丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展
丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展

梁化亮

(生物与食品工程学院,江苏常熟 215500)

Progress on antimicrobial peptide

[摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。

[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂

免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。

丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。

1.1 丝氨酸蛋白酶抑制剂分类

目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规范的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。

1.2 Serpins

Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

350-500个,具有保守的空间结构。Serpins多为单一肽链蛋白,其肽链结构可表示为N端-P15~P9~P1~P1,~P9~P15-C端,Pl是被靶酶中的底物识别位点识别的氨基酸[7]。距C端30-40个氨基酸部位含有RCL(reactive central loop),RCL暴露于蛋白表面,是serpins与目的蛋白相互作用的部位。Serpins 最开始被认为起源于原核组织内,但是到目前为止已经在许多细菌和太古代的生物中发现[8-10]。但是这些原核生物的基因是否为原核serpins或侧生基因转移产物的祖先还尚不得而知。

1.2.1 Serpins的结构

结构生物学对于我们理解serpins的结构和功能起着重要作用。至今为止超过80种serpins结构具有不同构象,尽管serpins结构多变,但是无论是无抑制活性的卵清蛋白(ovalbumin)或有活性的抗胰蛋白酶(antitrypsin)却有着一些共同结构[11-12]。典型的serpins如antitrypsin和ovalbumin都拥有3个β-片层(命名为A,B,C)和8-9个α-螺旋(hA-hI)。Serpins还有一个反应活性环(RCL),它是一个凸出的,延伸的,暴露的环,它与蛋白酶凹陷的反应位点高度互补,是抑制剂与目的蛋白相互作用的部位。二者的结合方式与酶与底物的作用方式相似。RCL的氨基酸顺序决定了抑制剂的选择性。改变RCL的氨基酸顺序,尤其是Pl位点的氨基酸,也就改变了该抑制剂的蛋白酶选择性。多数Serpins的P1部位均为精氨酸,并且他们能抑制不同的丝氨酸蛋白酶。RCL易被靶酶之外的蛋白酶切除.比较不同Serpins的氨基酸顺序发现:虽然典型的丝氨酸蛋白酶抑制剂的同一个家族成员中,氨基酸序列呈现出高度的多样性,但RCL 的主链构象却很相似,即RCL及其相邻部位的几个氨基酸顺序在该家族中是保守的。即使在不同家族中也一样,在同酶形成复合物后,RCL的主链构象就更加相似了[13-14]。

Serpins能以多种结构稳定存在[15]:

(1)与靶酶作用之前的结构。与卵清蛋白等其它晶体结构类似,含有五条A B -折叠链和一个RCL螺旋区;

(2)RCL被剪切的serpin,其铰链区与RCL镶嵌于A-折叠;

(3)C-折叠解离出l链,使得铰链区及RCL在无键断裂的情况下可以完全插入到A-折叠片段中(如PAI-2、抗凝血酶等):

(4)抗凝血酶的部分铰链区插入于左折叠。

除此之外,最为重要的是与酶形成复合物时的Serpin结构。非功能性抑制子(卵清蛋白)和潜伏性抑制子(PAI-1)的RCL构型表现出两种极端的状态,卵清蛋白的S4链不插入A折叠,而PAI-1的RCL全部镶嵌到A一折叠中。然而,这两种具有极端结构的Serpin均不能抑制蛋白酶。对抗凝血蛋白酶、肝素共价因子Ⅱ、MENT、鼠类抗胰蛋白酶等抑制剂与靶酶的复合物进行X-射线晶体结构分析,发现RCL环的前两个氨基酸会插入顶部A-折叠中。这种部分插入的构象由于能使得共价因子更方便地结合并插入serpins中,进行完全暴露的形态转化[16-17],因子它对于serpins是否具有抑制活性起到了关键作用。

1.2.2 Serpins的作用机制

在二十世纪七十年代术期,研究者们认为:serpins与其它蛋白酶抑制剂不同,它与靶酶以共价酯键相结合。然而,这是通过分析SDS-PAGE中的变性复合物而不考虑其天然条件下的复合物得出的结论。后来的研究认为:天然的Serpin/Protease复合物是可逆的,因此二者不可能是共价结合,它不同于锁钥构型,而是与Kunitz,Kazal型等小分子类抑制剂相似,很可能是形成米氏复合物[18]。

