以文本和图形方式,回放所记录的CAN 总线通信全过程,回放车辆和试验操作的全过程。

(5)可在线修改动力总成控制器中主要控制参数,进行系统匹配标定研究。

4 结语

综上所述,整车控制器与整车选型设计密切相关,根据不同车型,整车控制器需调整不同的控制参数及控制策略。要点总结如下。

(1)整车控制器是整车设计的一部分,必须根据整车性能要求和选用的各总成单元性能进行参数匹配,使整车整体性能达到设计要求。

(2)为满足国标/行标,整车需进行道路试验。道路试验需要消耗大量的时间和费用,因此为加快研发速度、规避研发风险及降低研发费用,有必要采取系统仿真技术、半实物仿真或台架试验。根据实际条件,可选择不同的试验手段。应在道路试验前,尽量做出完备的测试。

(3)整车道路试验需要一套车载监控及标定系统。在道路试验中需对控制参数和策略进行优化。

(4)对于同款电动汽车,可能需要根据路况特点及应用特点,来优化整车控制器控制参数和策略。

(5)由于整车控制器对整车的动力性、制动性、安全性等均有影响,因此对其响应速度、可靠性及抗干扰能力要求极高。

(6)整车控制器可根据需要,增加/裁减不同功能,驱动控制、能量管理、故障检测是其基本功能。

纯电动汽车整车控制器(TAC)

纯电动汽车整车控制器(TAC) 项目介绍: 纯电动汽车整车控制器对新能源汽车的动力性、安全性、经济性、操纵稳定性和舒适性等都有重要影响,它是新能源汽车上的一种关键装置。在车辆行驶过程中,整车控制器通过开关输入端口、模拟量转换模块、CAN总线等硬件线路采集路况信息、驾驶员意图、车辆状态、 设备运行状态等参数,依托高速运行的 CPU和控制端口来执行预设的控制算法和管理策略,再将指令和信息等通过 CAN总线、开关输出端口等对动力系统的执行部件进行实时的、可靠的、科学的控制,以实现车辆的动力性、可靠性和经济性。 其硬件结构框图如图一所示。

tihJTJt 川“ J人 整车控制器实物图如图二所 示。 it电" * st 电 M U 电柢第iC 4- if 邨 ESlh 卜 [? ■: *■ DC IX*科电乳 ■ 1 .^ptt'AN :■' - 彝竝 tt」 7%谢洩M!* WI KX T.7*帀小

性能指标: 1)工作环境温度:-30 C—+80C 2)相对湿度:5%~93% 3)海拔高度:不大于3000m 4)工作电压:18VDC —32VDC 5)防护等级:IP65 功能指标: 1)系统响应快,实时性高 2)采用双路 CAN总线(商用车 SAE J1939协议) 3)多路模拟量采样(采样精度10位);2路模拟量输出(精度 12位)4)多路低/高端开关输出 5)多路I/O输入 6)关键信息存储 7)脉冲输入捕捉 8)低功耗,休眠唤醒功能 该项目使用的INFINEON 的物料清单:

