最优化大作业

最优化大作业
最优化大作业

最优化方法大作业

---------用优化算法求解函数最值问题

摘要

最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。最小化问题分为两类,即约束最小化和无约束最小化问题。在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。

在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。

报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。

本报告中所用程序代码一律用MATLAB编写。

【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB

一,问题描述

1,

分别用共轭梯度发法和牛顿法来求解一下优化问题

()()()()()4

41432243221102510min x x x x x x x x x f -+-+-++=

2, 分别用外点法和内点发求解一下优化问题

??

?≥-++0

1.min 212

231x x t s x x

二、问题求解

1.1 用牛顿法求解

()()()()()4

414

322

432

21102510min x x x x x x x x x f -+-+-++=

1.1.1问题分析:

取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[]

()k k k k x f x f x x ??-=-+1

21,直到终止条件成立时停止。

1.1.2 问题求解

注:本程序编程语言为MATLAB ,终止条件为()162

110-≤?x f ,初始取值

为[10 10 10 10]

M 文件(求解函数)如下:

function s=newton1(f,c,eps)

%c 是初值,eps 为允许误差值 if nargin==2 eps=1.0e-16; elseif nargin<1 error('') % return end

syms x1 x2 x3 x4 x=[x1 x2 x3 x4].'; grad = jacobian(f).';

hesse = jacobian(grad);

a=grad;

b=hesse;

i=1;

gradk=subs(a,[x1 x2 x3 x4],[c(1) c(2) c(3) c(4)]); hessek=subs(b,[x1 x2 x3 x4],[c(1) c(2) c(3) c(4)]);

pk=-1*(hessek\gradk);

x=tihuan(c);

while norm(gradk)>=eps

x=x+pk;

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); hessek=subs(b,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); pk=-hessek\gradk;

i=i+1;

end

disp('the times of iteration is:')

disp(i)

disp('The grad is:')

disp(gradk)

disp('and the result is:')

x=x.';

disp(x)

return

“tihuan”子函数:

function x=tihuan(x)

x(1)=x(1);

x(2)=x(2);

x(3)=x(3);

x(4)=x(4);

end

调用方式如下:

syms x1 x2 x3 x4

f=(x1+10*x2)^2+5*(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4;

c=[10 10 10 10]';%初始值

newton1(f,c,eps);

1.1.3 计算结果如下:

由上述结果可知,当迭代次数达到47次时满足终止条件,此时x 为

1.0e-005 * [-0.1111 0.0111 0.0095 0.0095], 显然,此题的理论解为[0 0 0 0],分析上述结果,与理论解的误差处于可接受范围之内。求解完成。

1.2 用共轭梯度法求解函数

()()()()()4

414

322

432

21102510min x x x x x x x x x f -+-+-++=

用共轭梯度法求解上述函数的程序代码如下:

1.2.1问题分析: 取

()

00x f p -?=,当搜索到

1

+k x 时,共轭方向

()2,...,1,0,11-=+-?=++n k p x f p k k k k λ,此时,1+k p 与k p A 共轭,用k Ap 右乘上式

()k

T

k k k k k k Ap p Ap x f Ap p λ+-?=++11,由

1=+k T

k Ap p 得

()2,...,1,01-=?=+n k Ap p Ap x f k

T p k

T

k k λ,若不满足条件,进行下一次迭代。

1.1.2 问题求解

注:程序所用语言为MATLAB ,精度为1610-=eps

syms x1 x2 x3 x4 t0 t1

f=(x1+10*x2)^2+5*(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4;

c=[10;10;10;10];

grad1 = diff(f,x1);

grad2=diff(f,x2);

grad3 = diff(f,x3);

grad4=diff(f,x4);

grad=[grad1;grad2;grad3;grad4];

a=grad;

i=1;

n=40;

gradk=subs(a,[x1 x2 x3 x4],[c(1) c(2) c(3) c(4)]);

x=tihuan(c);

p0=0;

while norm(gradk)>=eps

p0=-gradk;

y=x;

x=x+t0*p0;

k=0;