目前认为Serpin与其靶酶的作用方式有两种[19]:“底物”途径和“自杀”途径。大部分serpins是以“底物”途径与靶酶进行相互作用。在“底物”途径中,Serpins与靶酶形成共价复合物[20]。Serpins结构研究表明复合物形成期间,会发生构型转化(紧密型-松散型)[21-24],即RCL环插入β-片层A中形成一个额外的第四股β束,这种构象变化对于serpins对靶酶的抑制作用相当重要。酶(E)与抑制剂(I)先以氢键形成米氏复合物(EI),然后再转换成亚稳态结构(EIt),然后丝氨酸蛋白酶抑制剂P1部位氨基酸的梭基与靶酶丝氨酸蛋白酶的梭基之间形成酯键,继而转换成脂酰基复合物(EI*),最后通过第二个复合物(EIt*)生成被剪切的抑制剂(I*)和仍有活性的酶(E)。

上述可表示为:E+I EI 【EIt】 EI* EIt* E+I* 第二种为“自杀”途径。Serpin通过自杀性底物的作用机制与酶发生不可逆的反应。酶最初与抑制剂的剪切位点P1-P1’两侧的残其相互作用,形成非共价的米氏复合物,然后剪切位点键攻击酶活性位点丝氨酸,导致酶Ser195及P1位点羰基之间形成共价酯键,并且P1位点被剪切[25]。在“自杀”途径中,Serpin 的剪切比较缓慢,因此在Serpin发生剪切之前,Serpin/Protease复合物已经

分解。

该途径可表示为:E+I EI EI* E+I*

2 蛋白酶抑制剂临床应用

天然的蛋白酶抑制剂具备抗病毒的潜能,能控制外源细菌释放的蛋白酶水解抑制特异性病毒生长并使自身细胞不受伤害。基于上述功能,蛋白酶抑制剂作为药物使用已经被研究开发了好多年,目前已被用于治疗人类免疫缺陷病(HIV)和高血压等疾病[26]。血管紧张素转化酶(ACE)抑制剂是一个用于药物治疗的蛋白酶抑制剂[27]。ACE能催化血管紧缩素Ⅰ和血管紧缩素Ⅱ的水解,一个有效的血管收缩药能使缓激肽失活。而ACE抑制剂通过降低周围血管阻力达到降低血压的目的,同时ACE抑制剂能降低蛋白尿和稳定肾功能,对治疗糖尿病肾病有疗效。ACE抑制剂的使用最初源于1977年。目前其它的ACE抑制剂也已投入市场。

这些药物制剂的研究成功引起了人们对于蛋白酶抑制剂治疗作用的极大兴趣。下面将集中介绍蛋白酶抑制剂针对多种疾病的潜在使用价值。

3 鱼类的病原微生物及防御

鱼类体内外细菌,真菌和酵母菌生长所需的小分子化合物,如游离的氨基酸或者简单的糖类都来自于酶解体外的生物大分子,包括蛋白酶和糖苷酶。这在细菌蛋白酶不受宿主蛋白酶抑制剂调控时,对于细菌感染非常重要,它能破坏宿主蛋白。目前的研究表明,许多病微原生物蛋白酶类都参与到了侵入组织进行破坏、宿主防御系统的侵入和宿主免疫系统的调节等反应中。

为了应对病原性细菌的攻击,鱼类以多因子协调的方式一起作用。鱼类自身有许多非特异性,特异性,体液和细胞免疫机制来抵抗细菌性病害。非特异性的体液免疫因子包括蛋白酶抑制剂,如转铁蛋白和抗蛋白酶;溶菌酶,C-活性蛋白(CRP),抗菌肽和一些松散的,具有促炎症反应,趋化性和调理活性的补体参与吞噬反应。这些反应都首先由中性白细胞和巨噬细胞进行。吞噬细胞含有许多水解酶,被细菌刺激后会产生活性氧类(ROS)。ROS是高度杀菌的。另外,中性白细胞具有大量的髓过氧化酶(MPO),它能从卤化物离子和H2O2产生杀菌离子。巨噬细胞能接收来自中性白细胞的MPO,这能增强它们的抗菌活性。抗体组成了特殊体液免疫系统,它能抑制细菌粘附或非吞噬细胞的侵入,并能使细菌毒性失活。抗体可以作为调理素来激活补体,溶解细菌细胞,激活炎症反应,并进一步

增强吞噬作用。巨噬细胞的杀菌活性可以被与特异性抗原接触的T淋巴细胞释放的细胞活素类激活。

这其中最为重要的免疫因子就是蛋白酶抑制剂,它是一种针对病原性细菌分泌的蛋白酶,改善由其参与的病理学过程,降低侵入细菌的生长速率,同时能重新构建宿主防御的反应体系的物质。

4 研究意义与展望

鲫鱼鱼卵作为一种丰富的水产资源,其综合利用潜力有待进一步开发,以提高其附加值。研究表明,鱼卵中存在多种蛋白酶抑制剂成分,在鱼卵中除执行生理调节功能外,在病原生物防御中也起到了重要作用。然而,截止目前为止只对少数鱼卵中的蛋白酶抑制剂进行了研究,且大多集中于半胱氨酸蛋白酶抑制剂的研究。因此,对其进行研究显得极为必要,既可以进一步揭示鱼类的自身防御机制,探讨其在鱼卵中生理、防御功能,又可为其在食品医药等领域的应用提供基础数据。

[1] Braun, N.J., Schnebli, H.P., . A brief review of the biochemistry and pharmacology of Eglin c, an elastase inhibitor. Eur. J. Respir. Dis. Suppl[J]. 1998, 146, 541–547.