整车控制器(VMS, vehicle management Syetem ),即动力总成控制器。是整个汽车的核心控制部件,它采集加速踏板信号、制动踏板信号及其他部件信号,并做出相应判断后, 控制下层的各部件控制器的动作,驱动汽车正常行驶。作为汽车的指挥管理中心,动力总成控制器主要功能包括:驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN网 络的维护和管理、故障的诊断和处理、车辆状态监视等,它起着控制车辆运行的作用。因此VMS的优劣直接影响着整车性能。 纯电动汽车整车控制器 (Vehicle Controller)是纯电动汽车整车控制系统的核心部件,它对汽车的正常行驶,再生能量回收,网络管理,故障诊断与处理,车辆的状态与监视等功能起着关键的作用。 与各部件控制器的动态控制相比,整车控制器属于管理协调型控制。 整个车辆系统采用一体化集成控制与分布式处理的车辆控制系统的体系结构,各部件都有 独立的控制器,整车控制器对整个系统进行能量管理及各部件的协调控制。为满足系统数 据交换量大,实时性、可靠性要求高的特点,整个分布式控制系统之间采用CAN总线进 行通讯。 整车控制器主要由控制器主芯片,Flash存储器和RAM存储器及相关电路组成,控制器主 芯片的输出与Flash存储器和RAM存储器的输入相连。 整车控制器通过 CAN总线接口连接到整车的 CAN网络上与整车其余控制节点进行信息交换和控制。 控制器硬件包括微处理器、CAN通信模块、BDM调试模块、串口通信模块、电源及保护 电路模块等。微处理器选用了Motorola公司专门为汽车电子开发的MCgS12,它具有运 算速度快和内部资源与接口丰富的特点,适合实现整车复杂的控制策略和算法。CAN通信 模块符合CAN2.0B技术规范,采用了光电隔离、电源隔离等多项抗干扰设计;BDM调试模块用于实时对控制程序进行调试、修改;串口通信模块用于对控制系统的诊断和标定;电源模块进行了二级滤波的冗余设计,保证控制器在车载12V系统供电情况下正常工作,并具短路保护功能。 CAN,全称为"Controller Area Network ”,即控制器局域网,是一种国际标准的,高性价的现场总线,在自动控制领域具有重要作用。CAN是一种多主方式的串行通讯总线,具有较高的实时性能,因此,广泛应用于汽车工业、航空工业、工业控制、安全防护等领域。 决策层控制单元是车辆智能化的关键,其收集车辆运行过程中的信息,并根据智能算法的决 策向物理器件层控制单元发送命令;动力源控制单元负责调节动力源系统部件以满足决策层控制单元的命令要求;驱动/制动控制单元则调节双向变量电机和能耗制动系统实现车辆的各种工况,如驱动控制、防抱制动等。 整车控制器功能需求: 整车控制器在汽车行驶过程中执行多项任务,具体功能包括:(1)接收、处理驾驶员的驾驶