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

w=solve(gradk(1)+gradk(2)+gradk(3)+gradk(4));

t0=real(w);

t0=eval(t0);

t0=t0(1);

x=y+t0*p0;

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

while norm(gradk)>=eps

if k+1~=n

gradk2=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); gradk1=subs(a,[x1 x2 x3 x4],[y(1) y(2) y(3) y(4)]); lamda=norm(gradk2).^2/norm(gradk1).^2;

p0=-gradk2+lamda*p0;

k=k+1;

else

k=0;

p0=-subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]); end

clear y; y=x;

x=x+t1*p0;

gradk=subs(f,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

m=solve(gradk);

t1=real(m); t1=eval(t1(1));

x=x+t1*p0;x=eval(x);clear m;clear t1;syms t1

gradk=subs(a,[x1 x2 x3 x4],[x(1) x(2) x(3) x(4)]);

end

disp(x.') return; end

disp(x.')

此程序为一初步程序,假设初值为[10;10;10;10],则第一次运算得t0=0.0011,lamda=0.9291,迭代后的x=NaN 。现用共轭梯度法求解另一函数 ()2

22

125min x x x f +=

对上述程序稍加改动来求解本题的代码如下: 注:程序所用语言为MATLAB ,精度为1610-=eps

function s=gongegrad2(f,c,eps) %c 是初值,eps 为允许误差值 if nargin==2

%eps=1.0e-16; elseif nargin<1 error('') return end tic

syms x1 x2 t0 t1 grad1 = diff(f,x1); grad2=diff(f,x2); grad=[grad1;grad2]; a=grad; i=1;n=40;

gradk=subs(a,[x1 x2],[c(1) c(2)]); x=tihuan(c); p0=0;

while norm(gradk)>=eps p0=-gradk; y=x;

x=x+t0*p0; k=0;

gradk=subs(f,[x1 x2],[x(1) x(2)]); w=solve(gradk); t0=real(w); t0=eval(t0); t0=t0(1); x=y+t0*p0;

gradk=subs(a,[x1 x2],[x(1) x(2)]);

while norm(gradk)>=eps

if k+1~=n

gradk2=subs(a,[x1 x2],[x(1) x(2)]);

gradk1=subs(a,[x1 x2],[y(1) y(2)]);

lamda=norm(gradk2)^2/norm(gradk1)^2;

p0=-gradk2+lamda*p0;

k=k+1;

else

k=0;

p0=-subs(a,[x1 x2],[x(1) x(2)]);

end

clear y; y=x;

x=x+t1*p0;

gradk=subs(f,[x1 x2],[x(1) x(2)]);

m=solve(gradk);

t1=real(m); t1=eval(t1(1));

x=y+t1*p0;

clear m;clear t1;syms t1

gradk=subs(a,[x1 x2],[x(1) x(2)]);

end

disp(sprintf('the last point we want is [%f %f]',x(1),x(2))); disp(sprintf('the times used to recursion is %f',k));

disp(sprintf('the function value is %f',x(1)^2+25*x(2)^2));

toc

return;

end

disp(sprintf('the last point we want is [%f %f]',x(1),x(2))); disp(sprintf('the times used to recursion is %f',k));

disp(sprintf('the function value is %f',x(1)^2+25*x(2)^2)); toc

“tihuan”子函数为:

function x=tihuan(x)

[v,g]=size(x);

for i=1:v

x(i)=x(i);

end

程序调用方式为:

clear all

clc

syms x1 x2 t0 t1

f=x1^2+25*x2^2;

c=[2;2];%初值

gongegrad2(f,c,eps)

程序结果如下:

由上述结果知,用共轭梯度法对上述函数求解需要迭代三次得到最优解0,此时x 为[0 0];符合理论分析的结果,求解完成。

2.1 用外点法法求解函数

?

??≥-++01.min 212

231x x t s x x

2.1.1 问题分析

外点法为序列无约束最优化方法,其基本思想为将条件函数吸收到目标函数中进行求解。其在数学上的直观理解是拉格朗日乘子法:

[]()()()[]?