[2] Hibbetts, K., Hines, B., and Williams, D. An overview of proteinase inhibitors [J]. J. Vet. Intern. Med[J]. 1999, 13: 302-308.

[3] 文方德,傅家瑞.植物种子的蛋白酶抑制剂及其生理功能[J].植物生理学通讯,1997,33(1):1~3

[4] Laskowski, M., and Kato, I. Protein inhibitors of proteinases [J]. Annu. Rev. Biochem. 1980, 49: 593-626.

[5] Laskowski, M., Qasim, M.A.,. What can the structures of enzyme–inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim. Biophys. Acta[J]. 2000, 1477, 324–337.

[6] Krowarsch, D., Cierpicki, T., Jelen, F., and Otlewski, J., Canonical protein inhibitors of serine proteases [J]. Cell Mol. Life Sci. 2003, 60: 2427-2444.

[7] A.Bhattacharyya,C.R.BabuExploring the protease mediated conformmional stabilityin

a trypsin inhibitor from Archidendron eilipticum seeds [J].Plant Physiology and Biochemistry [J].2006, (44):637-644

[8] Irving JA, Pike RN, Lesk AM, Whisstock. "Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function". Genome Res [J]. 2000, 10 (12): 1845–64.

[9] Irving J, Steenbakkers P, Lesk A, Op den Camp H, Pike R, Whisstock J. Serpins in prokaryotes. Mol Biol Evol [J]. 2002, 19 (11): 1881–90.

[10] Cabrita LD, Irving JA, Pearce MC, Whisstock JC, Bottomley SP.. Aeropin from the extremophile Pyrobaculum aerophilum bypasses the serpin misfolding trap.J Biol Chem [J]. 2007, 282 (37): 26802–9.

[11] Loebermann H, Tokuoka R, Deisenhofer J, Huber R.. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol [J]. 1984, 177 (3): 531–57.

[12] Stein PE, Leslie AG, Finch JT, Turnell WG, McLaughlin PJ, Carrell RW. Crystal structure of ovalbumin as a model for the reactive centre of serpins.Nature [J]. 1990, 347 (6288): 99–102.

[13] Jones, S., and Thornton, J.M., Priciples of protein-protein interactions [D].Proc. Natl.Acad. Sci. USA 1996, 93: 13-20.

[14] Apostoluk, W., and Otlewski, J., V ariability of the canonical loop conformations in serine proteinases inhibitors and other proteins. Proteins [J]. 1998, 32: 459-474.

[15] Paul C.R Hopkins。Smart R.Stone.The contribution of the conserved hinge region residuesofal-Antitrypsin to its reaction with elastase [J].Biochemistry,1995,34:872-879.

[16] Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A [J].1997, 94 (26): 14683–8.

[17] Whisstock JC, Pike RN, Jin L, Skinner R, Pei XY, Carrell RW, Lesk AM. Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin. J Mol Biol [J]. 2000, 301 (5): 1287–305.

[18] Malgorzata Wilezynska,Ming Fa,Per-lngvar Ohlsson,et a1.The inhibition mechanism of serpins [J]. 1 995, 270(50):29652-29655.

[19]张超,李冀新,陈止行,等.蛋向酶抑制剂麻川研究进展[J].粮食与油脂,2005,(11):3~7

[20] Egelund R, Rodenburg K, Andreasen P, Rasmussen M, Guldberg R, Petersen T. An ester bond linking a fragment of a serine proteinase to its serpin inhibitor.Biochemistry[J]. 1998, 37 (18): 6375–9.

[21] Loebermann H, Tokuoka R, Deisenhofer J, Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol [J]. 1984, 177 (3): 531–57.

[22] Whisstock J, Bottomley S. Molecular gymnastics: serpin structure, folding and misfolding. Curr Opin Struct Biol[J].2006, 16 (6): 761–8.

[23] Gettins P. Serpin structure, mechanism, and function. Chem Rev [J]. 2002, 102(12): 4751–804.

