传热学课程实验

传热学课程实验
传热学课程实验

传热学实验1

顺流式换热器传热系数测定

[实验目的]

1. 熟悉换热器性能的测试方法;

2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征;

3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。

[实验原理]

换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。

图1实验装置简图

1.热水流量调节阀

2. 热水螺旋板、套管、列管启闭阀门组

3.热水流量计

4.换热器进口压力表

5.数显温度计

6.琴键转换开关

7.电压表

8.电流表

9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀

本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。

实验台参数:

1.换热器换热面积{F}:

⑴.套管式换热器具0.45 m2

⑵.螺旋板式换热器0.65 m2

⑶.列管式换热器 1.05 m2

2.电加热器总功率:9.0 kw

3.冷、热水泵:

⑴.允许工作温度:< 80 ℃

⑵.额定流量: 3 m3/h

⑶.扬程:12 m

⑷.电机电压:220 V

⑸.电机功率:370 W

4.转子流量计:

⑴.型号:LZB-15

⑵.流量:40-400升/小时

⑶.允许温度范围:0―120 ℃

1.冷水泵

2.冷水箱

3.冷水转子流量计

4.冷水顺逆流换向阀门组

5.列管式换热器

6.电加热水箱

7.热水转子流量计

8.回水箱

9. 热水泵10. 螺旋板式换热器11. 套管式换热器

[实验操作]

1.实验前准备:

⑴. 熟悉实验装置及使用仪表的工作原理和性能;

⑵. 打开所要实验的换热器阀门,关闭其它阀门;

⑶. 按顺流方式调整冷水换向阀门的开或关;

⑷. 向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。

2.实验操作:

⑴. 接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量;

⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度;

⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁);

⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果;

⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。

[实验数据与处理]

1. 实验数据记录表 环境温度t0 ℃

2. 数据计算

热流体放热量:Q 1=C p 1·m 1{T 1-T 2} [W] 冷流体吸热量:Q 2=C p 2·m 2{t 1-t 2} [W] 平均换热量: 22

1Q Q Q +=

[W] 热平衡误差: %1002

1?-=

?Q

Q Q 对数传热温差:Δ1={ΔT 2-ΔT 1 }/In ·ΔT 2/ΔT 1={ΔT 1-ΔT 2}/In ·ΔT 1/ΔT 2 [℃]

传热系数: K=Q/F ·Δ1 [W/{m 2

·℃}] 式中: C p1,C p2 ——热,冷流体的定压比热 [J/Kg ·℃]

m 1,m 2——热,冷流体的质量流量热 [Kg/s] T 1,T 2——热流体的进出口温度 [℃] t 1,t 2——冷流体的进出口温度 [℃] ΔT 1= T 1-t 2 [℃] ΔT 2= T 2-t 1 [℃]

F ——换热器的换热面积 [m 2

]

[注]:热、冷流体的质量流量m 1,m 2是根据修正后的流量计体积流量读数V 1 V 2再换算成的质量流量值。

3. 绘制传热性能曲线,并作比较:

(1) 以传热系数为纵座标,冷水(热水)流速(或流量)为横座标绘制传热性能曲线; (2) 对三种不同型式换热器的性能进行比较。

[注意事项]

1 热流体在热水箱中加热温度不得超过80℃;

2 实验台使用前应加接地线,以保安全。

传热学实验2

逆流式换热器传热系数测定

[实验目的]

1. 熟悉换热器性能的测试方法;

2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征;

3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。

[实验原理]

换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。

图1实验装置简图

1.热水流量调节阀

2. 热水螺旋板、套管、列管启闭阀门组

3.热水流量计

4.换热器进口压力表

5.数显温度计

6.琴键转换开关

7.电压表

8.电流表

9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀

本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。

实验台参数:

1.换热器换热面积{F}:

⑴.套管式换热器具0.45 m2

⑵.螺旋板式换热器0.65 m2

⑶.列管式换热器 1.05 m2

2.电加热器总功率:9.0 kw

3.冷、热水泵:

⑴.允许工作温度:< 80 ℃

⑵.额定流量: 3 m3/h

⑶.扬程:12 m

⑷.电机电压:220 V

⑸.电机功率:370 W

4.转子流量计:

⑴.型号:LZB-15

⑵.流量:40-400升/小时

⑶.允许温度范围:0―120 ℃

图2 换热器综合实验台原理图

1.冷水泵

2.冷水箱

3.冷水转子流量计

4.冷水顺逆流换向阀门组

5.列管式换热器

6.电加热水箱

7.热水转子流量计

8.回水箱

9. 热水泵10. 螺旋板式换热器11. 套管式换热器

[实验操作]

1.实验前准备:

⑴.熟悉实验装置及使用仪表的工作原理和性能;

⑵.打开所要实验的换热器阀门,关闭其它阀门;

⑶.按逆流方式调整冷水换向阀门的开或关;

⑷.向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。

2.实验操作:

⑴.接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量;

⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度;

⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁);

⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果;

⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。

[实验数据与处理]

1. 实验数据记录表环境温度t0 ℃

2. 数据计算

热流体放热量:Q 1=C p 1·m 1{T 1-T 2} [W] 冷流体吸热量:Q 2=C p 2·m 2{t 1-t 2} [W] 平均换热量: ()221Q Q Q += [W]

热平衡误差: ()%100

21?-=?Q Q Q 对数传热温差:Δ1={ΔT 2-ΔT 1 }/In ·ΔT 2/ΔT 1={ΔT 1-ΔT 2}/In ·ΔT 1/ΔT 2 [℃]