??

???+=∑=m

i i x g M x f M X T 12,0min min ;min ,

[]M X T ;min 为总代价,()x f 为价格,()()[]∑=m

i i x g M 1

2

,0min 为罚款。即在经济学上总代价为价格和罚款的和。

此时

()()[]()

()()()

m i x g x g x g x g i i i i ~1000,0min 2

2

=?≥???=,当,

称[]()()∑=++=m

i i x g M x f M X T 1

;为增广目标函数,通常取

()()

()()???≤≥=+0

00

2

x g x g x g x g i i i i

当当

2.1.2 问题求解

两种方法求解程序如下:

,程序中 2.1.2.1注:程序所用语言为MATLAB,终止条件为()16

-x

g

?

10-

i

无约束优化部分通过求导实现。

M文件如下:

tic

clc

%c 是初值,eps为允许误差值

if nargin==1

eps=1.0e-16;

elseif nargin<1

error('')

return

end

syms m

[x1,x2]=solve('3*x1^2+2*m*(x1+x2-1)=0','2*x2+2*m*(x1+x2-1)=0');

t=1;k=1;

x1=limit(x1,m,t);

x2=limit(x2,m,t);

bound=max(eval(x1(1)+x2(1))-1,eval(x1(2)+x2(2))-1);

while -bound>eps

t=10*t;k=k+1;

[x1,x2]=solve('3*x1^2+2*m*(x1+x2-1)=0','2*x2+2*m*(x1+x2-1)=0');

x1=limit(x1,m,t);

x2=limit(x2,m,t);

bound=max(eval(x1(1)+x2(1))-1,eval(x1(2)+x2(2))-1);

end

x1=eval(x1);x2=eval(x2);

f1=x1(1)^3+x2(1)^2;

f2=x1(2)^3+x2(2)^2;

if f1

disp(sprintf('the final x is [%f %f]',x1(1),x2(1)));

disp(sprintf('the final function value is %f',f1));

else

disp(sprintf('the final x is [%f %f]',x1(2),x2(2)));

disp(sprintf('the final function value is %f',f2));

end

disp(sprintf('the times used to recursion is %f',k))

toc

调用方式如下

syms x1 x2 m

T=x1^3+x2^2+m*(x1+x2-1)^2;

waidian(T,eps);

function s=waidian(T,eps)

实验结果如下

由上述结果可知当迭代17次时能够达到终止条件,此时,

???==451416.0548584

.02

1x x

函数得到最优解0.368870.求解完成。

2.1.2.2,程序中无约束优化部分通过调用“牛顿法”完成

代码如下;

tic

clear all;close all;clc syms x1 x2

m=1;x0=[2;2];eps=1.0e-6; T=x1^3+x2^2+m*(x1+x2-1)^2; c=10;k=1; while 1

s=newton1(T,x0,eps);%调用newton 法 x1=s(1);x2=s(2);

if m*(x1+x2-1)^2>eps

m=c*m;k=k+1;syms x1 x2

T=x1^3+x2^2+m*(x1+x2-1)^2; else

disp(sprintf('the final result is [%f %f]',x1,x2)); disp(sprintf('the function value is %f',x1^3+x2^2)); disp(sprintf('the times used to recursion is %f',k)); break; end end toc

实验结果如下:

由上述结果可知当迭代7次时能够达到终止条件,此时,

???==451416.0548584

.02

1x x

函数得到最优解0.368869.求解完成。 2.2 用内点法法求解函数

???≥-++0

1.m i n 212

231x x t s x x

2.2.1 问题分析

同外点法,内点法也为序列无约束最优化方法,其基本思想为将条件函数吸收到目标函数中进行求解。 ()()()()()()()x f x B x x B x x wB x f w x I →∞++=不为边界时,为为边界时;

;

称()x B 为障碍函数、围墙函数或者惩罚函数。通常取 ()()()()

()

