专题06 利用函数性质解决抽象函数不等式-学会解题之高三数学万能解题模板(2021版)(原卷版)

专题06 利用函数性质解决抽象函数不等式-学会解题之高三数学万能解题模板(2021版)(原卷版)
专题06 利用函数性质解决抽象函数不等式-学会解题之高三数学万能解题模板(2021版)(原卷版)

学习界的专题06 利用函数性质解决抽象函数不等式

【高考地位】

函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。

确定抽象函数单调性解函数不等式

例1 已知函数f (x )是定义在R 上的奇函数,若对于任意给定的实数x1 , x2 ,且x1 ≠x2 ,不等式

x

1

f(x1)+x2f(x2)

【变式演练 1】【辽宁省辽西联合校 2020-2021 学年高三(上)期中】已知函数 f ( x) =

f(log2x-1)≤f(3)的解集为()

x2

x2 +1

,则不等式

A.[4, +∞) B.?1

, 4

?

C.

?1

,16

?

D.

?1

,16

?

2 ? ?8 ? ?4 ? ??????

1 1 【变式演练 2】【江西省赣州市部分重点中学 2021 届高三上学期期中考试文科】已知定义在[1, +∞) 上的函数 f (x ) 满足 f (x ) + x ln xf '(x ) < 0 且 f (2021) = 0 ,其中 f ' (x ) 是函数 f ( x ) 的导函数,e 是自然对数的底数,则不等式 f ( x ) > 0 的解集为( )

A .

(1, 2021) B . (2021, +∞) C . (1, +∞) D .

[1, 2021)

【变式演练 3】定义在非零实数集上的函数 f (x ) 满足 f (xy ) = f (x ) + f ( y ) ,且 f (x ) 是区间(0, +∞) 上的

递增函数.

(1)求 f (1), f (-1) 的值;

(2)求证: f (-x ) = f (x ) ;

(3)解不等式 f (2) + f (x - 1 ) ≤ 0 .

2

【 变式 演 练 4 】 定 义在 (-1,1) 上 的函 数 f (x ) 满 足下 列 条件 : ① 对 任意 x , y ∈ (-1,1) , 都有

f (x ) + f ( y ) = f ( x + y

) ;②当 x ∈(-1, 0) 时,有 f ( x ) > 0 ,求证:

1+ x + y

(1) f (x ) 是奇函数;

(2) f (x ) 是单调递减函数;

(3) f ( ) + 11 1 1 f ( ) + + f ( ) > f ( ) ,其中 n ∈ N * . 19 n + 5n + 5 3

【高考再现】

1. 【2020 年高考浙江卷 9】已知 a , b ∈ R 且 ab ≠ 0 ,若

( x - a )( x - b )( x - 2a - b ) ≥ 0 在 x ≥ 0 上恒成立,

则 ( )

A. a < 0

B. a > 0

C. b < 0

D. b > 0

2. 【2020 年高考北京卷 6】已知函数 f (x ) = 2x

- x -1,则不等式 f ( x ) > 0 的解集是

( )

A . (-1 , 1)

B . (-∞ , -1) (1 , + ∞)

C . (0 , 1)

D . (-∞ , 0) (1 , + ∞)

2

3.【2020 年高考山东卷8】若定义在R 上的奇函数f (x) 在(-∞, 0) 单调递减,且f (2) = 0 ,则满足xf (x -1) ≥ 0

的x 的取值范围是()A.[-1 ,1] [3 , +∞) B.[-3 , -1] [0 , 1] C.[-1 , 0] [1 ,+∞) D.[-1 , 0] [1 , 3]

4.【2017 全国卷一理】函数 f (x)在(-∞,+∞)单调递减,且为奇函数.若 f (1)=-1,则满足-1≤f (x - 2)≤1的x 的取值范围是()

A.[-2 ,2]B.[-1,1] C.[0 ,4] D.[1,3]

5【.2018年普通高等学校招生(江西卷)】已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的0

A.af(b)≤bf(a) B.bf(a)≤af(b) C.af(a)≤f(b) D.bf(b)≤f(a)

6.【2014 辽宁理12】已知定义在[0,1] 上的函数f (x) 满足:

①f (0) =f (1) = 0 ;

②对所有 x, y ∈[0,1],且 x ≠y ,有| f (x) -f ( y) |<1

| x -y | .