[24] Whisstock JC, Skinner R, Carrell RW, Lesk AM. Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin. J Mol Biol. 2000, 296 (2): 685–99.

[25] Gettins P.G.W., Keeping the serpin machine running smoothly. Genome Research 2000, 10: 1833-1835

[27] Schwarcz, S. K., Hsu, L. C., V ittinghoff, E., & Katz, M. H. Impact of protease inhibitors and other antiretroviral treatments on acquired immunodeficiency syndrome survival in San Francisco, California, 1987-1996. Am J Epidemiol.2000, 152, 178?185.

木瓜蛋白酶

发酵工程与设备课程论文 题目木瓜蛋白酶 班别学号 姓名 成绩

木瓜蛋白酶 摘要:木瓜蛋白酶是一种能分解蛋白质的蛋白酶。先了解木瓜蛋白酶的制备及保存,接着分析它的化学修饰和酶活力的影响。最后,木瓜蛋白酶的固定化及方法以及它在各个行业的应用。Abstract: Papain is a protease that breaks down proteins.To understand the preparation and preservation of papain and then analyzed its chemical modification and enzyme activities.Finally, the immobilized papain and the method and its application in various industries 关键字:木瓜蛋白酶化学修饰酶活力固定化行业的应用Keywords:papain Chemical modification enzyme immobilization industry applications 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。它是利用未成熟的番木瓜果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。 作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。 一、木瓜蛋白酶的制备及保存 木瓜蛋白酶的制备是将未成熟番木瓜果实割取乳液去杂,在室温下,入半胱氨酸溶液在研钵中充分磨匀,静置后取上清液即

跨膜丝氨酸蛋白酶研究进展

跨膜丝氨酸蛋白酶研究进展 郭晓强 (解放军白求恩军医学院生物化学教研室,石家庄050081) 摘要 跨膜丝氨酸蛋白酶(T MPRSSs),又名II型跨膜丝氨酸蛋白酶(TTSPs)是一类定位于细胞膜上具有保守丝氨酸蛋白酶结构域的蛋白家族,哺乳动物中已发现二十多个成员。T MPRSSs基本结构类似,C端蛋白酶结构域在胞外,N端位于胞内,还拥有单跨膜结构域,差异之处在于主干区。T MPRSSs具有多种重要生理功能,功能异常可造成耳聋、癌症、贫血和高血压等多种疾病。本文对T MPRSSs基本特征、结构、生理功能及相关疾病进行综述。 关键词 跨膜丝氨酸蛋白酶;耳聋;癌症;贫血;高血压 中图分类号 Q55 蛋白酶是一类水解蛋白质的酶类,最早于上世纪初在胃液中发现(胃蛋白酶),至今已鉴定多个成员。最早认为蛋白酶主要通过非特异性水解蛋白质参与食物消化,然而一系列研究表明哺乳动物体内还存在一些具有底物选择性的蛋白酶,它们参与更为多样的生理过程,如细胞周期、形态建成、细胞增殖和迁移、排卵、血管生成和细胞凋亡等,功能异常可造成代谢性疾病、神经退行性疾病、心血管疾病、关节炎和癌症等的发生(Puente等.2003)。相对于传统水溶性蛋白酶,新近发现一类特殊蛋白酶———具有单跨膜结构域的丝氨酸蛋白酶,并且C端位于胞外,因此被称为II型跨膜丝氨酸蛋白酶(type II trans me mbrane serine p r oteases,TTSPs)(Hooper等. 2001),又称跨膜丝氨酸蛋白酶(trans me mbrane p r o2 tease serines,T MPRSSs),这些新成员的发现和深入研究使人们对蛋白酶有了全新的认识[1]。 一、T M PRSS结构与基本特征 自1988年发现第一个跨膜丝氨酸蛋白酶T M2 PRSS1(hep sin)(Leytus等.1988)以来,至今已在人、小鼠和大鼠中发现二十多个成员,仅人类就有十几种(表1)。T MPRSS表达具有明显组织特异性,T M2 PRSS6主要在胎儿和成年肝脏中表达(Velasco等. 2002),而T MPRSS10主要存在于心脏(Yan等. 1999),这种表达模式说明不同T MPRSS参与不同生理过程。T MPRSS家族成员在分子量上差别巨大,如人T MPRSS1包含417个氨基酸残基,而T M2 PRSS10由1042个氨基酸构成,两者相差1倍以上,但基本结构却高度相似,均含四部分,从N端到C 端依次为短细胞质结构域、跨膜结构域、主干区和丝氨酸蛋白酶结构域,后两者位于胞外,不同成员区别主要集中于主干区。 根据主干区不同,T MPRSS可被进一步分为四个亚家族:HAT/DESC、hep sin/T MPRSS、matri p tase 和corin[1]。HAT/DESC亚家族包括T MPRSS11d (HAT)和T MPRSS11e(DESC1),它们结构最为简单,主干区仅由单一SE A(sea urchin s per m p r otein, enter opep tidase,agrin)结构域构成[2](图1)。hep2 sin/T MPRSS亚家族包括T MPRSS1~5和T MPRSS13等,是包含种类最多的一个亚家族,主干区包含清道夫受体富含半胱氨酸(scavenger recep t or cys2rich, SRCR)结构域和低密度脂蛋白A类受体(l ow densi2 ty li pop r otein recep t or class A,LDLa)结构域。matri p tase亚家族包括T MPRSS14(matri p tase21)、T MPRSS6(matri p tase22)和T MPRSS7(matri p tase23),其主干区除含有SEA结构域外,还包含2个CUB (comp le ment p r otein subcomponents C1r/C1s,urchin e mbryonic gr owth fact or and bone mor phogenetic p r o2 tein1)结构域及3到4个串联重复LDLa结构域。corin亚家族目前只发现一个成员T MPRSS10(cor2 in),其结构最为复杂,主干区包含8个LDLa结构域,2个frizzled结构域和1个SRCR结构域。 图1 几个典型T MPRSS结构特点[1]