∑∞

=∞

=∞

==1

2

1

1

i 11

,ln -i i i i i x g x g x g x B 或者

若在上一次迭代中x 处于可解区域外部,则“围墙”不够高,在下一次迭代时加高“围墙函数”。 2.2.2 问题求解 求解程序如下:

注:程序所用语言为MATLAB ,本程序出于对运行时间和算法简单的考

虑,选用()()

==1

1i i x g x B

终止条件为()610?x g i ,此时可以认为当x 接近求解边界时()x B (围墙)为无穷大,以确保函数的自变量迭代发生在可解区域内部 2.2.2.1,程序中无约束优化部分通过求导实现。 tic

clear all; close all;clc; eps=10^6; syms w x1 x2

I=x1^3+x2^2+w*(1/(x1+x2-1)); x10=2;x20=2;

[x1,x2]=solve('3*x1^2-w/(x1+x2-1)^2=0','2*x2-w/(x1+x2-1)^2=0'); c=10;k=1;

x1=limit(x1,w,c); x2=limit(x2,w,c);

x1=eval(x1);x2=eval(x2);

x1=real(x1(1));x2=real(x2(1)); bound=(1/(x1+x2-1)); while bound<=eps c=c/10;k=k+1;

[x1,x2]=solve('3*x1^2-w/(x1+x2-1)^2=0','2*x2-w/(x1+x2-1)^2=0'); x1=limit(x1,w,c); x2=limit(x2,w,c);

x1=eval(x1);x2=eval(x2);

x1=real(x1(1));x2=real(x2(1)); bound=(1/(x1+x2-1)); end

disp(sprintf('the final x is [%f %f]',x1,x2));

disp(sprintf('the final function value is %f',x1(1)^3+x2(1)^2)); disp(sprintf('the times used to recursion is %f',k)) toc

实验结果如下:

由上述结果可知当迭代15次时能够达到终止条件,此时,

???==451416

.0548584

.021x x

函数得到最优解0.368870.求解完成,结果与“外点法”相同。 2.2.2.2,程序中无约束优化部分通过调用“牛顿法”完成(eps x x c k k ≤-=-收敛准则为,)

代码如下;

tic

clear all;close all;clc syms x1 x2

w=10;x0=[2;2];eps=1.0e-6;

I=x1^3+x2^2+w*(1/(x1+x2-1)^2); c=0.3;k=1; while 1

s=newton1(I,x0,eps);%调用newton 法 x1=s(1);x2=s(2);

if sqrt((x1-x0(1))^2+(x2-x0(2))^2)>eps w=c*w;k=k+1;x0(1)=x1;x0(2)=x2; syms x1 x2

I=x1^3+x2^2+w*(1/(x1+x2-1)^2); else

disp(sprintf('the final result is [%f %f]',x1,x2)); disp(sprintf('the function value is %f',x1^3+x2^2)); disp(sprintf('the times used to recursion is %f',k)); break; end end toc

实验结果如下:

由上述结果可知当迭代36次时能够达到终止条件,此时,

???==451418.0548585

.02

1x x

函数得到最优解0.368872.求解完成,结果与“外点法”十分近似。

三、此次实验的收获

此次试验是用优化算法求解一些函数最值。通过此次实验,我的收获主要有以下几点;

1,

函数求最值在以前的学习中基本都是从函数本身出发,研究函数的本身性质,进而得出理论最值,对于一些性质不明确的函数涉猎不多。在这门课程中,我们更多的是从一个初始点出发,通过一些函数解集的迭代过程来求解函数的最值。虽然有的算法也牵扯到函数的性质(函数是否可导,是否有Hesse 矩阵等),但相对于以前的求解方式,对函数本身的要求已经薄弱很多,这就意味着可以对更多的函数运用算法求解最值,扩大了可求解函数的范围。

2,

这门课程的学习多是理论为主,老师在课堂上讲了很多实效有用的算法,对算法的优缺点也多有说明,但没在实战中运用的话理解不会很深。这次实验给了我一个运用所学理论知识的完美机会,在此次实验中能够通过自己的努力将课堂上讲的理论算法