传热系数: K=Q/F ·Δ1 [W/{m 2

·℃}] 式中: C p1,C p2 ——热,冷流体的定压比热 [J/Kg ·℃]

m 1,m 2——热,冷流体的质量流量热 [Kg/s] T 1,T 2——热流体的进出口温度 [℃] t 1,t 2——冷流体的进出口温度 [℃] ΔT 1= T 1-t 2 [℃] ΔT 2= T 2-t 1 [℃]

F ——换热器的换热面积 [m 2

]

[注]:热、冷流体的质量流量m 1,m 2是根据修正后的流量计体积流量读数V 1 V 2再换算成的质量流量值。

3. 绘制传热性能曲线,并作比较:

(1) 以传热系数为纵座标,冷水(热水)流速(或流量)为横座标绘制传热性能曲线; (2) 对三种不同型式换热器的性能进行比较。

[注意事项]

1 热流体在热水箱中加热温度不得超过80℃;

2 实验台使用前应加接地线,以保安全。

[思考题]

对顺、逆流状态下获得的实验数据进行比较,试分析其差异原因。

列管式换热器

螺旋管式换热器

套管式换热器

传热实验实验报告

传热实验 一、实验目的 1、了解换热器的结结构及用途。 2、学习换热器的操作方法。 3、了解传热系数的测定方法。 4、测定所给换热器的传热系数K。 5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之。 二、实验原理 根据传热方程Q=KA△tm,只要测得传热速率Q,冷热流体进出口温度和传热面积A,即可算出传热系数K。在该实验中,利用加热空气和自来水通过列管式换热器来测定K,只要测出空气的进出口温度、自来水进出口温度以及水和空气的流量即可。 在工作过程中,如不考虑热量损失,则加热空气释放出的热量Q1与自来水得到的热量Q2应相等,但实际上因热损失的存在,此两热量不等,实验中以Q2为准。 三、实验流程和设备 实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。空气走管程,水走壳程。列管式换热器的传热面积由管径、管数和管长进行计算。 实验流程图: 四、实验步骤及操作要领 1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用。 2、实验开始时,先开水路,再开气路,最后再开加热器。 3、控制所需的气体和水的流量。 4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的

有关参数。重复一次。 5、保持空气的流量不变,改变自来水的流量,重复第四步。 6、保持第4步水的流量,改变空气的流量,重复第四步。 7、实验结束后,关闭加热器、风机和自来水阀门。 五、实验数据记录和整理 1、设备参数和有关常数 换热流型错流;换热面积㎡

六、实验结果及讨论 1、求出换热器在不同操作条件下的传热系数。 计算数据如上表,以第一次记录数据序号1为例计算说明: 2、对比不同操作条件下的传热系数,分析数值,你可得出什么结论? 答:比较一、二、三组可知当空气流量不变,水的流量改变时,传热系数变化不大,比较四、五组可知空气流量改变而水的流量不改变时,传热系数有很大变化,且空气流量越大,传热系数越大,传热效果越好;综上可知,K值总是接近热阻大的流体侧的α值,实验中,提高空气侧的α值以提高K值。。 3、转子流量计在使用时应注意什么问题?应如何校正读数? 答:转子流量计不能用于流量过大的流体测量,使用时流量计必须安装在垂直走向的管段上,流体介质自下而上地通过转子流量计。 读数时应读转子的最大截面与玻璃管刻线相交处的数值,可以读初始值和最终值,取两者之差来校正读数。 4、针对该系统,如何强化传热过程才能更有效,为什么? 答:该系统传热效果主要取决于热流体,所以可以通过增加空气流量,提高其所占比例来强化传热效果;减小水的流量;内管加入填充物或采用螺纹管,加热面在上,制冷面在下。因为由实验可知提高热阻大的流体的传热系数可以更有效的强化传热过程。 5、逆流换热和并流换热有什么区别?你能用实验装置加以验证吗? 答:①逆流换热时热流体是冷热流体流动方向相反;而并流传热时,其冷热流体流动方向相同;②在相同操作条件下,逆流换热器比并流换热器所需传热面积小。可以改变冷热流体进出口方向,测得在相同传热效果下,逆并流所需传热面积大小,从而加以验证。 6、传热过程中,哪些工程因素可以调动? t ;④换热过程的流型(并流,逆答:①增大传热面积S;②提高传热系数α;③提高平均温差 m 流,错流)。 7、该实验的稳定性受哪些因素的影响? 答:①冷凝水流通不畅,不能及时排走;②空气成分不稳定,导致被冷凝效果不稳定;③冷热流体流量不稳定;④传热器管表面的相对粗糙度。 8、你能否对此实验装置作些改进,使之能够用于空气一侧对流传热系数的测定? 答:让空气走壳程,水走管程,根据流体在管外的强制对流公式,可提出空气一侧的对流传热系数α值。

传热实验实验报告

一、 实验名称: 传热实验 二、实验目的: 1.熟悉套管换热器的结构; 2.测定出K 、α,整理出e R N -u 的关系式,求出m A 、. 三、实验原理: 本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。 套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。 传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2m k m W t A q K m ???= (1) 传热实验

图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○ 1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s] V h ——空气流量[m 3/h] ρ——空气密度[kg/m 3 ],以下式计算: ]/)[273(4645.031 m kg t R p P a ++=ρ (3) Pa ——大气压[mmHg] Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃] Cp ——空气比热[K kg J ?/],查表或用下式计算: ]/[04.01009K kg J t C m p ?+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃] ②传热平均面积A m :

