N维空间几何体质心的计算方法

N维空间几何体质心的计算方法
N维空间几何体质心的计算方法

N维空间几何体质心的计算方法

摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。

关键字:质心重心坐标平面薄板二重积分三重积分

一.质心或形心问题:

这类问题的核心是静力矩的计算原理。

1.均匀线密度为M的曲线形体的静力矩与质心:

静力矩的微元关系为

,

dMx yudl dMy xudl

==.

其中形如曲线L(

(),

y f x a x b

=≤≤)的形状体对x轴与y轴的静力矩分别

为(

b

a y

f x S

=

?

(

b

y a

M u f x

=?

设曲线AB

L

的质心坐标为(

,x y),则,,

y x

M M

x y

M M

==

中()

b

a

M u x d x u l

==

?

为AB

L

的质量,L为曲线弧长。

若在式

y

M

x

M

=

与式

x

M

y

M

=

两端同乘以2π,则可得

到22()

b

a y

xl f x S

ππ

==

?

,

22(

b

a x

yl f x S

ππ

==

?

,其中x

S 与y

S

分别表示曲线AB

L

绕x轴与y轴旋转而成的旋转体的侧面积。

2.均匀密度平面薄板的静力矩与质心:

设f(x)为

[],a b

上的连续非负函数,考虑形如区域

{}

(,),0()

D x y a x b y f x

=≤≤≤≤

的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为

1

(,()),

2

y f y x y x x

≤≤+?

,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点

1

(,())

2

x f x

处的一个质点,将它对x轴与y轴分别取静力矩微元可有

1

()()

2

x

dM u f x f x dx

=

()

y

dM uxf x dx

=

.两个静力矩为2

1

()

2

b

x a

M u f x dx

=?

?

,

()

b

x a

M u xf x dx

=?.设质心坐标为(,)

x y,则有()

y b

a

M u

x xf x dx

M M

==?

2

1

()

2

y b

a

M u

y f x dx

M M

==?

.其中

()

b

a

M u f x dx MA

==

?

为该

均匀密度薄板的质量,A 为面积。 二.平面图形的重心: 给定一个曲线

12(),(),,y f x y f x x a x b ====围成的图形,它是一个物质平面图形,我

们考虑均匀的面密度,即单位面积的质量为常数,它在图形的各部分都等于δ.将所给图形用直线

1,,,n x a x x x x b ==== ,划分成宽为12,,,n x x x ??? 的窄条,每个窄条的

质量等于它的面积和密度δ的乘积。如果每个窄条用以

i x ?为底,高为21()()i i f f ξξ-的

矩形来代替,其中

12i i

i x x ξ-+=

,则这窄条的质量将近似等于

[]21()()(1,2,,)

i i i i m f f x i n δξξ?=-?= ,这个窄条的重心将近似位于相应的矩形的重

心上:

21()()(),()2i i i i i c f f x y ξξξ+==

现在把每个窄条用一个质点来代替,它的质量等

于对应窄条的质量,并且集中于该窄条的重心处,我们来求整个图形的重心坐标的近似

值。

[][]2

1

2

1

()()()()i

i

i

i

c i

i

i

f f x

x f f x

ξδξξδξξ-?≈

-?∑∑,

[][][]1221211

()()()()2()()i i i i i i c i i i

f f f f x y f f x ξξδξξδξξ+-?≈

-?∑∑当

max 0

i x ?→时

[][]2

1

2

1

()()()()b a

c

b a

x f x f x dx x f x f x dx

-=

-??,

[][][]2121211()()()()2()()b

a c b

a f x f x f x f x dx y f x f x dx

+-=-??.这些公式任何均匀的平面图形都适用,可看

出重心的坐标是与密度无关的。例:求抛物线与直线所围成的重心的坐标(如图)

解:在这种情况下,

21()()f x f x ==因此

0520

235

2

5

a c x a x

=

=

= ,

0c y =.