逐步运用到实战中,无疑对理论的理解是大有裨益的。

3,这次实验中另外一个比较重要的收获是学习了MATLAB的运用。以前没有学习过MATLAB,但在这次试验中,能够自己学

习MATLAB并且很拙劣的完成实验内容,这种收获对以后的科目

学习也是很重要的。

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

北航博士研究生培养方案

交通科学与工程学院 道路与铁道工程(082301) 博士研究生培养方案 一、适用学科 道路与铁道工程(081401) 二、培养目标 1.坚持党的基本路线,热爱祖国,遵纪守法,品行端正,诚实守信,身心健康,具有良好的科研道德和敬业精神。 2.适应科技进步和社会发展的需要,在本学科上掌握坚实宽广的基础理论和系统深入的专门知识;熟练掌握一门外语;具有独立从事科学研究的能力;具有良好的综合素质。 3.在科学或专门技术上做出创造性的成果。 三、培养方向 1.道路与铁道工程的检测与加固; 2.土木工程结构分析与设计理论; 3.岩土本构理论及工程应用; 4.土木工程施工技术与材料; 5.工程结构仿真。 四、学制 学历博士研究生学制为3年。 博士研究生一般在入学后1年内完成课程学习,应在文献综述与开题报告前完成课程学分,应在博士论文答辩前完成全部学分和培养要求的有关环节。 鼓励博士研究生从入学开始就进行学位论文研究工作;文献综述与开题报告至申请学位论文答辩的时间间隔不得少于1年。 五、知识结构、课程设置与学分要求 1.知识结构要求 (1)基础理论与专业基础知识 高等工程数学与数学基础(数值分析、数理统计、矩阵理论、最优化理论与算法、数理方程、常微分方程、数学试验),专业基础知识(变分与有限元素法原理、高等混凝土结构、高等土力学、高等土木工程材料学、高等结构动力学、工程结构可靠度、工程塑性力学)。 (2)专业综合知识 混凝土结构非线性分析,高等钢结构,混凝土徐变力学,基础工程学,建设项目管理,高等岩石力学,建筑结构健康诊治,混凝土结构试验,岩土工程测试技术,建筑结构无损检测技术,土动力学,建筑结构有限元分析与应用,组合结构,城市地下工程,理论土力学与现代岩石测试技术,道路与铁道工程学科综合课。 (3)学科前沿与交叉学科知识 现代工程结构进展,材料科学进展,空间数据处理,科技信息检索与利用,科学

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

全日制工程硕士研究生培养方案-北航研究生院-北京航空航天大学

大型飞机高级人才培养班 航空工程全日制工程硕士研究生培养方案 一、适用类别或领域 航空工程(085232) 二、培养目标 材料工程、电子与通信工程、控制工程、航空工程领域全日制工程硕士 (以下简称航空工程等领域全日制工程硕士)是与以上各工程领域任职资格相联系的专业学位,主要为国民经济和国防建设等领域培养应用型、复合型高层次工程技术和工程管理人才。大飞机班旨在探索一条“以国家大型项目人才需求为索引,培养具有献身精神、团结协作精神、开拓创新精神的设计型和复合型人才”的研究生培养新模式,是北航研究生培养体系的一部分。 航空工程等领域全日制工程硕士培养的基本要求是: 1、坚持党的基本路线,热爱祖国、遵纪守法、品行端正、诚实守信、身心健康,具有良好的科研道德和敬业精神。 2、在本领域掌握坚实的基础理论和系统的专门知识,有较宽的知识面和较强的自立能力,具有大飞机设计、制造、运营、管理等领域需求的创造能力和工程实践能力。 3、掌握一门外国语。 三、培养模式及学习年限 1.航空工程等领域全日制工程硕士研究生培养实行导师负责制,或以导师为主的指导小组制,负责制订硕士研究生个人培养计划,选课、组织开题报告、论文中期检查、指导科学研究和学位论文,并与中国商飞、第一飞机设计研究院、西飞公司等航空企业联合培养,实行导师组指导。 2.硕士研究生一般用1学年完成课程学习,课程学习实行学分制,具体学习、考核及管理工作执行《北京航空航天大学研究生院关于研究生课程学习管理规定》。 3.专业实习是全日制工程硕士研究生培养中的重要环节,全日制工程硕士研究生在学期间,应保证不少于0.5年的工程实践。 4.学位论文选题应来源于航空工程等领域工程技术背景。鼓励实行双导师制,其中第一导师为校内导师,校外导师应是与本工程领域相关的专家,也可以根据学生的论文