][2m L d A m m π= (5) 式中:d m =传热管平均直径[m] L —传热管有效长度[m ] ③传热平均温度差△t m 用逆流对数平均温差计算: T ←——T t 1——→t 2 )(),(2211t T t t T t -=?-=? 2 1 2 1ln t t t t t m ???-?= ? (6) 式中:T ——蒸汽温度[℃] 2、传热膜系数(给热系数)及其关联式 空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示: n r m e P AR Nu = (7) 式中:N u ——努塞尔特准数 R e ——雷诺准数 P r ——普兰特准数 A ——系数,经验值为0.023

传热学实验指导书22页

[实验一]用球体法测定粒状材料的导热系数 一、实验目的 1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。 2、确定热导率和温度之间的函数关系。 二、实验原理 热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。 球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。 设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律: dr dt r dr dt A λπλφ24-=-= (1) 边界条件 2 211t t r r t t r r ====时时 (2) 1、若λ= 常数,则由(1)(2)式求得 1 22121122121) (2)(4d d t t d d r r t t r r --=--=πλπλφ[W] ) (2) (212112t t d d d d --= πφλ [W/(m ·K)] (3) 2、若λ≠ 常数,(1)式变为 dr dt t r ) (42λπφ-= (4) 由(4)式,得 将上式右侧分子分母同乘以(t 2-t 1),得 )()(412122 2 1 2 1 t t t t dt t r dr t t r r ---=?? λπφ (5) 式中 1 22 1 )(t t dt t t t -?λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即

《传热学与传质学》教学大纲

《传热学与传质学》教学大纲 一、课程基本信息 1、课程英文名称:Engineering Thermodynamics and Heat Transfer 2、课程类别:专业基础课程 3、课程学时:总学时48,实验学时4 4、学分:3 5、先修课程:高等数学;普通物理;普通化学;工程流体力学 6、适用专业:石油工程 7、大纲执笔:油气储运教研室李永杰 8、大纲审批:石油工程学院学术委员会 9、制定(修订)时间:2006.11 二、课程的目的与任务: 本课程是研究热能传递与能量转换规律的学科,是一门必修的技术基础课程。通过本课程的学习,应使学生掌握热能与机械能的转化规律,热能的合理利用。热能的传递原理与规律、换热设备的热工计算等基本知识,培养学生独立思考、分析推导问题简化问题的能力,为专业课程的学习提供必要的理论基础。 三、课程的基本要求: 1.了解工程热力学与传热学的宏观研究方法及特点,掌握工程热力学 与传热学的基本概念: 2.掌握工程热力学的两个基本定律,能正确分析能量转换与守恒关 系,对热能的可用性有基本的认识,了解合理用能的原则 3.能依据热能过程的特征,分析计算过程的功量与热量。掌握理想气 体的基本热力性质与计算方法。 4.掌握热量传递的三种基本方式的原理与工程常见条件下的简化、计 算。 5.理解传热过程及传热系数,能计算传热量,并能指出增大或减小传 热量的基本方法。 6.了解常用换热器类型,并能进行换热器的一般热力计算。 四、教学内容、要求及学时分配: 2.(一)理论教学:

1.基本概念及定义(2学时) 掌握基本概念:热力学系统;热力学的状态及基本状态参数;平衡状态:状态方程;热力过程的准静态过程;准静态过程的功;热量;热量和功的类比;热力循环。 重点:建立工程热力学的基本概念及定义 难点:准静态过程的功;热量:热量和功的类比。 2.热力学的第一定律(6学时) 掌握热力学第一定律;闭口系统能量方程式;稳定状态稳定流动能量方程;焓;轴功;稳定流动能量方程式应用举例。 重点:能量守恒方程式与应用 难点:焓参数的应用。 3.理想气体内能、焓、熵和比热(2学时) 掌握理想气体内能和从理想气体的比热;理想气体的熵:了解理想气体混合物。 重点:理想气体状态参数变化量的计算。 难点:理想气体的熵变计算。 4.理想气体的热力过程(4学时) 掌握热力过程分析概述:定容过程;定压过程:定温过程;定熵过程;多变过程。 重点:各热力过程中功量与热量、状态参数的计算。 难点:多变过程的计算分析,图示。 5.热力学第二定律(4学时) 掌握热机循环与制冷循环:热力学第二定律,可逆过程与不可逆过程,卡诺循环。卡诺定理;了解热能的可用性。 重点:理解热力学第二定律是判断过程方向性的定律 难点:热能的可用性分析 6.熵(4学时) 掌握状态参数熵的计算,了解不可逆过程熵的产生;理解孤立系统熵增原理;系统的作功能力与不可逆损失。 重点:掌握熵增原理,判断过程方向 难点:熵变计算与系统作功能力损失计算

传热膜系数实验报告

化工原理实验报告 实验三 传热膜系数测定实验 实验日期:2015年12月30日 班级: 学生姓名: 学号: 同组人: 报告摘要 本实验选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。确定了在相应条件下冷流体对流传热膜系数的关联式。此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。 二、 目的及任务 1.掌握传热膜系数α及传热系数K 的测定方法; 2.通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 的方法; 3.了解工程上强化传热的措施。 三、基本原理 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关 系式的一般形式为:p n m Gr A Nu Pr Re 对于强制湍流而言。Gr 数可忽略,即

n m A Nu Pr Re = 本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,得到直线方程为 Re lg lg Pr lg 4.0m A Nu += 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。在直线上任取一点函数值带入方程中,则可得系数A ,即 m Nu A Re Pr 4.0= 用图解法,根据实验点确定直线位置有一定人为性。而用最小二乘法回归,可得到最佳关联结果。应用计算机辅助手段,对多变量方程进行一次回归,就能的道道A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其特征数定义式分别为 μρ du = Re , λμ Cp = Pr , λαd Nu = 实验中改变空气的流量,以改变Re 值。根据定性温度(空气进、出口温度的算数平均值)计算对应的Pr 值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。 牛顿冷却定律为 Q=αA △t m 式中α——传热膜系数,W/(m 2.℃);