2

若对所有x, y ∈[0,1],| f (x) -f ( y) |

1 1 A.B.

2 4

1 1 C.

D.

8

7.【2018 年普通高校招生全国卷一】已知函数f (x),任取两个不相等的正数x1 ,x2 ,总有

??f(x1)-f(x2)??(x1-x2)>0,对于任意的x > 0 ,总有f??f(x)-ln x??=1,若g (x)=f '(x )+f (x )-m 2 +m 有两个不同的零点,则正实数m 的取值范围为.

【反馈练习】

1.【山西省运城市2021 届高三(上)期中数学(理科)】已知函数f (x)=x5 + 3x3 +x + 2 ,若

f (a)+f (a - 2)> 4 ,则实数a 的取值范围是()

3 ? A . (-∞,1) B . (-∞, 2) C . (1, +∞) D . (2, +∞)

2

.【甘肃省兰州市西北师范大学附属中学 2020-2021 学年高三数学第一学期期中】函数 f ( x ) 在[0, +∞) 单

调递增,且 f ( x + 3) 关于 x = -3 对称,若 f (-2) = 1,则 f (

x - 2) ≤ 1的 x 的取值范围( )

A . [-2,2]

B .

(-∞, -2] [2, +∞)

C . (-∞, 0) [4, +∞)

D . [0, 4]

3. 【黑龙江省哈尔滨六中 2020-2021 学年高三(上)开学数学(理科)】奇函数 f (x ) 满足 f (2) = 0 ,且 f (x )

2x -1

在(0, +∞) 上单调递减,则

f (x ) - f (-x )

< 0 的解集为(

A .

(-2, 2) B .

(-∞, -2) (2, +∞)

C .

(-∞, -2) D .

(2, +∞)

4

. 【河南省洛阳市 2020-2021 学年第一学期高三第一次统一考试】已知奇函数 f ( x ) 的定义域为? - π , π

?

2 2 ? ?

?

其图象是一段连续不断的曲线,当 - π

< x < 0 时,有 f '(

x ) c os x + f (x )sin x > 0 成立,则关于 x 的不等 2

式 f (

x ) < 2 f ? π ?

cos x 的解集为( )

? ?

? - π π ?

? π π ?

A . , ?

B . - ,- ? ? 2 3 ?

? 2 3 ?

? - π ,- π ? ? π π ? ? - π ,0 ?

? π π ? C. 2 3

? , ? D. 3

? , ?

? ? ? 3 2 ?

? ? ? 3 2 ?

5【. 河南省十所名校 2020-2021 学年高三上学期第二次考试数学(理)

】设函数 f ( x ) 在 R 上存在导数 f '( x ) ,

对于任意的实数 x ,都有 f ( x ) + f (-x ) + 2x 2

= 0 ,当 x > 0 时,f '(x ) + 2x < 1,

若 f (m ) ≥ f (1) - m 2

+ m ,则实数m 的最大值为(

?

? 2

?

?

A .-1

B .1

C .-2

D .2

6. 【河南省郑州、商丘市名师联盟 2020-2021 学年高三上学期 12 月教学质量检测】已知 f

( x ) 是定义在R

上的减函数,对任意 x 、 y ∈ R , f ( x + y ) = f ( x ) f ( y ) 恒成立,若 f (-5) = 3 ,则 f (3 - x ) < 27 的解集 为 ( )

A . (-∞,15)

B . (-∞,18)

C . (15, +∞)

D . (18, +∞)

7. 【江苏省常州市教育学会 2020-2021 学年高三上学期学业水平监测】已知奇函数 f

( x ) 在(-∞, +∞) 上单调

递减,且 f (1) = -1,则“ x > -1 ”是“ xf (

x ) < 1”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件.