三.重心

1.物体的重心是指物体各部分所受重力的合力的作用点,在生产实际中,常常要确定物体的重心。例如:炼钢用钢水包的包轴位置,就与钢水包的重心有关,如果包轴

低于重心,用天平调动钢包时就会翻转,如果包轴高于重心过多,则倒出钢水时翻转困难。因此,我们总是将包轴安装于略高于重心的地方,这时显然需要确定重心的位置。 本段将利用定积分来计算任意形状的均匀平面薄板的重心位置,显然,若于其重心处支持之,则此薄板必保持水平平衡而不倾斜。

设均匀薄板是由曲线

1()y y x =,2()y y x =和直线x b =围成的平面图形,我们要求此

平面的重心(,)G x y ,用u 表示此薄板单位面积的重量,则微面积

s d 的重量为12()u y y dx -,

其重心G 的坐标为

12

(,

)2y y x +,显然整个薄板的重量为12()b a u y y dx -?,由力学知,合力

对任一轴的力矩,等于各分力对该轴力矩之和,取对y 轴的力矩,得

1212()()b b a a u y y dx x ux y y dx ??-?=-??

??,取对x 轴的力矩得

121212()()2b b

a a y y u y y dx y u y y dx +??-?=-???

??,由此两式,即得确定薄板重心坐标的公式:

1

2

121

2

2222

121212()()()(1)11()()2

2()b b a a

b a

b b a

a

b

a x y y dx x y y dx

x s y y dx

y y dx y y dx y s y y dx

?--?

==

-?

??--??

==?

-??????

?

其中s 标薄板的面积,由公式(1)知均匀薄板的重心只与薄板的形状有关,而与薄板单位面积的重量无关。

特别,若

2()0y x ≡,则得曲边梯形薄板重心坐标公式:

b a

b a xydx x ydx =??

,

2

12b a

b a y dx y ydx =??.

例:试求半径为R 的半圆形均匀薄板的重心。

解:由于

2

2R s π=

,1y =

2y =故知重心G 的坐标(,)x y 为:

12023222

2

()22

2()40.42332

b R a

R

x y y dx

x s

R R x R

R R πππ

-=

=

-=-?

=

≈??,

22121()20

b a

y y dx y s -=

=?

.

四.利用二重积分来求一般的非均匀薄板的重心

设有非均匀平面薄板D ,其上每点的密度为(,)x y ρρ=,设薄板D 的重心坐标为

(,)x y ,考虑D 中微面积dD ,它的微质量为: (,)dm x y dD ρ=,它关于y 轴与x

轴的力矩分别为:

(,)xdm x x y dD ρ=与(,)ydm y x y dD ρ=

把这些微质量的力矩加起来,即得薄板D 关于y 轴与x 轴的力矩为:

(,)(,)D

D

D

xdm x x y dD x x y dxdy

ρρ==??????与

(,)(,)D

D

D

ydm y x y dD y x y dxdy

ρρ==??????

薄板的总质量,于是根据重心的定义,得求重心坐标的公式:

(,)(,)(2)

(,)(,)D

D

D

D D D xdm x x y dxdy x m

x y dxdy ydm y x y dxdy y m x y dxdy ρρρρ??

=

=

?

?

?

???==???????????????

特别,若薄板是均匀的,即(,)x y ρ=常数,则得求均匀薄板重心坐标公式:

D

xdxdy

x D

=

??,

D

ydxdy

y D

=

??.

对于均匀薄板,我们有

[]21()

()21()()y x b

b a

y x a D

xdxdy dx xdy x y x y x dx

==-???

??,

[][]{}

2211()

2

()()()22

21

21()()2

y x y x b b

a y x a D y x

b a y ydxdy dx ydy dx y x y x dx ?? ?== ???

=-??????故

()2

1b a

x y y dx

x D

-=

?,

()2

22112b a

y y dx y D -=

?

.

五.设一立体在空间占据区域T ,那么立体的体积为

T

V d x d y d z

=???