木瓜蛋白酶的研究进展

木瓜蛋白酶的研究进展2010-2011学年第2学期《食品添加剂》课程论文 得分

摘要 木瓜蛋白酶是一种重要的生化产品,具有较高的热稳定性。在食品工业中主要用于啤酒和其他酒类的澄清,肉类嫰化,饼干、糕点松化及蛋白质水解生产等,在医药工业中也有广泛的用途, 还用于饲料、纺织及制革等领域。由于木瓜蛋白酶价格昂贵并且无法重复利用,促使人们研究和制备固定化木瓜蛋白酶。 关键字:木瓜蛋白酶固定化食品工业

1.木瓜蛋白酶的概述 木瓜蛋白酶(papain)简称木瓜酶,又称为木瓜酵素,别名番木瓜酶,木瓜朊酶,番瓜酵素。木瓜酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 纯木瓜蛋白酶系由212个氨基酸组成的单链蛋白质,相对分子质量为23.406。制品可含有木瓜蛋白酶、木瓜凝乳蛋白酶和溶菌酶等不同的酶。 2.木瓜蛋白酶的特点 木瓜蛋白酶溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。最适合PH值5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点18.75;最适合温度55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活酪蛋白被木瓜蛋白酶降解生成的酪氨酸在紫外光区 275nm 处有吸收峰。 3.木瓜蛋白酶的作用机制 作用方式:木瓜蛋白酶是一种内切酶,能随机水解淀粉、可溶性糊精以及低聚糖中的a-1,4糖苷键。酶作用后可使糊化淀粉的粘度迅速下降,水解生成糊精及少量葡萄糖和麦芽糖。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。存在于木瓜胚乳中的蛋白酶。EC3.4.22.2。作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格。 木瓜蛋白酶(Papain)是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。 木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。 4.木瓜蛋白酶在各个行业的应用 (1)医药工业应用: 含有木瓜蛋白酶的药物,能起到抗癌、肿瘤、淋巴性白血病、原菌和寄生虫、结核杆菌等,可消炎、利胆、止痛、助消化。治疗妇科病、青光眼、骨质增生、枪刀伤口愈合、血型鉴别、昆虫叮咬等。 (2)食品工业应用: 可利用酶促反应,使食品大分子的蛋白质水解成小分子肽或氨基酸,广泛适用于如:鸡、猪、牛、海产品、血制品、大豆、花生等动植物蛋白酶解、制成嫩肉粉、水解羊胎素、水解大豆、饼干松化剂、面条稳定剂、啤酒饮料澄清剂、高级口服液、保健食品、酱油酿造及酒类发酵剂等。有效转化蛋白质的利用,大大提高食品营养价值,降低成本。有