8.

【百校联盟 2021 届高三普通高中教育教学质量监测考试(全国卷 11 月)理科】数已知函数

?e x + ln (x +1) -1, x ≥ 0

f ( x ) = ? 1

,若 f (e x

-1) + f (2e 2 x ) ≤ 0 ,则实数 x 的取值范围为( )

?1- e x - ln (1- x ), x < 0

A . ?

-∞, 1 ?

B . ? 1 , +∞?

C . [- ln 2, +∞)

D . (-∞, - ln 2]

2 ?? ?? 2

?

9. 【天津市八校 2020-2021 学年高三上学期期中联考数学】设 f (x ) 为定义在R 上的奇函数,当 x ≥ 0 时,

f (x ) = lo

g (x +1) + ax 2

- a +1( a 为常数),则不等式 f (3x + 5) > -2 的解集为( )

A .

(-∞, -1) B .

(-1, +∞) C .

(-∞, -2) D .

(-2, +∞)

10.

【海南省海南中学 2021 届高三第五次月考】设 f (x ) 是定义在(-∞, 0) (0, +∞) 上的奇函数,对任意的

x , x ∈(0, +∞), x ≠ x

x 2 f ( x 2 ) - x 1 f ( x 1 ) > 0 ,且 f (2) = 4 ,则不等式 f ( x ) - 8

> 0 的解集为(

1 2

1

2

,满足:

x 2 - x 1

x

A .

(-2, 0) (2, +∞) B .

(-2, 0) (0, 2)

C.(-∞, -4) ?(0, 4)D.(-∞, -2) (2, +∞)

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

高中数学不等式讲义

6.1不等式的概念和性质 〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些概念解决一些简单问题. 〖复习建议〗不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用, 要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。 〖双基回顾〗常见的性质有8条: 1、反身性(也叫对称性):a >b ?b <a 2、传递性:a >b ,b >c ?a >c 3、平移性:a >b ?a +c >b +c 4、伸缩性:???>>0c b a ?ac >bc ;???<>0 c b a ?ac <bc 5、乘方性:a >b ≥0?a n >b n (n ∈N ,n ≥2)6、开方性:a >b ≥0?n a >n b (n ∈N ,n ≥2) 7、叠加性:a >b ,c >d ?a +c >b +d 8、叠乘性:a >b ≥0,c >d ≥0?a ·c >b ·d 一、知识点训练: 1、b a b a 11???成立的充要条件为 2、用“>”“<”“=”填空: (1)a

高中数学讲义微专题40 利用函数性质与图像解不等式

微专题40利用函数性质与图像解不等式 高中阶段解不等式大体上分为两类,一类是利用不等式性质直接解出解集(如二次不等式,分式不等式,指对数不等式等);一类是利用函数的性质,尤其是函数的单调性进行运算。相比而言后者往往需要构造函数,利用函数单调性求解,考验学生的观察能力和运用条件能力,难度较大。本章节以一些典型例题来说明处理这类问题的常规思路。 一、基础知识: (一)构造函数解不等式 1、函数单调性的作用:()f x 在[],a b 单调递增,则 []()()121212,,,x x a b x x f x f x ?∈ (单调性与零点配合可确定零点左右点的函数值的符号) 3、导数运算法则: (1)()()() ()()()()' ' 'f x g x f x g x f x g x =+ (2)()()()()()()()' ''2 f x f x g x f x g x g x g x ??-= ??? 4、构造函数解不等式的技巧: (1)此类问题往往条件比较零散,不易寻找入手点。所以处理这类问题要将条件与结论结合着分析。在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么。两者对接通常可以确定入手点 (2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数。在构造时多进行试验与项的调整 (3)此类问题处理的核心要素是单调性与零点,对称性与图像只是辅助手段。所以如果能够确定构造函数的单调性,猜出函数的零点。那么问题便易于解决了。 (二)利用函数性质与图像解不等式: 1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系。通常可作草图帮助观察。例如:()f x 的对称轴为1x =,且在()1,+∞但增。则可以作出草图