80210127传热学C

《传热学C》课程教学大纲 课程编号:80210127 课程名称:传热学C 英文名称:Heat Transfer C 总学时:24 学分:1.5 适用对象:机械工程及其自动化专业,测控技术及仪器专业 先修课程:高等数学,流体力学 一、课程性质、目的和任务 传热学C是机械工程及其自动化专业和测控技术及仪器专业的一门专业选修课程。其目的在于使学生掌握有关热量传递的基本理论知识,具备一定的传热学分析计算能力。它不仅为以后专业课的学习提供必要的理论基础,也是培养提高学生综合分析能力和解决工程实际问题能力的重要环节之一。 二、教学内容、方法及基本要求 教学内容 1.绪论 了解传热学与工程热力学在研究内容和方法上的异同。认清传热学的研究对象及其在工程和科学技术中的应用。掌握热量传递的基本方式:导热、对流和热辐射的概念和所传递热量的计算公式。了解复合换热过程的计算方法,了解辐射换热表面传热系数的概念。认识到工程实际问题的热量传递过程往往不是单一的方式而是多种形式的组合,以加深传热过程的概念及传热方程的理解。初步理解热阻在分析传热问题中的重要地位。 2.导热基本定律及稳态导热 掌握傅里叶定律的意义和应用方法,了解常见材料导热系数的大致范围。理解推导导热微分方程的理论依据和思路,以及导热微分方程中各项的物理意义,能够正确书写导热问题的初始条件和三类边界条件。能应用傅里叶定律或导热微分方程对常物性、无内热源的一维稳态导热问题(平壁、圆筒壁)进行分析求解,得出温度场及导热量的计算公式。了解肋片在工程中的应用场合。加深理解热阻概念及其在分析导热问题时的重要性。 3.非稳态导热 了解非稳态导热过程的特点。掌握集总参数法的分析求解方法,了解其限制条件。 4.对流换热 牛顿冷却公式是对流换热计算的基础,要求重点掌握。理解影响对流换热的因素。掌握流动边界层和温度边界层的概念。理解相似原理在指导对流换热实验中的作用,准则方程的导出。掌握实验数据的整理方法。掌握管内换热入口段与充分发展段的概念。掌握定型尺寸和定性温度的概念。能正确和熟练地运用准则方程(实验关联式)计算简单的对流换热问题。了解有限空间自然对流换热的概念。掌握强化单相流体对流换热的途径。 5.凝结与沸腾换热

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4 .0Pr Re ??=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化 ??? ? ???=223,,μρβλμμρλαtl g c lu F l p 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a 圆管传热基本方程: m t A K t T t T t T t T A K Q ???=-----?=111 22112211 1ln ) ()( 热量衡算方程: )()(12322111t t c q T T c q Q p m p m -=-= 圆管传热牛顿冷却定律: 2 2112211 22211221121 1ln ) ()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----?=-----?=αα 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54 .02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

传热学课程简介 - 燕山大学教务在线

传热学教学大纲 (04级后新教学计划) 课程名称:传热学课程编码: 英文名称:heat transfer 学时:24 学时学分:1.5学分 开课学期:第五学期 适用专业:机械类 课程类别:必修 课程性质:技术基础课 先修课程:高等数学、大学物理 教材:《传热学》张兴中编燕山大学校内印刷 一、课程的性质及任务: 本课程是机械类专业的主要专业技术基础课。 课程教学所要达到的目的是:1、了解热量传递的基本方式。2、掌握温度场、传热量的基本分析方法和计算方法。3、在实验技能方面比较熟练地掌握常用热工测试仪器的使用方法与基本热工参数的测试技术。 二、课程的基本内容: 1、绪论 传热学的任务;热量传递的三种基本形式:热传导、热对流、热辐射;传热过程。 2、导热理论和一维稳态导热 傅里叶定律及导热系数:介绍导热理论的基本概念、傅里叶定律及导热系数;导热微分方程及单值性条件:推导导热微分方程、介绍单值性条件。 几个典型的稳态导热问题:单层平壁的稳态导热、多层平壁的稳态导热、无限长圆筒壁的稳态导热、球壁的稳态导热、通过等截面棒的稳态导热的温度场及热流量计算方法以及各种肋片散热量的计算。 3、非稳态导热 非稳态导热过程的特点:介绍非稳态导热过程的特点及非稳态导热过程的三个阶段。 无限大平板的加热或冷却:应用分离变量法对无限大平板非稳态导热的温度场及热流量的计算。 半无限大物体的非稳态导热:介绍求解思想。 有限大物体的非稳态导热:介绍求解思想。 集总参数法:介绍基本思想及温度场、热流量的求解方法。 4、导热问题的数值解法 有限差分法的基本原理:一阶、二阶导数的向前、向后、中心差分公式。 稳态导热问题的差分表达式:二维问题内部节点的差分方程式、边界上节点的差分方程式。 非稳态导热问题的有限差分法:一维问题内部节点的差分方程式、边界上节点的差分方程式。 线性代数方程组的求解:直接法、迭代法。 计算机求解导热问题简介:二维稳态问题、一维非稳态问题。