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

胶原蛋白的研究进展及其应用

胶原蛋白的研究进展及其应用 林祥明 厦门大学生命科学学院,福建厦门(361005) E-mail:lxmwxr@https://www.360docs.net/doc/805599899.html, 摘要:胶原蛋白来源广泛,有许多优良性质且用途广泛。本文概述了胶原蛋白的结构、特性、研究现状及其制备方法,阐述了胶原蛋白及其水解产物在化妆品、医药、功能保健食品等相关领域的应用。 关键词:胶原蛋白制备进展应用 1. 引言 胶原蛋白为人体主要的细胞外间质成分之一,是人体蛋白质的一大家族。胶原蛋白分子的异常合成与沉积是纤维化反应的基础。在胚胎发育、组织重建、损伤修复等过程中,生长因子及分化因子对胶原蛋白基因的表达具有重要的调控作用[1]。近年来人们进行了这些因子等对胶原基因转动调控作用的研究,这将有助于阐明胶原蛋白基因表达的调控机制。胶原蛋白基因的表达是其本身的顺式作用、反式作用因子以及诸多调控因子相互作用的结果[2]。 到目前为止,已报道的胶原类型大约有19种,对天然胶原的研究有助于进一步理解靶药物和胶原之间结构功能关系。有人用人成纤维II型胶原的三维结构模型来进行合成胶原组织、胶原的结构和功能的研究,利用这一系统进一步研究侧链基团的立体化学和特定分子的相互作用,继而评价胶原相关疾病的临床治疗效应。此外,连接分子末端非螺旋末端肽是胶原分子抗原性的主要来源,而且用胃蛋白酶除去末端肽的缺失胶原是很有应用前景的药物载体,特别是用于基因递送[3,4]。 胶原蛋白是构成动物机体的重要功能物质,它具有其他合成高分子材料无法比拟的生物相容性和生物可降解性。胶原蛋白质结构和功能特点的多样性和复杂性,决定了其在许多领域的重要地位,以及良好的应用前景。目前胶原已广泛地应用于食品、化妆品、营养保健品、生物肥料以及医用材料等领域。 2. 胶原蛋白的概况 胶原蛋白是一种白色、不透明、无支链的纤维蛋白质,是由动物细胞合成的一种生物性高分子,广泛存在于动物的骨、腱、肌鞘、韧带、肌膜、软骨和皮肤中,是结缔组织中极其重要的一种蛋白质,占哺乳动物体内蛋白质总量的25%~30%,相当于体重的6%[5],是人体重要的细胞外基质成份。胶原还可作为组织的支持物,起着支撑器官、保护机体的功能,对细胞、组织乃至器官行使正常功能并对外伤修复有重大影响。 胶原蛋白的种类很多,一般皮肤和骨骼中的是Ⅰ型胶原蛋白,软骨中的是Ⅱ型胶原蛋白,胚胎皮肤中的是Ⅲ型胶原蛋白,细胞基底膜中的是Ⅳ型胶原蛋白。通常胶原蛋白由三条多肽链构成三股螺旋结构,氨基酸的主要组成为脯氨酸(Pro)、甘氨酸(Gly)和丙氨酸(Ala)。胶原特有的左旋α链相互缠绕构成胶原的右手复合螺旋结构,这一区段称为螺旋区段,其最

丝氨酸蛋白酶抑制剂的研究进展教学提纲

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,江苏常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类

常见蛋白酶抑制剂

当前位置:生物帮 > 实验技巧 > 生物化学技术 > 正文 蛋白酶及蛋白酶抑制剂大全 日期:2012-06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9;

木瓜蛋白酶应用及研究进展

木瓜蛋白酶应用及研究进展 摘要本文主要介绍了木瓜蛋白酶的作用机理,在医药、食品、化工、科研等方面的应用,以及在木瓜蛋白酶的固定等方 面的最新研究进展。 关键字木瓜蛋白酶应用酶的固定化发展 一、简介 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,主要应用于啤酒及食品工业。 二、作用机理 木瓜蛋白酶属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜木瓜蛋白酶氨酸残基羧基参与形成的肽键。这种酶属于内肽酶,能切开蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。是一种存在于木瓜胚乳中的蛋白酶。作为植物来源的蛋白酶来说,此酶研究进展的最快。木瓜蛋白酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。这种酶是利用未成熟的番木瓜果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点18.75;最适合温度55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。