设(,,)x y z ρρ=,(,,)x y z T ∈是立体在点(,,)x y z 的密度,其中T 是它所占据的空间区域,那么该立体的质量为 (,,)T

M x y z dxdydz ρ=???

立体重心的坐标公式为:

1T

x xdxdydz

V

=

???,

1T

y ydxdydz

V

=

???,

1T

z zdxdydz

V

=

???.

这里x ,y ,z 是区域T 的几何重心的坐标。

例:求平面0x =,0z =,1y =,3y =,23x z +=所围之棱柱的重心坐标。 解:先求棱柱的体积

33

3201

33

301

03

203(3)2

1

(3)

292

z T

V dxdydz dx dy dz

x

dx dy x dx x x -==-==-=-=??????

???

现在求重心的坐标

338

2010221

99x

T x xdxdydz xdx dy dz -===??????, 338

2010222

99x T y ydxdydz dx ydy dz -===??????, 338

2010221992x T z zdxdydz dx dy zdz -===??????.

参考文献:1.《微积分与解析几何》,电子工业出版社,1985年11月出版,作者:R E??约翰逊F L??基奥克斯特。

?2.《微分与积分学》,吉林人民出版社,1983年9月出版,作者:N PISKUNOV

3.《数学分析》,山东科学技术出版社,1985年出版,作者:郭大钧陈玉妹袭卓明

4.《高等数学解题手册》,天津科学技术出版社,1983年12月出版,作者:丹科波波夫科热夫尼科娃。

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

空间几何体的表面积和体积测试题

《空 间 几 何 体 的 表 面 积 和 体 积 一、选择题(每小题 5分共50分) 1 ?已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为 4,体积 为16,则这个球的表面积是( ) A 16 E. 20 C. 24 D. 32 2、 已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为 V i 和V 2,则V : V 2= ( ) A. 1: 3 B. 1 : 1 C. 2 : 1 D. 3 : 1 3、 一个体积为8cm 3 的正方体的顶点都在球面上,则球的表面积是 A. 8 cm 2 B ? 12 cm 2 C ? 16 cm 2 D ? 20 cm 2 4?、如右图为一个几何体的三视图,其中府视图为正三角形, AB=2, AA=4,则该几何体的表面 积为( ) (A )6+ ,3 (B )24+ ,3 (C )24+2 ,.3 (D )32 A. —R 3 B ? 3 R 3 C ? 四5 R 3 D ? —R 3 24 ~8 24 8 8. 两个球体积之和为 12 n ,且这两个球大圆周长之和为 6 n, 那么这两球半径之差是( ) 10. 下列几何体各自的三视图中,有且仅有两个视图相同的(5.如果一个水 平放I 原平面图形的面积是 A C B 2 2 6.半径为R 的正圆卷成一个圆锥,侧它视体积为府视 450,腰和上底均为1的等腰梯形, 1 2 ) 那么 7. 圆台的一个底面周长是另一个底面周长的 较小底面的半径为( ) A. 7 E. 6 C. 5 3倍,母线长为3,圆台的侧面积为84 ,则圆台 D. 3 B . 1 C. 2 D. 3 9. 如图,一个封闭的长方体,它的六个表面各标出 种 不同的位置,所看见的表面上的字母已表明,则字母 A B 、C 、D E 、F 这六个字母,现放成下面三 A 、 B 、 C 对面的字母依次分别为 ( ???) ) 1 . 2 置的图形的斜 是'一个底面

质心算法代码

clear all,clc; for n=6:2:14 x=100*rand(1,100); %布置10m*10m的网格区域y=100*rand(1,100); w=100*rand(1,n); z=100*rand(1,n); plot(x,y,'b*',w,z,'rO') axis([0 100 0 100]) grid on; xlabel('x'),ylabel('y') title('原始点分布') C=0; X=zeros(1,100); Y=zeros(1,100); for i=1:100 m=0; a=0; b=0; for k=1:n dist=distance(x(i),y(i),w(k),z(k)); if dist<=2 a=a+w(k); b=b+z(k); m=m+1; end end if m>=1 X(i)=a/m; Y(i)=b/m; else X(i)=0; Y(i)=0; C=C+1 ; end end % plot(X,Y,'bO') axis([0 10 0 10]) grid on; xlabel('x'),ylabel('y') title('定位后点分布') ALE=0; for i=1:100