传热学实验

一、实验目的 1、了解对流换热的实验研究方法; 2、测定空气横向流过管束表面时的平均放热系数α,并将实验数据整理成准数方程式; 3、学习测量风速、温度、热量的基本技能。 二、主要实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、倾斜式微压计、皮托管、电位差计、功率表以及调压变压器等组成。 三、实验原理 根据相似理论,流体强制流过物体时的放热系数α与流体流速、物体几何参数、物体间的相对几何位置以及物性等的关系可用下列准数方程式描述: Pr)(Re,f Nu = 实验研究表明,空气横向流过管束表面时,由于空气普郎特数(Pr=0.7)为常数,故一般可将上式整理成下列的指数形式, n C Nu Re = 式中 C,n 均为常数,由实验确定, Nu ——努塞尔特准数 λ ad Nu = Re ——雷诺准数 v d ω= Re 上述各准则中,α——壁面平均对流换热系数[?2/m W ℃] d ——实验管外径,作为定性尺寸,[m] λ——空气导热系数,[?2/m W ℃] ω——空气流过实验管外最窄截面处流速,[m/s] ν——空气运动粘度,]/[2s m 定性温度:空气边界层平均温度)(2 1 f w m t t t +=。 式中:m t ——实验管壁面平均温度[℃]

f t ——空气平均温度本实验的任务在于确定C 与 n 的数值,首先使空气流速一定,然后测定有关的数据:电流I 、电压 V 、管壁温度w t 、空气温度f t 、微压计动压头h 。至于α和ω在实验中无法直接测得,可通过计算求得,而物性参数可在有关书中查得。得到一组数据后,可得一组 Re 、Nu 值;改变空气流速,又得到一组数据,再得一组 Nu 、Re 值;改变几次空气流速,就可得到一系列的实验数据。 四、实验数据及处理结果 1.测试所得原始数据 表1测试数据表 2.数据分析与计算 ◆表2热电偶测管温度平均值 ◆已知管长L=450mm,管直径d=40mm ,求得管表面积为205655 .0m L d A =??=π ◆空气进出口的平均绝对温度[K]:K T T T f 15.273)(2 1 21++= ,(见表3)由差值法及查表可知,热电偶

传热学上机实验

传热学上机实验 班级: 学号: 姓名:

一:实验问题 一个长方形截面的冷空气通道的尺寸如附图所示。假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失: (1)内、外壁面分别维持在10℃及30℃; (2)内、外壁面与流体发生对流传热,且有λ=0.53W/(m·K),t f1=10°C、h1=20W/(m2·K), t f2=30°C、h2=4W/(m2·K)。

二:问题分析与求解 本题采用数值解法,将长方形截面离散成31×23个点,用有限个离散点的值的集合来代替整个截面上温度的分布,通过求解按傅里叶导热定律、牛顿冷却公式及热平衡法建立的代数方程,来获得整个长方形截面的温度分布,进而求出其通过壁面的冷量损失。 1. 建立控制方程及定解条件 对于第一问,其给出了边界上的温度,属于第一类边界条件。 ????? ??? ??=?==??+??C C y t x t 301002222外壁温内壁温 对于第二问,其给出了边界上的边界上物体与周围流体间的表面传热系数h 及周围流体的温度 t f ,属于第三类边界条件。 ()?????? ?-=??? ????-=??+??f w w t t h n t y t x t λ02222 2. 确定节点(区域离散化) 用一系列与坐标轴平行的网格线把长方形截面划分为31×23个节点。则步长为0.1m ,记为△x=△y=0.1m 。

3. 建立节点物理量的代数方程 对于第一问有如下离散方程: ()()()()()()()()()()? ??? ???? ? ????? ???+++==?==?==?==?==?==?==?==?=+-+-代表内部点,,点41 26~6,1018,26~6,106,18~6,10,2618~6,10,631~1,3023,31~1,301,23~1,30,3123~1,30,11,1,,1,1,n m t t t t t n C m t n C m t n C n t n C n t n C m t n C m t n C n t n C n t n m n m n m n m n m 对于第二问有如下离散方程: 对于外部角点(1,1)、(1,23)、(31,1)、(31,,23)有: ()()02 222,1,,22,,1,22 =??-+-?+??-+-?±±x y t t t t x h y x t t t t y h n m n m n m f n m n m n m f λλ 得到: ()()()()????? ??? ?? ? ++ =++=++=++=22,3123,3023,312,311,301,3122 ,123,223,12,11,21,11865331400186533140018653314001865331400t t t t t t t t t t t t 同理可得: 对于内部角点(6,6)(6,18)(26,6)(26,18) ,有 ()() ()()()()()()????? ??? ??? ++++ =++++ =++++=++++=7,2618,2518,2719,2618,267,266,256,275,266,2618 ,717,619,618,518,67,66,75,66,56,671853359533592000718533595335920007185335953359200071853359533592000t t t t t t t t t t t t t t t t t t t t

《传热学》实验:平板导热系数测定实验

《传热学》实验一: 准稳态平板导热系数测定实验 一、 实验目的 1.快速测量绝热材料(不良导体)的导热系数和比热,掌握其测试原理和方法。 2.掌握使用热电偶测量温差的方法。 二、 实验原理 本实验是根据第二类边界条件,无限大平板的导热问题来设计的。 设平板厚度为δ2,初始温度为0t ,平板两面受恒定的热流密度c q 均匀加热(见图1)。求任何瞬间沿平板厚度方向的温度分布()τ,x t 。 导热微分方程、初始条件和第二类边界条件如下: ()()22,,x x t a x t ??=??τττ ()00,t x t = (),0c t q x δτλ ?+=? ()0,0=??x t τ 方程的解为: ()()()()2212002132,1cos exp 6n c n n n n q x x t x t F ατδτδμμλδδμδ∞+=??-??-=-+--?? ????? ∑ (1) 式中: τ——时间; λ——平板的导热系数; α——平板的导温系数;123n n n μβδ==,,,, ; 02a F τδ =——傅里叶准则; 0t ——初始温度; c q ——沿x 方向从端面向平板加热的恒定热流密度。 随着时间τ的延长,0F 数变大,式(1)中级数和项愈小。当5.00>F 时,级数和项变得很小,可以忽略,式(1)变成: 图1