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

北航经济管理复习纲要(From xx_buaa)

固定资产:使用期限较长,单位价值在规定标准以上,在生产过程中为多个生产周期服务,在使用过程中保持原来物质形态的资产。 流动资产:可以在一年或虽然超过一年但仍然是一个生产经营周期内变现或耗用的资产。 无形资产:指没有物质实体而以某种特殊权利和技术知识等资源形态存在并发挥作用的资产。 递延资产:只不能全部计入当期损益,需要分期摊销计入成本的各项费用。 折旧:固定资产由于其价值在多个时期内损耗降低的部分 固定资产折旧:固定资产由于其价值在多个时期内损耗降低的部分。 资金的时间价值:资金在使用中随时间推移所发生的增值。 边际收益:当影响收益的产量或投入要素增加一个单位所增的收益。 边际成本:边际成本指的是每一单位新增生产的产品带来到总成本的增量。 边际利润:单位产量所增加的销售单价扣除边际成本的值。 机会成本:在有限资源及该资源多用途条件下,将该资源用于某种用途而放弃的可能用于其它用途形成的最大代价(付出)。 价值工程:以最低寿命周期成本,可靠地实现必要功能,以功能分析为核心,以提高产品或作业价值为目的的有组织的技术经济活动。 并行工程:是对产品及其相关过程,包括制造过程和支持过程,进行并行、一体化设计的一种系统化方法,目标是降低成本、提高生产率、加快上市速度。 4P(营销组合):市场营销中指产品、价格、渠道与促销。 系统:(钱学森)系统是由相互作用和相互依赖的若干组成部分(要素)结合而成的具有特定功能的有机整体。 市场经济:商品在市场上的价格完全由供需双方决定,没有任何一方(例如政府)加以干涉。 简述全面质量管理的内涵 质量管理仅靠数理统计方法是不够的,还需要一系列的组织管理工作;质量管理活动必须对质量、价格、交货期和服务进行综合考虑,而不仅仅只考虑质量;产品质量的产生、形成和实现过程包括了从市场研究到销售和服务的螺旋上升的循环过程,所以质量管理必须是全过程的管理;产品质量必须同成本联系起来考虑 试说明价格下降使需求量增加的原因 (1)价格降低后,消费者可以用同样的钱买到比此前更多的东西。这相当于消费者实际收入的提高,因而使需求量有所增加。这是由于价格变化所产生的“收入效应”而引起的需求量的增加。 (2)价格降低后,人们会把对替代品的需求转移到这种商品上来,因而使这种商品的需求量增加,这是由于价格变化所产生的“替代效应”引起的。 试述市场均衡价格是怎样形成的 如果市场价格高于均衡价格,,则供给量>均衡产量,此时,卖者找不到足够的买主,就会降低价格;如果市场价格低于均衡价格,,则供给量小于均衡产量,,此时,买者不能如数买到想要的东西,就会抬高价格。如果市场价格等于均衡价格,供给量等于需求量,买者想买的量等于卖者想卖得量,市场达到均衡。 试述系统工程的基本观点 系统整体性观点不着重强调系统单个元素的最优,而是强调整个系统就其功能而言效果最优。 相关与制约观点元素之间存在关系,并且这种关系可以表达。强调尽量地定量或用图表描述出各元素之间或各子系统之间的关系。 系统模拟观点系统可以建立模型,模型是原系统的简化系统,一般要求它具有原系统的主要性能。建模是分析、研究的基础。 系统优化观点 简述开展价值工程工作的六个主要步骤 运用[价值工程]方法开发产品需要按六个步骤(阶段)进行,其分别是:信息收集、创意构想、评估判断、细部发展、汇报审批和追踪实践。 第一步骤的信息收集,包括了设计理念(含功能、条件、标准…等)、成本估价资料、现场状况…等,尽量列出可能的范围,再透过机能(Function)定义和评估,找出标的物中的主要机能(必须是具备的机能),和次要机能(非绝对必要,是用来辅助主要机能)。也就是借着了解问题和机能分析,去筛选和找出问题所在(高成本或成本不合理的项目)。第二步骤是创意构想阶段,这个阶段是在小组成员都对问题充份了解之后针对主要机能开始做脑力激荡,这时候大家仅提构想(方案),不对构想做任何批评,也不考量方案的可行性,大家完全拋开传统模式的思考,让思想任意遨游,经由这个阶段,经常能产生一些具创新性的构想。 第三步骤是评估判断阶段,是对上阶段所提出的各项构想(方案)加以评估分析,首先可删除那些不可行的方案,再对剩余的可行方案做优缺点分析,并依节省成本的潜力及机能的改善做评估,及排列先后次序,然后取其优者,进入下一步的细部发展。 第四步骤,细部发展阶段,对选取之替代方案,就成本、可行性、节省之成本(或提升之机能)做详细完整的叙述。第五步骤,汇报审批阶段,将上阶段所做的报告书对业主做口头报告,这时候业主的接受与否决定了建议方案的是否执行。 第六步骤,追踪与实践,业主接受建议之后,下一个阶段就是落实该建议的执行。因此,这阶段的工作是要追踪确认接受的替代方案已纳入设计中,并协助业主消除替代方案执行的可能障碍。