不等式性质的两个重要应用

不等式性质的两个重要应用 一.利用不等式性质证明不等式 利用不等式的性质及其推论可以证明一些不等式。解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用. 例1:若0>>b a ,0<-. 分析:本题考查学生对不等式性质的掌握及灵活应用。注意性质的使用条件. 解:∵0<< d c ,0>->-d c ,又0>>b a ∴0>->-d b c a ,故 d b c a -<-11。 而0< e ,∴d b e c a e ->-. 二.利用不等式性质求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,对于这类问题要注意:“同向(异向)不等式的两边可以相加(相减)”,这种转化不是等价变形,在一个解题过程中多次使用这种转化时,就有可能扩大真实的取值范围,解题时务必小心谨慎,先建立待求范围的整体与已知范围的整体的等量关系,最后通过“一次性不等关系的运算,求得待求的范围”,是避免犯错误的一条途径. 三.利用不等式性质,探求不等式成立的条件 不等式的性质是不等式的基础,包括五个性质定理及三个推论,不等式的性质是解不等式和证明不等式的主要依据,只有正确地理解每条性质的条件和结论,注意条件的变化才能正确地加以运用,利用不等式的性质,寻求命题成立的条件是不等式性质的灵活运用. 例2:已知三个不等式:①0>ab ;②b d a c >;③ad bc >。以其中两个作条件,余下一个作结论,则可组成_____________个正确命题. 解:对命题②作等价变形:0>-?>ab ad bc b d a c 于是,由0>ab ,ad bc >,可得②成立,即①③?②; 若0>ab ,0>-ab ad bc ,则ad bc >,故①②?③; 若ad bc >, 0>-ab ad bc ,则0>ab ,故②③?①。 ∴可组成3个正确命题.

高中数学-不等式的基本性质(一)练习

高中数学-不等式的基本性质(一)练习 课后导练 基础达标 1若-1<α<β<1,则下列各式中成立的是( ) A.-2<α-β<0 B.-2<α-β<-1 C.-1<α-β<0 D.-1<α-β<1 解析:∵-1<α<β<1,∴-1<α<1,-1<β<1. ∴-1<-β<1.∴-2<α-β<2.又α-β<0, ∴-2<α-β<0. 答案:A 2“a+b>2c ”成立的一个充分条件是( ) A.a>c,或b>c B.a>c 且bc 且b>c D.a>c,或bc 且b>c ,∴a+b>c+c,即a+b>2c. 答案:C 3若x>1>y,下列不等式中不成立的是( ) A.x-1>1-y B.x-1>y-1 C.x-y>1-y D.1-x>y-x 解析:∵x>1>y, ∴x+(-1)>y+(-1),即B 正确; x+(-y)>1+(-y),即C 正确; 1+(-x)>y+(-x),即D 正确. 故选A. 答案:A 4若m<0,n>0,且m+n<0,则下列不等式中成立的是( ) A.-n0,m+n<0, ∴m<-n<0,-m>n,即n<-m. ∴m<-n0,m,n 互为倒数,易得m<10,∴4ac<0.∴b 2-4ac>0. 答案:b 2-4ac>0 7下列命题中真命题的个数为( )

不等式的基本性质知识点

不等式的基本性质知识点 不等式的基本性质知识点 1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a<b。 ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。 ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 如证明y=x3为单增函数, 设x1, x2∈(-∞,+∞), x1<x2, f(x1)-f(x2)=x13-x23=(x1-x2)(x12+x1x2+x22)=(x1-x2)[( x1+)2 +x22] 再由(x1+)2+x22>0, x1-x2<0,可得f(x1)<f(x2), ∴ f(x)为单增。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a>bb<a (对称性)