基于纯电动汽车的整车控制器分析

基于纯电动汽车的整车控制器分析 发表时间:2019-09-12T11:46:14.157Z 来源:《基层建设》2019年第17期作者:丘东海[导读] 摘要:本文主要对纯电动汽车整车控制器做进一步的分析和了解。中兴智能汽车有限公司 519040 摘要:本文主要对纯电动汽车整车控制器做进一步的分析和了解。随着纯电动汽车的快速发展,整车电控系统成为一种非常重要的应用技术。纯电动汽车整车控制对整车控制系统的设计开发具有较强的指导意义。关键词:纯电动汽车;整车控制器;分析引言: 整车控制系统是纯电动汽车电控系统的三大核心技术之一,纯电动电控系统与传统汽车的控制系统相比,纯电的汽车电控系统的控制单元数量与复杂程度高出很多。电控系统是保证纯电动汽车整车功能集成和优化的核心单元,为保证纯电动汽车各部件系统在最佳工况下能够协调运行,需要制定相应的控制策略。纯电动汽车电控系统主要包括整车控制系统(简称VCU)、电池管理系统(简称BMS)、电机控制系统(简称MCU)、辅件控制系统等环节。整车控制系统确保各系统之间要协调工作,方能保证整车的稳定性和安全性,对纯电动汽车的发展意义重大。 一、整车控制系统的介绍 整车控制系统主要包括整车控制器、CAN总线通讯网络以及驾驶员意图解析系统、信息显示系统、动力驱动系统、电机控制系统、辅件控制系统等。作为纯电动汽车的核心部分,控制各个系统之间的相互配合。通过接收其他控制器发出的信号,比如驾驶员控制指令信息、加速踏板信息、制动踏板信息等,然后通过特定算法来处理这些信号,通过CAN总线通讯网络输出信号给相应的下层控制器去执行对应的动作。 整车控制策略作为VCU重要的软件部分。一套成熟、可靠的整车控制策略须包括以下部分:驾驶员解析控制策略、驱动控制策略、上下电管理控制策略、扭矩解析控制策略、辅件控制策略、能量回收控制策略、安全控制策略、故障诊断控制策略等。要能够符合驾驶员的操作需求,具备智能化的安全控制,从而保证车上人员的安全,提升汽车性能,提高纯电动汽车的续驶里程。 二、整车控制器的功能 VCU作为上层控制单元负责协调动力系统各个部件的运行,根据驾驶员操作信号进行驾驶意图解析、根据各部件和整车工作状态进行整车时序逻辑控制、安全管理和能量分配决策,向各部件控制器发送控制指令,并向仪表等显示设备输出整车电控系统状态信息。各部件控制器根据其指令控制相应部件,驱动汽车正常行驶。概括起来整车控制系统就是实现:(1)上下电管理,(2)驾驶员意图识别,(3)动力系统的扭矩解析控制,(4)能量回收管理,(5)辅件控制管理,(6)整车网络管理,(4)车辆状态监视和故障诊断及保护。整车控制器技术水平直接影响整车的动力性、经济性及安全性,是电动汽车的关键技术。 三、整车控制器的组成 VCU作为纯电动汽车控制系统最核心的部件,其承担了数据交换、安全管理、驾驶员意图解析、能量流管理的任务。VCU的功能划分如图1所示。 (1)数据交换层。该层对直接馈入整车控制器的物理量信息(如驾驶员的操作反馈的信息和其它执行部件的工作状态信息)进行采样处理,并通过I/O、D/A和PWM,提供对显示单元、继电器等的控制信号。(2)安全故障管理层车辆出现故障时,故障只体现在数据交换层。在检测出故障后,该层会做出相应的处理,在保证车辆安全性的条件下,给出执行部件可供使用的范围,以尽可能满足驾驶员的驾驶意图。(3)驾驶员意图解释层驾驶员的所有与驾驶操作相关的操作信号都直接进入整车控制器,整车控制器对采集的信息进行处理分析,计算出驱动系统的目标转矩和车辆行驶时的需求功率来实现驾驶员的驾驶意图。(4)能量流管理层,该层的主要工作是能量源之间进行需求功率分配。 四、整车控制器的硬件设计 (1)微控制器模块:本设计采用主从芯片设计,主从芯片之间进行校验,确保主芯片工作状态正常,主控制芯片选用SPC5606,是整车控制器的控制核心,包括主控制芯片(微控制器)及其外围电路,负责数据的运算及处理,也是控制方法实现的载体;(2)电源模块:为各输入和输出模块提供电源,并对蓄电池电压进行监控,与微控制器相连;(3)信号处理模块:用于模拟和数字量输入信号的调理,包括模拟量信号处理和数字量信号处理,其一端与传感器或开关相连,另一端与微控制器相接; (4)功率驱动模块:用于驱动多个继电器或系统状态指示灯,包括低端驱动和PW M驱动两部分,与微控制器通过I/O相连,另一端与被控继电器(低端驱动)或指示灯(PW M驱动)相接,微处理器可通过SPI总线进行故障诊断;(5)通讯模块:整车控制器与其他设备相连的接口,包括两路CAN总线、一路FlexRay总线、一路LIN总线及一路RS232总线,其中CAN总线是整车控制器最重要的对外通讯接口。整车控制器的整体硬件框图,如图2所示。

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传 统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电 动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科 技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提 供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文 从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能 量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控 制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车 辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车 控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内 各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核 心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对 整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车 通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行 驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统 发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传 输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实 时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节 点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟 踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系 统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成 了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计