()20221,26c q x t x t δαττλδδ??-=+- ??? (2) 由此可见,当5.00>F 后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。这种状态称为准稳态。 在准稳态时,平板中心面0=x 处的温度为: ()0210,6c q t t δαττλδ??-=- ??? 平板加热面x δ=处为: ()?? ? ??+=-31,20δτλδτδa q t t c 此两面的温差为: ()()λ δττδc q t t t ?=-=?21,0, (3) 如已知c q 和δ,再测出t ?,就可以由式(3)求出导热系数: t q c ?=2δλ (4) 实际上,无限大平板是无法实现的,实验中是用有限尺寸的试件。一般可以认为,试件的横向尺寸是厚度的6倍以上时,两侧散热对试件中心的温度影响可以忽略不计。试件两端面中心处的温度差就是无限大平板时两端面的温度差。 根据热平衡原理,在准稳态时,有下列关系: τ δρd dt F c F q c ????=? (5) 式中: F ——试件的横截面积; c ——试件的比热; ρ——其密度; τd dt ——准稳态时的温升速率。实验时,τ d dt 以试件中心处为准。 由式(5)可得比热: τ δρd dt q c c ??= 按定义,材料的导温系数可表示为 2()()2c c c t t c q t λδλδδδαρττ ===??? m 2/s 综上所述,应用恒热流准稳态平板法测试材料热物性时,在一个实验上可同时测出材料的三个重要热物性:导热系数、比热容和导温系数。 三、 实验装置 非(准)稳态法热物性测定仪内,实验本体由四块厚度均为δ、面积均为F 的被测试材重叠在一起组成。 在第一块与第二块试件之间夹着一个薄型的片状电加热器,在第三块和第四

《传热学》(第四版)习题附答案

第一章 思考题 1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。 答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。联系是:在发生对流换热的同时必然伴生有导热。 导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。 2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。试写出这三个公式并说明其中每一个符号及其意义。 答:① 傅立叶定律: dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。 ② 牛顿冷却公式: )(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。 ③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳 兹曼常数;T -辐射物体的热力学温度。 3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关? 答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。这三个参数中,只有导热系数是物性参数,其它均与过程有关。 4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。试分析引入传热方程式的工程实用意义。 答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。 5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 6. 用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。 答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 7. 什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 8.有两个外形相同的保温杯A 与B ,注入同样温度、同样体积的热水后不久,A 杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好?

传热学-强迫对流实验指导书(2014)

《传热学》实验指导书 实验名称:强迫流动单管管外放热系数的测定 实验类型: 验证性实验 学 时:2 适用对象: 热动、集控、建环、新能源等专业 一、实验目的 1.该项实验涉及较多课程知识,测量参数多,如风速、功率、温度,可考查学生的综合能力。 2.测量空气横向流过单管表面的平均表面传热系数h ,并将实验数据整理成准则方程式。 3.学习测量风速、温度、热量的基本技能,了解对流放热的实验研究方法。 二、实验原理 根据相似理论,流体受迫外掠物体时的表面传热系数h 与流速、物体几何形状及尺寸、流体物性间的关系可用下列准则方程式描述: ),(r e u P R f N = 实验研究表明,流体横掠单管表面时,一般可将上式整理成下列具体的指数形式: m n r m n e um P CR N ?= 式中:m n c ,,均为常数,由实验确定 努谢尔特准则---um N m um hd N λ= ---em R 雷诺准则 m em d R νμ= ---rm P 普朗特准则 m n rm P αν=

上述各准则中--d 实验管外径,作定性尺寸(米) --μ流体流过实验管外最窄面处流速,()/s m --λ流体导热系数()/K m W ? --α流体导温系数)/(2s m --ν流体运动粘度)/(2s m --h 表面传热系数)/(2K m W ? 准则角码m 表示用流体边界层平均温度)(2 1 f w m t t t -= 作定性温度。 鉴于实验中流体为空气,rm P =0.7,故准则式可化成: n em um CR N = 本实验的任务在于确定n c 与的数值。首先使空气流速一定,然后测定有关的数据:电流I 、电压V 、管壁温度w t 、空气温度f t 、测试段动压P 。至于表面传热系数h 和流速μ在实验中无法直接测量,可通过计算求得,而物性参数可在有关书中查到。得到一组数据后,即可得一组e R 、u N 值,改变空气流速,又得到一组数据,再得一组e R 、u N 值,改变几次空气流速,就可得到一系列的实验数据。 三、实验设备 本对流实验在一实验风洞中进行。实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、动压计、毕托管、电位差计、电流表、电压表以及调压变压器组成。 由于实验段前有两段整流,可使进入实验段前的气流稳定。毕托管置于测速段,测速段截面较实验段小,以使流速提高,测量准确。风量由风机出口挡板调节。