(2) a>b, b>ca>c (传递性) (3) a>ba+c>b+c (c∈R) (4) c>0时,a>bac>bc c<0时,a>bac<bc。 运算性质有: (1) a>b, c>da+c>b+d。 (2) a>b>0, c>d>0ac>bd。 (3) a>b>0an>bn(n∈N, n>1)。 (4) a>b>0>(n∈N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

不等式的意义、性质及其应用

不等式的意义、性质及其应用 教学重点:不等式的性质 教学难点:不等式的实际应用 一、问题引入 某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式? 依题意得4x>6(x-10) 二、概念回顾 1.不等式:用“>”或“<”号表示大小关系的式子,叫不等式. 解析:(1)用≠表示不等关系的式子也叫不等式 (2)不等式中含有未知数,也可以不含有未知数; (3)注意不大于和不小于的说法 例1 用不等式表示 (1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3. 三.不等式的解 不等式的解:能使不等式成立的未知数的值,叫不等式的解. 解析:不等式的解可能不止一个. 例2 下列各数中,哪些是不等是x+1<3的解?哪些不是? -3,-1,0,1,1.5,2.5,3,3.5 练习: 1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个. 2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数? 四.不等式的解集 1.不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集. 例3 下列说法中正确的是( )

A.x=3是不是不等式2x>1的解 B.x=3是不是不等式2x>1的唯一解; C.x=3不是不等式2x>1的解; D.x=3是不等式2x>1的解集 2.不等式解集的表示方法 例4 在数轴上表示下列不等式的解集 (1)x>-1;(2)x ≥-1;(3)x<-1;(4)x ≤-1 分析:按画数轴,定界点,走方向的步骤答 五、不等式的性质 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变. 例1 利用不等式的性质,填”>”,:<” (1)若a>b,则2a+1 2b+1; (2)若-1.25y<10,则y -8; (3)若a0,则ac+c bc+c; (4)若a>0,b<0,c<0,则(a-b)c 0. 例2 利用不等式性质解下列不等式 (1)x-7>26; (2)3x<2x+1; (3)3 2x>50; (4)- 4x>3. 分析:利用不等式性质变形为最基本形,利用数轴表示解集 练习: 1.根据不等式的性质,把下列不等式化为x>a 或xx x (2)22 121--≤x x (3)-3x>2 (4)-3x+2<2x+3 3. 已知不等式3x-a ≤0的解集是x ≤2,求a 的取值范围. 六、不等式的实际应用 问题一:某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.学校经核算选择甲商场比较合算,你知道学校至少要买多少台电脑? 解:设购买x 台电脑,到甲商场比较合算,则 6000+6000(1-25%)(x -1)<6000(1-20%)x 去括号,得:6000+4500x -45004<4800x 移项且合并,得:-300x <1500 不等式两边同除以-300,得:x>5 ∵x 为整数 ∴x ≥6 答:至少要购买6台电脑时,选择甲商场更合算. 问题二 :甲、乙两个商店以同样的价格出售同样的商品,同时又各自推出不同的优惠方案:在甲商店累计购买100元商品后,再买的商品按原价的90%收费;在乙商累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更大的优惠?

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

高三数学不等式的基本性质知识点

高三数学不等式的基本性质知识点编者按:高考前的第一轮复习正在火热进行中,同学们要利用这些复习的时间强化学习,查字典数学网为大家整理了高三数学不等式的基本性质,在高三数学第一轮复习时,给您最及时的帮助! 1.不等式的定义:a-b;;b, a-b=0a=b, a-b;;b. ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。 作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。 2.不等式的性质: ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1) a;;a (对称性) (2) ab, b;;c (传递性) (3) aba+cb+c (cR) (4) c0时,abacbc c0时,abacbc. 运算性质有:

(1) ab, cda+cb+d. (2) a;0, c;0acbd. (3) a;0anbn (nN, n1)。 (4) a;0(nN, n1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ② 关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。 总结:查字典数学网整理的高三数学不等式的基本性质知识点帮助同学们复习以前没有学会的数学知识点,请大家认真阅读上面的文章,也祝愿大家都能愉快学习,愉快成长!