纯电动汽车整车控制器硬件电路开发与设计

纯电动汽车整车控制器硬件电路开发与设计 摘要:纯电动汽车整车控制器作为纯电动汽车控制系统的核心部件,直接影响 着整车的动力性、经济性和可靠性。 关键词:纯电动汽车;整车控制器硬件;电路开发;设计 引言:纯电动汽车是由多个子系统构成的一个复杂系统,各子系统几乎都通 过其控制单元(ECU)来完成各自功能和目标。为了满足整车动力性、经济性、 安全性和舒适性的目标,各系统还必须彼此协作,优化匹配。因此,必须要有一 个整车控制器来管理协调电动汽车中的各个部件。整车控制器通过采集驾驶员的 操作信息与汽车状态,进行分析与运算,通过 CAN 总线对网络信息进行管理和调度,并针对车型的不同配置,进行相应的能量管理,实现整车驱动控制、能量优 化控制、制动回馈控制和网络管理等。 1纯电动汽车电控系统组成及工作原理 1.1 电控系统组成 纯电动汽车电控系统主要由整车控制器(VCU)、驱动电机及其控制器、动 力电池及BMS、电转向助力及其控制器、电空压机及其控制器、DC/DC、操控面 板等组成。 1.2 工作原理 纯电动汽车以动力电池作为全车的动力源,为各个高压用电设备提供动力。 其中:电空压机为整车提供气源;转向助力泵为整车提供转向助力;DC/DC将动 力电池的高压电转化为低压电,提供给车载低压设备使用;整车控制器负责采集 和处理信号,控制驱动电机工作,实现整车正常行驶与制动。 2 整车控制器的功能模块组成及工作原理 2.1 工作原理 整车控制器(VCU)作为纯电动汽车的核心部件,通过读取和处理驾驶员的 驾驶操作指令,与电机驱动系统、电池管理系统(BMS)及其它控制单元进行交互,使车辆按驾驶期望行驶。另外,还可动态监测系统故障,根据故障的紧急程 度作出相应的保护,例如紧急情况下可切断高压系统以保证车辆行驶安全等。 2.2功能模块组成 整车控制器主要由微控制器模块、电源模块、开关量输入和输出模块、模拟 量输入和输出模块、频率量的输入和输出模块、CAN总线模块、存储模块等组成。 2.2.1 微控制器模块 微控制器(MCU)是整车控制器的核心,它负责信号的采集和处理、逻辑运 算以及控制的实现等。本文选用的是DSP芯片TMS320F28335,该芯片在性价比、功耗、运算能力、存储空间、CAN通讯方面等均有很好的表现,完全可以满足整 车控制器的需要。微控制器模块主要包括:电源电路、时钟电路、复位电路、存 储电路,JTAG接口电路等。1)电源电路:选用的是TPS767D301-Q1,该芯片是 专业的汽车级芯片,其输入电压为2.7~10 V,一路输出固定电压3.3 V,另一路 输出可调电压,每路最大输出电流为1 A [3] 。本文通过降压电路将24 V转换为5 V,再通过TPS767D301-Q1将5 V转为DSP芯片所需的3.3 V和1.9 V。2)时钟电路:TMS320F28335 时钟频率为150MHz,由外部时钟信号通过DSP内部的PLL倍 频得到。3)复位电路:为方便调试,增加了复位按钮,当按下复位按钮后,会 产生一个低电平脉冲输入到DSP的复位引脚中。4)JTAG接口电路: TMS320F28335通过JTAG接口与仿真器连接,实现DSP的在线编程和调试。