胶原蛋白的研究进展

胶原蛋白研究进展 *:通讯作者.23465145378@https://www.360docs.net/doc/805599899.html, 摘要: 胶原蛋白以其独特的生物特性而具有广阔的应用前景.对近年来国内外学者与生产厂家对胶原蛋白的制备、生物学功能作用及应用方面的研究进展进行了综述,以期充分有效地利用该生物资源. 关键词: 胶原蛋白; 制备; 功能; 应用 引言: 胶原蛋白( collagen) 是细胞外基质的主要成分,约占胶原纤维固体物的85%,占动物体内蛋白质总量的25% ~30%,它广泛存在于动物的结缔组织( 骨、软骨、皮肤、腱、韧等) 中,对机体和脏器起着支持、保护、结合,以及形成界隔等作用[1].目前,已发现的胶原蛋白有20 多种,它们在动物体内有着不同生理功能,其中,科研人员研究较多较深入的是Ⅰ型胶原蛋白.Ⅰ型胶原蛋白( 以下所述胶原蛋白均指Ⅰ型胶原蛋白) 分子长度约为300 nm,直径约为115nm,呈棒状,由3 条多肽链构成3 股螺旋结构,即: 2条αⅠ链,1条αⅡ链,αⅠ链和αⅡ链只是在氨基酸顺序上有微小差异.胶原蛋白特有的左旋α链相互缠绕构成胶原蛋白的右手复合螺旋结构,在螺旋区段,氨基酸呈现( Gly-X-Y) n 周期性排列.胶原蛋白中,甘氨酸( Gly) 含量较大,约占30%,脯氨酸( Pro)和羟脯氨酸( Hyp) 共占约25%,而一般动物蛋白质中羟脯氨酸含量极微少.可以说,羟脯氨酸是胶原蛋白特有的氨基酸,其含量多少与胶原蛋白的稳定性、变性温度成正性相关[2].同时,胶原蛋白具有很强的生物活性及生物功能,能参与细胞的迁移、分化和增殖,使动物的骨、腱、软骨和皮肤保持一定的机械强度.此外,胶原蛋白因其弱的抗原性和良好的生物相容性,在烧伤、创伤、眼角膜疾病、美容、矫形、硬组织修复、创面止血等医药卫生领域用途广泛.目前,国内外关于胶原蛋白的研究极为活跃,本文拟对胶原蛋白的制备、生物学功能及应用进行综述,以期充分有效利用该生物资源. 1.胶原蛋白的制备 目前,对胶原蛋白的提取主要有3 种方法,即酸法、酶法与碱法.因此,根据提取方法的不同,胶原蛋白也可以分为酸溶性胶原蛋白、酶溶性胶原蛋白以及碱溶性胶原蛋白,这3 种胶原蛋白的结构、理化性质与用途都不同.此外,随

蛋白酶抑制剂的研究进展

蛋白酶抑制剂的研究进展 郭川 微生物专业,200326031 摘要:自然界共发现四大类蛋白酶抑制剂:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、金属蛋白酶抑制剂和酸性蛋白酶抑制剂,本文就各大类蛋白酶抑制剂的结构特点,活性部位的研究概况及其在各领域应用的原理及进展。 关键词:蛋白酶抑制剂;结构;应用 天然的蛋白酶抑制剂(PI)是对蛋白水解酶有抑制活性的一种小分子蛋白质,由于其分子量较小,所以在生物中普遍存在。它能与蛋白酶的活性部位和变构部位结合,抑制酶的催化活性或阻止酶原转化有活性的酶。在一系列重要的生理、病理过程中:如凝血、纤溶、补体活化、感染、细胞迁移等,PI发挥着关键性的调控作用,是生物体内免疫系统的重要组成部分。从Kunitz等最早分离纯化出一种PI至今,已有多种PI被发现,根据其作用的蛋白酶主要分以下几类:抑制胰蛋白酶、胰凝乳蛋白酶等的丝氨酸蛋白酶抑制剂,抑制木瓜蛋白酶、菠萝蛋白酶等的巯基蛋白酶抑制剂,抑制胃蛋白酶、组织蛋白酶D等的羧基蛋白酶抑制剂、抑制胶原酶、氨肽酶等的金属蛋白酶抑制剂等。而根据作用于酶的活性基团不同及其氨基酸序列的同源性,可将自然界发现的PI分为四大类:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂(半胱氨酸蛋白酶抑制剂)、金属蛋白酶抑制剂和酸性蛋白酶抑制剂[1]。 1 结构与功能 1.1丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,Serpin) 丝氨酸蛋白酶抑制剂是一族由古代抑制剂趋异进化5亿年演变而来的结构序列同源的蛋白酶抑制剂。Sepin为单一肽链蛋白质。各种serpin大约有30%的同源序列,疏水区同源性高达70%。血浆中的serpin多被糖基化,糖链经天东酰胺的酰胺基与主链相连。位于抑制性serpin表面、距C端30~40个氨基酸处的环状结构区RSL(reactive site loop)中,存在能被靶酶的底物识别位点识别的氨基酸P1[2];近C端与P1相邻的氨基酸为P1’,依此类推,即肽链结构表示为N端-P15~P9~P1-P1’~P9’~P15’-C端。在对靶酶的抑制中。Serpin 以RSL中的类底物反应活性位点与靶酶形成紧密的不易解离的酶-抑制剂复合物,同时P1-P1’间的反应活性位点断裂。几种perpin氨基酸序列比较发现,serpins各成员的抑制专一性是由P1决定的,且被抑制的酶特异性切点一致。如抗凝血酶,抑制以Arg羧基端为敏感部位的丝氨酸蛋白酶,其中P1为Arg[2]。 1.2巯基蛋白酶抑制剂(Cytsteine Proteinase Inhiitor,CPI) 对于丝氨酸蛋白酶抑制剂(SPI)已有大量研究,巯基蛋白酶抑制剂(CPI)的研究则相对要晚一些。而动物和微生物来源的CPI已有一些研究,发现它们在结构上具有同源性,Barrett等将CPI统称为胱蛋白超家族,并按分子内二硫键的有无与数量,分子量大小等将此家族分为3个成员(F1、F2、F3)。在3个家族中,大多数F1和F3的CPI中都有Glu53-Val54-Val55-Ala56-Gly57保守序列,其同源序列在其它CPI中也被发现,如F2中的Gln-X-Val-Y-Gly和CHα-ras基因产物中的Gln-Val-Val肽段。人工合成的Glu-Val-Val-Ala-Gly 短肽也显示对木瓜蛋白酶有抑制活性,因此可以认为这一保守区段在抑制活性中起着全部或部分的关键作用[3]。对植物来源的CPI研究的不多,已有报道的有水稻、鳄梨和大豆。水稻巯基蛋白酶抑制剂(Oryzacystatin,OC) 具有102个氨基酸残基,有典型的Glu-Val-Val-Ala-Gly保守序列,应与动物CPI同源进化而来。从OCI没有二硫键来看,它应归为F1成员,但从序列比较看,则更接近F3。对OCIGlu---Gly保守序列进行点突变试验表明,突变使其抑制活性大幅度下降,其中当Glu被Pro替代时则活性全无,由此说明,这一段保守序列在OCI的抑制活性中,同动物CPI一样必不可少。除Glu---Gly保守区域外,OCI序列中其