ALE=ALE+sqrt((X(i)-x(i))^2+(Y(i)-y(i))^2); end ALE=ALE/100; ALE=ALE/4; c1(n/2-2)=(100-C)/100 ale1(n/2-2)=ALE bili(n/2-2)=n/(100+n); end figure ; plot(bili,c1); grid on; xlabel('锚节点比例'),ylabel('可定位节点比例') title('锚节点比例与可定位节点比例图'); figure, plot(bili,ale1); xlabel('锚节点比例'),ylabel('定位误差') grid on; title('锚节点比例与定位误差')

空间向量在立体几何中的应用——夹角的计算习题-详细答案

【巩固练习】 一、选择题 1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

空间几何体测试题及答案

空间几何体测试题 (满分100分) 一、选择题(每小题6分,共54分) 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 3.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A .2倍 B . 4倍 C .2 倍 D .12倍 3.棱长都是1的三棱锥的表面积为( ) 4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 5.正方体的内切球和外接球的半径之比为( ) A B 2 C . D 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 7.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 8.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:9 9.圆锥平行于底面的截面面积是底面积的一半,则此截面分圆锥的高为上、下两段的比为 ( ) A .1:( 2 -1) B .1:2 C .1: 2 D .1:4 二、填空题(每小题5分,共20分) 10.半径为R 的半圆卷成一个圆锥,则它的体积为________. 主视图 左视图 俯视图

11.右面三视图所表示的几何体是 . 12.已知,ABCD 为等腰梯形,两底边为AB,CD 且AB>CD ,绕AB 所在的直线旋转一周所 得的几何体中是由 、 、 的几何体构成的组合体. 13.正方体1111ABCD A BC D - 中, O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为____________ 三、解答题(每小题13分,共26分) 14.将圆心角为0 120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积 15. (如图)在底半径为2,母线长为4 求圆柱表面积。 正视图 侧视图 俯视图

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

立体几何之空间角(经典)

中小学1对1课外辅导专家 武汉龙文教育学科辅导讲义 授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课 使用教具 讲义、纸、笔 教学目标 熟悉高考中立体几何题型的一般解法 教学重点和难点 重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题 教学流程及授课详案 【知识讲解】 空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:o o 900≤<α; 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以 通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 (2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90; ③斜线与平面所成的角:范围o o 900<<α;即也就是斜线与它在平面内的射影所成的角。 (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法; 注意:还可以用射影法:S S ' cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封 闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。一般用于解选择、填空题。 时 间 分 配 及 备 注

【题海拾贝】 例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. EF平面P AD; (1)求证:// (2)当平面PCD与平面ABCD成多大二面角时, EF平面PCD? 直线 例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a, F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