专题06 利用函数性质解决抽象函数不等式-学会解题之高三数学万能解题模板(2021版)(原卷版)

专题06 利用函数性质解决抽象函数不等式 【高考地位】 函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。 确定抽象函数单调性解函数不等式 例 1 已知函数()f x 是定义在R 上的奇函数,若对于任意给定的实数12,x x ,且12x x ≠,不等式 ()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()()1120x f x +-<的解集为__________. 【变式演练1】【辽宁省辽西联合校2020-2021学年高三(上)期中】已知函数2 2()1 x f x x =+,则不等式 ()()2log 13f x f -≤的解集为( ) A .[ )4,+∞ B .1,42?? ??? C .1 ,168????? ? D .1,164 ??????

【变式演练2】【江西省赣州市部分重点中学2021届高三上学期期中考试文科】已知定义在[1,)+∞上的函 数()f x 满足()ln ()0f x x xf x '+<且(2021)0f =,其中()' f x 是函数()f x 的导函数,e 是自然对数的底 数,则不等式()0f x >的解集为( ) A .(1,2021) B .(2021,)+∞ C .(1,)+∞ D .[1,2021) 【变式演练3】定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间(0,)+∞上的递增函数. (1)求(1),(1)f f -的值; (2)求证:()()f x f x -=; (3)解不等式1(2)()02 f f x +-≤. 【变式演练4】定义在(1,1)-上的函数()f x 满足下列条件:①对任意,(1,1)x y ∈-,都有 ()()()1x y f x f y f x y ++=++;①当(1,0)x ∈-时,有()0f x >,求证: (1)()f x 是奇函数; (2)()f x 是单调递减函数; (3)2 1111( )()( )()1119 553 f f f f n n +++>++,其中* n N ∈. 【高考再现】 1.【2020年高考浙江卷9】已知,a b ∈R 且0ab ≠,若()()()20x a x b x a b ----≥在0x ≥上恒成立,则 ( ) A .0a < B .0a > C .0b < D .0b > 2.【2020年高考北京卷6】已知函数12)(--=x x f x ,则不等式()0f x >的解集是 ( ) A .()1,1- B .() (),11,-∞-+∞ C .()0,1 D .()(),01,-∞+∞

20道已知函数解析式解函数不等式问题

20道已知函数解析式解函数不等式问题 1已知x x x f ln )(=,则( ) ) 3()()2(.f e f f A >> ) 2()()3(.f e f f B >> )()2()3(.e f f f C >> )2()3()(.f f e f D >> 2.已知函数112,1()2,1 x x x f x x --?≥=?,则x 的取值范围是 . 4己知)(x f 定义在区间[-1,1]上,且满足)()(x f x f -=-,当0> B.p n m >> C.p m n >> D. n p m >> 6.已知定义在R 上的函数()f x 在区间)[0+∞, 上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()22f log a f <,则a 的取值范围是( ) A. 1 0,4 ?? ?? ? B. 1 ,4?? +∞ ??? C. 1,44?? ??? D. ()4,+∞