燃烧学》课程教学大纲

本科《工程燃烧学》课程教学大纲 课程中英文名称:工程燃烧学/Combustion Engineering 课程编码:012232309 课程性质:学科基础选修课 适用专业:安全工程 学时数: 48 ;其中:理论学时: 48 ;实践学时: 0 ;学分数: 3 ; 编写人:;审定人:; 一、课程简介 (一)课程教学目的与任务 课程教学目的:通过本课程的学习,使学生掌握燃料的分类及各种燃料的化学组成、定义、及燃烧计算方法。并能用所学的理论知识解释指导工程燃烧中遇到的问题,同时能够熟练的解决工程改造和设计中相关的燃烧计算问题。 课程教学任务:通过教学使学生掌握工程燃烧学的基本概念、基本理论,一方面为学生学习相关后续课程及进一步扩大专业知识面奠定坚实的基础;另一方面培养学生应用燃烧计算知识分析、解决工程实际中的燃烧问题的能力。 (二)课程教学的总体要求 使学生了解本课程的全部内容,理解大部分内容,掌握主要内容。 (三)课程教学内容 本课程主要内容包括:燃料概论、工程燃烧计算、燃烧理论基础、燃烧方法与燃烧装置、燃烧污染控制技术。 (四)先修课程及后续课程 先修课程:工程热力学与传热学、流体力学。 后续课程:矿井热灾害防治、矿井火灾防治。 二、课程教学总体安排 (一)学时分配建议表 学时分配建议表

(二)推荐教材及参考书目 1.教材 《工程燃烧学》.汪军,马其良,张振东中国电力出版社,2008年7月 2.参考书目 (1)《工程燃烧学》.童正明,张松寿,周文铸.中国计量出版社,2008年(2)《燃烧学》.徐通模.机械工业出版社,2011年 (三)课程考核方式 1.考核方式:期末闭卷笔试。 2.成绩构成:平时成绩占30%,期末考试占70%。 三、课程教学内容及基本要求 (一)燃料概论(6学时) 1.教学目的 使学生理解各种燃料的特点和使用性能。 2.教学重点与难点 (1)教学重点 固体及气体燃料成分表示方法及其换算,发热量计算。 (2)教学难点 燃料分析方法。 3.教学方法 以课堂讲授为主,课堂讨论、展示,上自习课,课下辅导等为辅的教学方法。4.教学内容: (1)燃料的概念与分类 (2)燃料的组成和特性 (3)固体燃料、液体燃料、气体燃料 (4)燃料分析方法 5.教学要求 理解:固体燃料、液体燃料、气体燃料的组成和特性; 了解:燃料分析方法; 掌握:固体及气体燃料成分表示方法及其换算,发热量计算。 6.学生练习 选取3~5个本章习题作为课后作业。 (二)工程燃烧计算(17学时) 1.教学目的 使学生理解并掌握燃烧过程中各项参数的基本计算。 2.教学重点与难点 (1)教学重点 燃烧空气量、烟气量、温度的相关计算。

传热学课程实验(1)

传热学实验1 顺流式换热器传热系数测定 [实验目的] 1. 熟悉换热器性能的测试方法; 2. 了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能特征; 3. 加深对顺流和逆流两种流动方式换热器换热能力差别的认识。 [实验原理] 换热器性能测试实验,主要对应用较广的间壁式换热器中的三种型式:套管式换热器、螺旋板式换热器和列管式换热器进行性能的测试。 图1实验装置简图 1.热水流量调节阀 2. 热水螺旋板、套管、列管启闭阀门组 3.热水流量计 4.换热器进口压力表 5.数显温度计 6.琴键转换开关 7.电压表 8.电流表 9.开关组10.冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组12.逆顺流转换阀门组13.冷水流量调节阀 本实验装置换热形式为热水—冷水换热式,工作原理如图2所示。热水加热采用电加热方式,冷、热流体的进出口温度采用数显温度计,通过琴键开关来切换测点。 实验台参数: 1.换热器换热面积{F}: ⑴.套管式换热器具0.45 m2 ⑵.螺旋板式换热器0.65 m2 ⑶.列管式换热器 1.05 m2 2.电加热器总功率:9.0 kw 3.冷、热水泵: ⑴.允许工作温度:< 80 ℃ ⑵.额定流量: 3 m3/h

⑶.扬程:12 m ⑷.电机电压:220 V ⑸.电机功率:370 W 4.转子流量计: ⑴.型号:LZB-15 ⑵.流量:40-400升/小时 ⑶.允许温度范围:0―120 ℃ 1.冷水泵 2.冷水箱 3.冷水转子流量计 4.冷水顺逆流换向阀门组 5.列管式换热器 6.电加热水箱 7.热水转子流量计 8.回水箱 9. 热水泵10. 螺旋板式换热器11. 套管式换热器 [实验操作] 1.实验前准备: ⑴. 熟悉实验装置及使用仪表的工作原理和性能; ⑵. 打开所要实验的换热器阀门,关闭其它阀门; ⑶. 按顺流方式调整冷水换向阀门的开或关; ⑷. 向冷-热水箱充水,禁止水泵无水运行(热水泵启动,加热才能供电)。 2.实验操作: ⑴. 接通电源;启动热水泵(为了提高热水温升速度,可先不启动冷水泵),并调整好合适的流量; ⑵.调整温控仪,使加热水温控制在80℃以下的某一指定温度; ⑶.分别打开加热器开关(热水泵开关与加热开关已进行连锁); ⑷.利用数显温度计和温度测点选择琴键按钮,观测和检查换热器冷-热流体的进出口温度。待冷-热流体的温度基本稳定后,既可测读出相应测温点的温度数值,同时测读转子流量计显示的冷-热流体的流量读数;记录上述测试结果; ⑸.实验结束后,首先关闭电加热器开关,5分钟后切断全部电源。 [实验数据与处理]

传热学实验指导书

《传热学》实验指导书 热工教研室编

目录 实验要求 (2) 实验一球体法粒状材料的导热系数的测定 (3) 实验二平板法导热系数的测定 (7) 实验三套管换热器液-液换热实验 (12) 实验四中温辐射黑度的测定 (16) 附录1 铜-康铜热电偶分度表 (22) 附录2 精密数字温度温差仪使用方法 (23)