空间几何体单元测试卷答案

空间几何体单元测试卷答案 一、选择题 (每小题5分, 共30分) 1. D 2. B 3. C 4. B 5. C 6. C 、 填空题 (每小题5分, 共 20 分) 7. 球 8. R 9. . 2 10. 50cm 2 三、 解答题 (共3小题,共 50分) 11. 解:(1)设正四棱柱的底面边长为 a ,高为h , 由题意 2a 2 + h 2= 81 ① ............................................................................ 2 分 2a 2 + 4ah = 144 即 a 2 + 2ah = 72 ② ........................ 4 分 ①X 8 —②X 9 得 7a 2— 18ah + 8h 2= 0 即(7a — 4h ) ( a -2h )= 0, ......... 6 分 因此7a — 4h = 0或a = 2h ,由此可见由①②构成方程组有两组满足条件的解,故 满足这些条件的正四棱柱有 2个. .................................. 8分 (2)由(1)得,正四棱柱的底面边长 a 和高h 满足7a = 4h 或a = 2h , 当7a = 4h 时,代入①可求得 a = 4, h=7;此时正四棱柱的体积为 V=a 2h=42X 7=112(cm 3). 当a = 2h 时,同理可得 r 30 360 … 八 当x = cm 时,S 取到最大值 cm 2. ............................................... 16分 7 7 2 3 1 13.解:(1)依题意,可得—r - 108 ① ................................ 3分 3 6 且-r 3 r 2h 108 ② ................... 6分 3 3 r 27 ,.?? r 3 (cm);代入②可求得 h 10 (cm).…9分 (2)若将试管垂直放置,并注水至水面离管口 4cm 处,此时水的体积为 2 3 2 2 2 12分 a = 6, h=3;此时正四棱柱的体积为 V=a 2h=62X 3=108(cm 3). 12.解:如图SAB 是圆锥的轴截面,其中 SO = 12, OB = 5. 设圆 锥内接圆柱底面半径为 0Q = 乂,由厶SO 1CSOB , SO 1 _ SO O 1C OB ,SO 1 = SO OB OO 1 = SO — SO 1= 12—玛, 5 则圆柱的表面积 19分 S = S 侧+ 2S 底=2 n x + 2 n x 2 = 2 n 7 2 12x — X 5 由①得 16分

N维空间几何体质心的计算方法.

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (, y f x a x b =≤≤的形状体对x轴与y轴的静力矩分别 为( b

a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y,则,, y x M M x y

M M == 其 中( b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。若在式 y M x M

= 与式 x M y M = 两端同乘以2π,则可得 到22( b a y xl f x S ππ == ? ,

22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x为 [],a b 上的连续非负函数,考虑形如区域 {} (,,0(

D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为1 (,(, 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,( 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 (( 2 x dM u f x f x dx

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

空间几何体的表面积和体积练习题

一、知识回顾 (1)棱柱、棱锥、棱台的表面积= 侧面积+ ______________; (2)圆柱:r为底面半径,l为母线长 侧面积为_______________;表面积为_______________. 圆锥:r为底面半径,l为母线长 侧面积为_______________;表面积为_______________. 圆台:r’、r分别为上、下底面半径,l为母线长 侧面积为_______________;表面积为_______________. (3)柱体体积公式:________________________;(S为底面积,h为高)锥体体积公式:________________________;(S为底面积,h为高)台体体积公式:________________________; (S’、S分别为上、下底面面积,h为高) 二、例题讲解 题1:如图(1)所示,直角梯形ABCD绕着它的底边AB所在的直线旋转一周所得的几何体的表面积是______________;体积是______________。 8

图(1) 题2:若一个正三棱柱的三视图如图(2)所示, 求这个正三棱柱的表面积与体积 图(2) 题3:如图(3)所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ?,BCF ?均为正三角形,EF//AB ,EF=2,则该多面体的体积为( ) A .32 B .33 C .34 D .2 3 E A B D C F 左视图 俯视图 主视图

图(3) 1、若圆柱的侧面积展开图是长为6cm ,宽为4cm 的矩形,则该圆柱的体积为 2、如图(4),在正方体1111D C B A ABCD -中, 棱长为2,E 为11B A 的中点,则 三棱锥11D AB E -的体积是____________. 图(4) C B A D C 1 B 1 E A 1 D 1

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

必修 空间几何体单元测试题

人教A必修2第一章《空间几何体》单元测试题 (时间:60分钟,满分:100分) 班别座号姓名成绩 一、选择题(本大题共10小题,每小题5分,共50分) 1、图(1)是由哪个平面图形旋转得到的() A B C D 2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为() A.1:2:3 B.1:3:5 C.1:2:4 D1:3:9 3、棱长都是1的三棱锥的表面积为() A. 3 B. 23 C. 33 D. 43 4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2= A. 1:3 B. 1:1 C. 2:1 D. 3:1 5、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6、有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为: A.24πcm2,12πcm3 B.15πcm2,12πcm3 C.24πcm2,36πcm3 D.以上都不正确 7、一个球的外切正方体的全面积等于6 cm2,则此球的体积为() A.3 3 4 cm π B. 3 8 6 cm π C. 3 6 1 cm π D. 3 6 6 cm π 8、一个体积为3 8cm的正方体的顶点都在球面上,则球的表面积是 A.2 8cm π B.2 12cm π C.2 16cm π D.2 20cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是() A. 3 π B. 4 π C. 2 π D. 10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A1B1=2, AA1=4,则该几何体的表面积为 (A)6+3 (B)24+3 (C)24+23 (D)32 选择题答题表 A B 1 正视图侧视图府视图