高中数学第三章不等式3.1不等关系不等式的性质及其应用素材北师大版必修

不等式的性质及其应用 不等式的性质是证明不等式和解不等式的理论依据,不等式性质的应用也是历年高考的重点。因此掌握不等式的性质及其应用是非常必要的,本文就不等式的性质及其应用加以探讨。 一、不等式最基本的性质 对称性:a b b a >?< 传递性:,a b b c a c >>?> 加法性: ,a b c R a c b c >∈?+>+ 乘法性: 00 a b ac bd c d >≥??>? >≥? 除法性: 110a b ab a b >??? 乘方性: 0()n n a b a b n N *>≥?>∈ 开方性: 0)a b n N *>≥>∈ 倒数法则:011ab a b a b >??? 二、不等式性质的应用 (1)比较实数的大小 因为“0a b a b ->?>;0a b a b -=?=;0a b a b -≠且的大小 分析:对于1(1)log a a +和(1)log a a +这两个对数,由于式中含有参数a ,故我们不能直接确定它 们之间的大小关系,于是可用上面的不等式的最基本的性质,让它们作差从而比较大小。 解:∵1 111(1)(1)1log log log log 10a a a a a a a a a ++++-===-<,∴1(1)(1)log log a a a a ++< 点评:通过让两个式子作差,并经过恒等变形,从而确定了两式差的符号,即确定了两式的大小。 例2、(2006年上海卷)如果0,0a b <>,那么,下列不等式中正确的是( ) A. 11a b < 22a b < D.||||a b > 解:对于A :如果0,0a b <>,那么110,0a b <>,由不等式的传递性知 11a b <,故选A 点评:在运用不等式性质时,不要忽略性质成立的条件 (2)求范围 利用几个不等式的范围来确定某个不等式的范围是一类常见的综合问题,求解步骤:先建立待求范围的整体与已知范围的整体的等量关系,然后通过“一次性不等关系的运算,求得待求的范围”。 例2、若二次函数)(x f 图像关于y 轴对称,且2)1(1≤≤f ,4)2(3≤≤f ,求)3(f 的范围。

人教版不等式的基本性质说课稿

不等式的基本性质 各位老师,同学: 大家好! 今天我说课的内容是人教版九年义务教育七年级下册第九章第一课时第二小节《不等式的基本性质》。(板书题目) 接下来我将从教材分析,学情分析,学法教法,教学过程,板书设计五个方面来说说我对本节课的理解与教学设计。 一、教材分析 教材是我们教学活动的主要依据,透彻的了解教材也是上好一节课的关键。首先来说说本节课的教材。 我将从教材的地位与作用,教学目标,教学重点与难点三个方面对本节课的教材进行说明。 (一)教材的地位与作用。 不等式是初中代数的重要内容之一,而不等式的性质又是重中之重。一方面,它是初中阶段最基础、最重要的一个转折;而另一方面,学好不等式的性质能帮助学生从整体认识整式性质与不等式性质的区别;在此基础上,可以使学生对生活中的数学问题有新的认识,从而扩大学生的认知结构。同时,不等式的性质还蕴含着丰富的数学思想和方法。因此这也是前后数学知识衔接的桥梁和纽带。因此学好本节课有着非常重要的作用。 教学目标 根据新课改的要求及教材的特点,我确定了如下的教学目标: 知识目标掌握不等式的三个基本性质并且能正确应用; 能力目标经历探索不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题、解决问题的能力; 情感目标开展研究性学习,使学生初步体会学习不等式基本性质的价值。 情感态度与价值观的培养,是学生全面发展的需要,该目标具体到本节课为通过让学生学习用不等式的基本性质解决相关问题获得成功体验,增强学好数学的信心。 教学重点难点 根据教材内容的特点,结合新课程改革的基本要求,我认为本节课的重点是:理解不等式的三个基本性质。 由于在探究的过程中,需要采用类比的方法来得出结论,对学生的抽象思维能力要求较高,但对于七年级的学生而言,其形象思维能力占主导地位,在探究的过程中难免会遇到困难。根据学生的这一特征,我认为本节课的难点为:对不等式的基本性质3的重点认识。 二、学情分析 学生是课堂的主人,只有了解学生才能有针对性的教学。接下来说说学生。 我们知道,现在的学生几乎不存在学不会的情况,而是没有掌握正确的学习

构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

2.1.1 不等式的基本性质(含答案)

【课堂例题】 例1.利用性质1和性质2证明: (1)如果a b c +>,那么a c b >-; (2)如果,a b c d >>,那么a c b d +>+ 例2.利用性质3证明: 如果0,0a b c d >>>>,那么ac bd >. (选用)例3.利用不等式的性质证明: 如果0a b >>,那么110a b < <.