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 发表时间:2019-07-05T11:27:03.790Z 来源:《电力设备》2019年第4期作者:王坚 [导读] 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。 (柳州五菱汽车工业有限公司广西柳州 545007) 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计 (一)整车控制器结构设计 整车控制器的硬件结构根据其基本的功能需求进行设计,如图1所示。支持芯片正常工作的微控制器最小系统是整车控制器的核心,基础的信号处理模块,CAN通信与串口通信组成的通信接口模块,以及LCD显示等其他模块分别作为它的各大功能模块。 图1 整车控制器硬件结构图 (二)整车控制器硬件设计 从功能上可以把整车控制器分为6个模块。 1)微控制器模块:本设计选用美国德州仪器公司TI的数字信号处理芯片TMS320F2812为主控芯片,负责数据的运算及处理,控制方法的实现,是整车控制器的控制核心。此芯片运算速度快,控制精度高的特点基本满足了整车控制器的设计需求。TMS320F2812的最小系统主要由DSP主控芯片、晶振电路、电源电路以及复位电路组成。 2)辅助电源模块:由于整车控制器的控制系统中用到多种芯片,所以需要设计辅助电源电路为各个芯片提供电源,使其正常工作,因此输出电平有多种规格。采用芯片LM317、LM337可分别产生+5V和-5V的供电电压。 3)信号调理模块:输入整车控制器的踏板信号是1~4.2V模拟电压信号,TMS320F2812的12位16通道的A/D采样模块输入的信号范围为0~3.0V,因此需要对踏板输入的模拟电压信号进行相应的调理运算,以满足DSP的A/D采样电平要求。选用德州仪器的OPA4350轨至轨运算放大器,在输入级采用RC低通滤波电路与电压跟随电路以滤除干扰信号,减小输入的模拟信号失真。开关信号先经RC低通滤波电路滤除高频干扰,再作为电压比较器LM393的正端输入,电压比较器的负端输入接分压电路,将LM393的输出引脚外接光耦芯片,在起到电平转换作用的同时,进一步隔离干扰信号,提高信号的安全性与可靠性。 4)通讯模块:TMS320F2812具有一个eCAN模块,支持CAN2.0B协议,可以实现CAN网络的通讯,但是其仅作为CAN控制器使用。选用3.3V单电源供电运行的CAN发送接收器SN65HVD232D,其兼容TMS320F2812的引脚电平,用于数据速率高达1兆比特每秒(Mbps)的应

纯电动汽车整车控制系统教案

课程单元教学设计任课教师:科目纯电动汽车整车控制系统检修授课班级:

一、知识一、任务导入 假如你是北汽新能源4S店的一名车辆维修人员,需要对某待维修 的车辆进行整车状态参数读取,请问你会正确使用故障诊断仪进行 数据流读取吗? 二、容及过程设计 教师活动 1、电动汽车整车控制系统的作用 1.1控制系统的基本概念 控制系统一般包括传感器、控制器和执行元件。传感器采集信 息并转换成电信号发送给控制器,控制器根据传感器的信息进行运 算、处理和决策,并向执行元件发送控制指令以完成某项控制功能。 1.1.2北汽EV160纯电动汽车整车控制系统的组成 北汽EV160纯电动汽车的整车控制系统结构如图所示,按照各 部件的功能,可以将整车控制系统分为动力电池系统、充电系统、 驱动电机系统、传动系统、电动助力转向系统、制动系统等。该车 的主要高压部件,都集中在了汽车前机舱,如电机控制器、高压控 制盒DC/DC变换器、车载充电机、驱动电机等。 教 师: 引 出 话 题 教 师: 板 书、 展 示、 解 说、 提 问 提 问、 启 发 比 喻 多 媒 体 展 示、 互 动 步骤教学容教师、 学生 活动 教 学 方 法 与 手 段 时 间 分 配

二、 技能 一、技能训练项目及组织 2、实训组织 1)分两组,每次一组组,其他学生完成布置作业 2)实习、学习指导(教师分工 (1)一位教师负责实训室进行操作示 (2)另一位教师负责指导完成相关学习任务 3、使用设备 教师: 示演 示