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

北航飞行器多学科设计优化复习题

飞行器多学科设计优化复习题 1.优化设计问题的三要素是什么?给出一个优化设计问题的例子,分别说明三个要素的具体内容。 三要素分别是设计变量,约束条件和目标函数。 以结构优化设计为例,设计变量可能是蒙皮厚度,前后翼梁缘条厚度,前后翼梁腹板厚度等结构参数;约束条件是机翼强度要求、刚度要求等目标函数是最小化结构重量。 2.飞行器设计一般分哪几个阶段?飞行器多学科优化设计有什么意义? 飞行器设计分三个阶段:概念设计、初步设计、详细设计。 飞行器MDO的意义为: (1)MDO符合系统工程的思想。能有效提高飞行器的设计质量 (2)MDO为飞行器设计提供了一种并行设计模式。 (3)MDO的设计模式与飞行器设计组织体制一致,能够实现更高程度的自动化。 (4)MDO的模块化结构使飞行器设计过程具有很强的灵活性。 3.在飞行器设计过程中,多学科设计优化方法与传统设计方法之间有哪些相同和不同点。 传统的飞行器设计优化中,采取的是一种串行的设计模式,往往首先进行性能设计优化,然后进行结构、操纵和控制系统设计优化,最后进行工艺装备设计。在传统的方法中,各个学科任务成了实现系统设计的最基本单元,影响飞机性能的气动、推进、结构和控制等学科被人为地割裂开来,各学科之间相互耦合所产生的协同效应并未被充分考虑进去,这可能导致失去系统的整体最优解,串行的模式也使得设计时间周期和成本大大增加。 而多学科优化设计技术是一种并行设计模式,它以各子系统、学科的优化设计为基础,在飞行器各个阶段力求各学科的平衡,充分考虑哥们学科之间的相互影响和耦合作用,应用有效的设计/优化策略和分布式计算机网络系统,来组织和管理整个系统的设计过程,通过充分利用各个学科之间的相互作用所产生的协同效应,以获得系统的整体最优解。 相同点在于都有对于子学科的分解,但是MDO更注重子学科间的协同。 4.给出MDO的三种定义,根据你的理解,MDO该如何定义? Definition1:MDO是一种通过充分探索和利用系统中相互作用的协同机制来设计复杂系统和子系统的方法论。 Definition2:MDO是指在复杂工程系统的设计过程中,必须对学科(子系统)之间的相互作用进行分析,并且充分利用这些相互作用进行系统优化合成的方法。 Definition3:多学科设计优化就是进行复杂系统的设计过程中,结合系统的多学科本质,充分利用各种多学科设计与多学科分析工具,最终达到基于多学科优化的方法论。 My Definition:当设计中每个因素都影响另外的所有因素时,确定该改变哪个因素以及改变到什么程度的一种设计方法。 5.多学科设计优化中,什么是学科分析?什么是系统分析? 学科分析:也成为子系统分析或子空间分析,以某一学科设计变量,其他学科对该学科的耦合状态变量和系统的参数为输入,根据某一学科满足的物理规律确定其物理特性的过程 系统分析:对整个系统,给定一组设计变量X,通过求解系统的状态方程得到系统状态变量的过程。 6.什么是多学科设计优化的状态变量?学科状态变量和耦合状态变量之间有什么区别?