实验要求 1.实验前应预习与实验有关的教材内容和实验指导书,了解实验目的、实验原理和实验要求,做到心中有数。 2.在实验室要首先熟悉实验装置的构造特点、性能和使用方法,使用贵重仪器时需得到指导教师的许可,方可动用。 3.实验时应严肃认真、一丝不苟,细致地观察实验中的各种现象,并作好记录,通过实验,训练基本操作技能和培养科学的工作作风。 4.实验结束时,学生先自行检查全部实验记录,再经指导教师审阅后,方可结束实验。 5.学生实验时,如出现实验仪器损坏情况,应及时向指导教师报告。6.按规定格式认真填写实验报告,并按期交出。

实验一球体法粒状材料的导热系数的测定 一、实验目的 1.巩固稳定导热的基本理论,学习球体法测定物质的导热系数的实验方法; 2.实验测定被测材料的导热系数λ; 3. 绘制出材料导热系数λ与温度t的关系曲线。 二、实验原理 加热圆球(见图1)由两个壁厚1.2毫米的大小同心圆球(1)组成。小球内装有电加热器(2)用来产生热量。大球内壁与小球外壁各设有三对铜-康铜热电偶(4)。当温度达到稳定状态后,电加热器产生的热量全部通过中间的测试材料(3)传到外 气。 1.大小同心球; 2.电加热器; 3.颗粒状试材; 4.铜康铜热电偶; 5.专用稳压电源; 6.专用测试仪; 7.底盘; 8.UJ36a电位差计图1 加热圆球示意图 测取小球的温度t1,t2,t3, 取其平均温度:T1=(t1+ t2+ t3)/3; 测取大球的温度t4,t5, t6,取其平均温度:T2=(t4+ t5+ t6)/3;

工程热力学和传热学课程教学大纲

《工程热力学与传热学》课程教学大纲 Thermodynamics and Heat Transfer 课程名称:工程热力学与传热学课程编号:130106009 课程性质:专业基础课(必修) 学时:32(含4学时实验学时)学分:2.0 适用对象:机械设计制造及其自动化专业、机械设计制造及其自动化专业(卓越计划试点专业)、机械设计制造及其自动化专业(核电装备工程)、机械设计制造及其自动化专业(机械电子)、材料控制与成型专业 先修课程:《高等数学》、《大学物理》等 课程负责人:肖佩林大纲执笔人:肖佩林审核人:罗金良 一、课程目标 该课程为专业基础课程可以支撑毕业要求1、2的达成。在阐述热力学普遍原理、热量传递机理的基础上,从工程观点来研究热能与其他形式能量间的转换规律、热量传递规律,研究热力学原理、传热学原理在技术上的各种具体应用。通过本课程的学习可以使同学们掌握遵循能量传递和转换技术的客观规律来合理组织和优化各种热力系统的工程方法;能有效地使用增强或削弱传热的措施来解决工程实际问题。 二、课程的主要教学内容和教学方法 第一篇工程热力学 第一章基本概念 1.基本内容: 热力系统;平衡状态及状态参数;状态方程与状态参数坐标图;准平衡过程与可逆过程;功量与热量。 2.教学基本要求: 了解:热功转换关系;热力循环及其性能指标。 掌握:热力系统及其分类;平衡状态及状态参数;状态参数的数学特征;准平衡过程和可逆过程的定义及区分;可逆过程功和热量的计算。 3.教学重点难点: 重点:热力系统及其分类;平衡状态及状态参数;可逆过程与准平衡过程的区别与联系。 难点:准平衡过程和可逆过程。

4.教学方法: 多媒体教学法、提问法、课堂讨论法。 5.与毕业要求的对应关系: 学生能正确理解热能转换中常用的一些术语,基本概念;掌握热力系及其分类,平衡状态和状态参数,状态参数的数学特征;了解实际热力循环的类型及其性能指标。 第二章热力学第一定律 1.基本内容: 热力系统的储存能;热力学第一定律的实质;闭口系统的热力学第一定律表达式;开口系统的稳定流动能量方程式;稳定流动能量方程式的应用。 2.教学基本要求: 了解:热力系统储存能的组成;热力学第一定律的实质; 掌握:热力学第一定律应用于闭口系统、稳定流动开口系的能量表达式;稳定流动能量方程式在实际热工设备中的应用。 3.教学重点难点: 重点:热力学能、焓的概念及其物理意义;推导热力学第一定律应用于闭口系统、稳定流动开口系的能量表达式;稳定流动能量方程式在实际热工设备中的应用 难点:稳定流动开口系能量表达式的推导及其在实际热工设备中的应用。 4.教学方法: 多媒体教学法、公式推导、案例教学法。 5.与毕业要求的对应关系: 通过学习相关理论知识,是学生掌握能量传递和转换时在数量上遵循的规律——热力学第一定律,学会用热力学第一定律判定第一类永动机不能实现;学会分析实际热工设备中能量转换关系。 第三章理想气体的性质与热力过程 1.基本内容: 理想气体状态方程式;理想气体的热容、热力学能、焓和熵;理想混合气体;理想气体的热力过程; 2.教学基本要求: 了解:理想气体与实际气体的区别;理想混合气体的成分表达; 掌握:克拉贝隆方程的不同形式并进行相关计算;理想气体热容、热力学能、焓和熵的概念及其计算;理想气体热力过程分析及计算。 3.教学重点难点: 重点:理想气体热容、热力学能、焓和熵的概念及其计算;理想气体热力过程分析及计算。

相关文档
最新文档