4、安全和纪律要求 1、穿好工作服、讲究仪容仪表 2、服从安排,遵守纪律,讲究秩序 3、不允许擅自乱动设备 5、学习评估 按学校要求评估

最新电动汽车电池管理系统应用与分析

研修班毕业论文 电动汽车电池管理系统应用与分析 授课老师:邓亚东 专业:车辆工程 姓名:石琪 完成日期:2017年6月15日

摘要 随着社会的发展以及能源、环保等问题的日益突出,纯电动汽车以其零排放,噪声等优点越来越受到世界各国的重视,被称作绿色环保车。作为发展电动车的关键技术之一的电池管理系统(BMS),是电动车产业纯的关键。,以锂电池为动力的电动自行车、混合动力汽车、电动汽车、燃料电池汽车等受到了市场越来越多的关注。我国对电动车的发展极为重视,早在1992年就把电动车的开发发展列入国家的“八五”重点科技攻关项目,对电池管理系统以及充电机系统进行了长期深入的研究开发,在BMS方面取得很大的突破,与国外水平也较为接近,研制产品在纯电动和混合动力电动车上得到大量使用。但电池管理技术还并不成熟,电动汽车的发展及产业化,对动力蓄电池管理系统将具有巨大的市场需求,同时技术上也将提出更高的要求。 关键词:BMS 纯电动汽车动力电池锂电池 can通讯单片机

Abstract with the oil price, the energy shortage, the increasingly serious urban environment pollution, an alternative to oil development of new energy use more and more attention by governments. In the new energy system, battery systems is one of the indispensable important component. In recent years, with the lithium battery powered electric bicycle, hybrid cars, electric vehicles, fuel cell automobile, by the market more and more attention. The development of electric vehicle in China, a great importance in early 1992, the development of the electric car in national development of "five-year" key torch-plan projects of battery management system, and charging machine system for the long-term in-depth research development, in BMS gained great breakthrough, and foreign level also approaches, the research products in pure electric and hybrid electric vehicle got a lot of use. But battery management technology is still not mature, electric vehicles and the development of industrialization of motive battery management system, with the huge market demand, but technology will also put forward higher request. Keywords:BMS pure electric vehicle power battery lithium batteries can communication microcontroller

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

电动汽车控制系统设计设计

电动汽车控制系统设计设计

摘要 在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。 本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。 在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方 37

式,有效的节约了成本。电源模块采用基于UC3842的开关电源电路。选用IR 公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。 驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。 他励直流电动机驱动系统能够很 37

好的运行在电动汽车上,性能可靠、结构简 单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。 关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制 37

电动汽车用整车控制器总体设计方案

电动汽车用整车控制器总体设计方案

目次  1 文档用途 (1) 2 阅读对象 (1) 3 整车控制系统设计 (1) 3.1 整车动力系统架构 (1) 3.2 整车控制系统结构 (2) 3.3 整车控制系统控制策略 (3) 4 整车控制器设计 (4) 5 整车控制器的硬件设计方案 (5) 5.1 整车控制器的硬件需求分析 (5) 5.2 整车控制器的硬件设计要求 (6) 6 整车控制器的软件设计方案 (7) 6.1 软件设计需要遵循的原则 (7) 6.2 软件程序基本要求说明 (7) 6.3 程序中需要标定的参数 (7) 7 整车控制器性能要求 (8)

整车控制系统总体设计方案  1 文档用途  此文档经评审通过后将作为整车控制系统及整车控制器开发的指导性文件。 2 阅读对象  软件设计工程师 硬件设计工程师 产品测试工程师 其他相关技术人员 3 整车控制系统设计  3.1 整车动力系统架构  如图1所示,XX6120EV纯电动客车采用永磁同步电机后置后驱架构,电机○3通过二挡机械变速箱○4和后桥○5驱动车轮。车辆的能量存储系统为化学电池(磷酸铁锂电池组○8),电池组匹配电池管理系 统(Battery Management System,简称BMS)用以监测电池状态、故障报警和估算荷电状态(State of Charge,简称SOC)等,电池组提供直流电能给电机控制器○2通过直-交变换和变频控制驱动电机运转。 整车控制器○1(Vehicle Control Unit,简称VCU)通过CAN(Control Area Network)和其它控制器联接,用以交换数据和发送指令。该车采用外置充电机传导式充电,通过车载充电插头利用直流导线联接充电 机○9,充电机接入电网。 ○1整车控制器○2电机控制器○3交流永磁同步电机○4变速箱○5驱动桥 ○6车轮○7电池管理系统○8磷酸铁锂动力电池组○9外置充电机○10电网连接插座 图1 整车动力系统架构简图