质心算法

3.1 质心检测算法 系统采用质心法进行数据处理能提高测试精度。因为质心法能使CCD 上的图像分辨率达到光敏元尺寸的1/10,那么成像亮线中心在CCD 上所对应的光敏源序号就可以是小数,而非一定是整数,这样通过计算可知,精度提高了0.1个百分点。虽然测量系统的精度有提高,但0.11%的相对误差仍不能令人满意,从误差公式可知,系统误差的改善主要取决于CCD 的像元尺寸。随着CCD 技术的不断发,像元尺寸也会不断改善,系统误差也将会有大幅度减小。 质心法图像预处理算法步骤如下[5]:(1)对图像通过灰度化和反色后阈值选择得到光斑特征区域;(2)模糊去噪(mean blur ),消除热噪声以及像素不均匀产生的噪声;(3)再次进行阈值选择,得到更清晰的光斑区域;(4)形态学处理,选择disk 中和合适的领域模板,对图像进行腐蚀和填充处理,以得到连通域的规则形状图形;(5)边缘检测得到图像边缘,反复实验证明canny 边缘检测算法最好;(6)对边缘再进行形态学strel -imerode -imclose -imfill 相关运算得到更连通的边缘曲线,调用regionprops (L ,properties )函数,根据质心法计算质心。 下面介绍几种常用的质心算法 (1)普通质心算法 (,)ij ij ij c c ij ij x I x y I =∑∑ (3-1) 其中ij I 为二维图像上每个像素点所接收到的光强,该算法适用于没有背景噪 声,背景噪声一致或信噪比较高的情况。 (2)强加权质心算法 0000000000000000,/2,/2 ,/2,/2 ,/2,/2 ,/2,/2y w y x w x i ij j y w y i x w x c y w y x w x ij j y w y i x w x x I w x I w ++=-=-++=-=-=∑∑∑∑

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2BE =33 2332= ?. 又AB =1,且∠AOB =90°,∴AO =363312 22=??? ? ??- =-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

高一数学空间几何体综合练习题

人教A 必修2第一章空间几何体综合练习卷 本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分. 第Ⅰ卷(选择题,共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 2.利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形; ③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的是 ( ) A .①② B . ① C .③④ D . ①②③④ 3.棱台上下底面面积分别为16和81,有一平行于底面的截面面积为36,则截面戴的两棱台高 的比为 ( ) A .1∶1 B .1∶1 C .2∶3 D .3∶4 4.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( ) A .正方体 B .正四棱锥 C .长方体 D .直平行六面体 5.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ?α,b ?β,a ∥b D .a ?α,b ?α,a ∥β,b ∥β 6.如图所示,用符号语言可表达为( ) A .α∩β=m ,n ?α,m ∩n =A B .α∩β=m ,n ∈α,m ∩n =A C .α∩β=m ,n ?α,A ?m ,A ? n D .α∩β=m ,n ∈α,A ∈m ,A ∈ n 7.下列四个说法 ①a //α,b ?α,则a // b ②a ∩α=P ,b ?α,则a 与b 不平行 ③a ?α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为 ( ) A .279cm 2 B .79cm 2 C .32 3cm 2 D .32cm 2 9.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧 面,则两圆锥体积之比为 ( ) A .3∶4 B .9∶16 C .27∶64 D .都不对 10.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D —ABC 的体积为 ( )

相关文档
最新文档