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

大连理工优化方法大作业MATLAB编程

function [x,dk,k]=fjqx(x,s) flag=0; a=0; b=0; k=0; d=1; while(flag==0) [p,q]=getpq(x,d,s); if (p<0) b=d; d=(d+a)/2; end if(p>=0)&&(q>=0) dk=d; x=x+d*s; flag=1; end k=k+1;

if(p>=0)&&(q<0) a=d; d=min{2*d,(d+b)/2}; end end %定义求函数值的函数fun,当输入为x0=(x1,x2)时,输出为f function f=fun(x) f=(x(2)-x(1)^2)^2+(1-x(1))^2; function gf=gfun(x) gf=[-4*x(1)*(x(2)-x(1)^2)+2*(x(1)-1),2*(x(2)-x(1)^2)]; function [p,q]=getpq(x,d,s) p=fun(x)-fun(x+d*s)+0.20*d*gfun(x)*s'; q=gfun(x+d*s)*s'-0.60*gfun(x)*s'; 结果: x=[0,1]; s=[-1,1]; [x,dk,k]=fjqx(x,s) x =-0.0000 1.0000 dk =1.1102e-016 k =54

function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+2*X(2)^2+X(3)^2+ X(4)^2- X(2)*X(3)+2*X(1)+3*X(2)-X(3); end function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+2,-2*X(1)+4*X(2)-X(3)+3,2*X(3)-X(2)-1,2*X(4)]; end function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值 %输入:x0是初始点,fun和gfun分别是目标函数和梯度 %输出:x、val分别是最优点和最优值,k是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4;

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

最优化大作业

最优化方法大作业 ---------用优化算法求解函数最值问题

摘要 最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。最小化问题分为两类,即约束最小化和无约束最小化问题。在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。 在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。 报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。 本报告中所用程序代码一律用MATLAB编写。 【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB

一,问题描述 1, 分别用共轭梯度发法和牛顿法来求解一下优化问题 ()()()()()4 41432243221102510min x x x x x x x x x f -+-+-++= 2, 分别用外点法和内点发求解一下优化问题 ?? ?≥-++0 1.min 212 231x x t s x x 二、问题求解 用牛顿法求解 ()()()()()4 414 322 432 21102510min x x x x x x x x x f -+-+-++= 1.1.1问题分析: 取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[] ()k k k k x f x f x x ??-=-+1 21,直到终止条件成立时停止。 1.1.2 问题求解 注:本程序编程语言为MATLAB ,终止条件为()162 110-≤?x f ,初始取值为 [10 10 10 10] M 文件(求解函数)如下: function s=newton1(f,c,eps) %c 是初值,eps 为允许误差值 if nargin==2 eps=; elseif nargin<1 error('') % return end syms x1 x2 x3 x4

相关文档
最新文档