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.360docs.net/doc/7d4071107.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

电动汽车整车控制系统介绍

电动汽车整车控制系统介绍 本文主要探讨纯电动汽车整车控制系统功能及研发流程。根据用途,整个电气系统可分为动力系统、能源系统、底盘电子控制系统、照明指示系统、仪表显示系统、辅助系统、整车综合控制系统、空调系统和舒适性安全系统等子系统。其中很多功能模块都需要和整车综合控制系统相关。整车电气系统列出如表1所示。 整车综合控制系统根据驾驶员的操作指示(油门、刹车等),综合汽车当前的状态解释出驾驶员的意图,并根据各个单元的当前状态作出最优协调控制。 1 整车控制器系统配置 整车控制器与整车其他电气系统连接如图1所示。整车控制器通过CAN总线与电池ECU、电机ECU、电源分配ECU、ABS系统、中控门锁、仪表显示系统连接。与其余的电气系统通过IO端口连接(也可使用CAN通讯)。下面分别对各电气单元的功能要求分别叙述。 1.1 动力系统提供整车的动力输出,其核心是驱动电机和电机驱动ECU 电机驱动ECU通过CAN总线与整车综合控制器通讯。应能提供电机转速、转矩、功率、电压、电流、水温、工作模式等参数。并应该能接受整车控制器发来的控制命令。 1.2 能源系统包括电池、电池管理单元和电源分配系统 与整车控制器通讯的有电池管理ECU和电源分配ECU。 电池管理ECU对电池进行充放电管理及保护。它应能提供电池组总电压、电流、单体电池电压、温度、剩余电量、电池健康状态、故障类型等信息。 电源分配ECU应能提供各个子电源的电压、电流和工作温度以及故障类型等信息。 1.3 ABS系统应能提供各个车轮的转速、液压系统状态、各个制

动阀的状态以及自身的工作状态等信息 1.4 中控门锁,应提供各车门状态等信息 1.5 仪表显示系统,应向整车控制系统提供所显示信息的全部内容 1.6 照明指示系统,可以通过CAN总线来控制,也可以通过IO来指示照明指示系统的运行状态 1.7 转向助力、制动助力、变速箱需提供档位位置、液压压力、工作状态等信息 可以是简单的开关量也可以用CAN总线通讯。 1.8 驾驶员的油门踏板和制动踏板经信号调理后接入到整车控制器内 2 整车控制器详细功能 纯电动汽车的整车控制器的主要功能包括:汽车驱动控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视、行车记录等。整车控制器功能框图如图2所示。整车控制器通过CAN总线和IO端口来获得如加速踏板开度、电池SOC、车速等信息,并根据这些信息输出不同的控制动作。 下面分别介绍各部分实现的具体功能。 2.1 汽车驱动控制 根据司机的驾驶要求、车辆状态等状况,经分析和处理,向电机控制器发出指令,满足驾驶工况要求。包括启动、前进、倒退、回馈制动、故障检测和处理等工况。 2.2 整车能量优化管理 通过对电动汽车的电机驱动系统、电池管理系统、传动系统以及其它车载能源动力系统(如空调)的协调和管理,以获得最佳的能量利用率。 2.3 网络管理 整车控制器作为信息控制中心,负责组织信息传输,网络状态监控,网络节点管理等功能,网络故障诊断和处理。

相关文档
最新文档