【知识再现】 1.不等式性质的基础: a b >? ;a b =? ;a b >,则 ; 性质2.(加法性质) 若a b >,则 ; 性质3.(乘法性质) 若,0a b c >>,则 ; 若,0a b c ><,则 . 3.几条比较有用的推论: 性质4.(同向可加性) 若,a b c d >>,则 ; 性质5.(正数同向可乘性) 若0,0a b c d >>>>,则 ; 性质6.(正数的倒数性质) 若0a b >>,则 ; 性质7.(正数的乘方性质) 若0a b >>,则 *()n N ∈; 性质8.(正数的开方性质) 若0a b >>,则 *(,1)n N n ∈>. 【基础训练】 1.请用不等号表示下列关系: (1)a 是非负实数, ; (2)实数a 小于3,但不小于2-, ; (3)a 和b 的差的绝对值大于2,且小于等于9, . 2.判断下列语句是否正确,并在相应的括号内填入“√”或“×”. (1)若a b >,则a b c c >;( ) (2)若ac bc <,则a b <;( ) (3)若a b <,则1 1 a b <; ( ) (4)若22ac bc >,则a b >;( ) (5)若a b >,则n n a b >;( ) (6)若0,0a b c d >>>>,则a b c d >;( ) 3.用“>”或“<”号填空: (1)若a b >,则a - b -; (2)若0,0a b >>,则b a 1b a +; (3)若,0a b c >>,则d ac + d bc +; (4)若,0a b c ><,则()c d a - ()c d b -; (5)若,,0a b d e c >><,则d ac - e b c -. 4.(1)如果a b >,那么下列不等式中必定成立的是( ) (A) 1 1 a b <; (B) 22a b >; (C)22ac bc >; (D)2211 a b c c >++. (2)如果0a b >>,那么下列不等式不一定成立的是( ) (A) 1 1 a b <; (B) 2ab b >; (C)22ac bc >; (D) 22a b >. 5.已知,x y R ∈,使1 1 ,x y x y >>同时成立的一组,x y 的值可以是 .

不等式性质的应用

不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππβπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若 不等式性质的应用 学习目标:1、了解不等式的基本性质,并可以利用不等式的性质解决问题; 2、通过不等式性质的应用,进一步加深对不等式性质的理解; 3、在应用不等式的基本性质证明简单问题的过程中,培养思维的逻辑性和严谨性,进而 培养学生的逻辑能力. 学习重点:不等式性质的应用. 学习任务: 题型一 利用不等式性质求变量的取值范围. 1、已知),(),,(ππ βπα2 2 0∈∈,求 (1) βα+;(2) βα-2 的取值范围. 2、已知31≤≤<-b a ,求b 2-a 的取值范围. 3、已知3286<<<<-b a , ,求b a 的取值范围. 题型二 利用不等式性质判断命题的真假. 1、给出下列命题:(1);,则若c b c a b a >> (2);,则若b a bc ac << (3) ;,则若22bc ac b a >>(4) ;,则若b a bc ac >>2 2 其中正确的命题是_______________. 2、给出下列命题:(1);,则若33 b a b a >> (2);,则若2 2b a b a >> (3) ;,则若2 20b a b a ><<(4) ;,则若22||b a b a >> (5) ;,则若22||b a b a >> 其中正确的命题是_______________. 3、下列说法正确的是_______________. (1) ;,则若b a b a 1 1<> (2);,则若b a b a 110<<< (3) ;,则若b a b a 110<>> (4) ;,则若b a b a 1 10<>> (5);,则若b a a b 110<>> (6);,则且若0,1 1<>>>b b a b a b a 附加题:1、已知.,0,,,ad bc b d a c a b R d c b a >-<->∈证明, 且 2、证明:.0b c b a c a b a c ->->>>,则 若

相关文档
最新文档