木瓜蛋白酶的提取及应用研究进展

木瓜蛋白酶的提取及应用研究进展 赵电波,陈茜,张丽尧 (郑州轻工业学院食品与生物工程学院,河南郑州450002) 摘要:本文主要介绍木瓜蛋白酶的组成,重点阐述提取方法、提取工艺的研究进展,进一步介绍木瓜蛋白酶在食品工业特别是在食品加工中的应用,并对其在医药、化工及未来食品加工方面的应用前景进行展望。 关键词:木瓜蛋白酶;提取工艺;食品加工;应用 Progress of Extraction and Application of Technology of PapainZHAO Dianbo, CHEN Xi, ZHANG Liyao(College of Food and Biotechnology Engineering, Zhengzhou University of Light Industry, HenanZhengzhou 450002, P. R. China)Abstract: The composition of papain was described, and its extraction methods, research of extractiontechnology had been highlighted. Applications of papain in food industry, particularly in food processing itwas further described, and its applicationsinpharmaceutical, chemical industry and the future prospects offood processing have been prospected in this article.Key words: papain;extractiontechnology; food processing; application 中图分类号:TS201.1文献标识码:A文章编号:1001-8123(2010)11-0019-05 木瓜蛋白酶(papain)来源于未成熟番木瓜(Carica papaya)果实的新鲜乳汁,是一种含疏基(-SH)肽链的内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力;同时还具有合成的功能,能把蛋白水解物合成为类蛋白质。工业用的木瓜蛋白酶一般都是未经纯化的多酶体系。现已知经木瓜乳汁干燥而得的木瓜蛋白酶至少含有四种主要酶类:木瓜蛋白酶(papain)、木瓜凝乳蛋白酶(chymopapain)、木瓜蛋白酶Ω(papaya proteinaseΩ)、木瓜凝乳蛋白酶M(chymopapain M)[1],其中木瓜凝乳蛋白酶的含量最多,占可溶性蛋白的45%。木瓜蛋白酶易溶于水和甘油,水溶液为无色或淡黄色,有时呈乳白色;几乎不溶于有机溶剂。它的最适pH值为5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用;最适温度为55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。1木瓜蛋白酶的提取工艺 1.1过去的常规提取方法 木瓜蛋白酶最原始的提取方法是烘干法,就是在番木瓜浆液中加入保护剂,然后将浆液离心,取上清液放置于鼓风干燥箱中,在55~60℃烘干,粉碎后即得到粗酶制品。乙引等[2]用这种方法所获得的酶得率为23.1%,但此法不利于酶活的保持,其酶活力仅为0.16×105U/g,且产品的纯度较低。木瓜蛋白酶的提取也曾广泛采用单宁沉淀法,乙引等[2] 用单宁沉淀法提取了木瓜蛋白酶。先将番木瓜乳汁离心,于上清液中缓慢加入已溶解的单宁溶液,不断搅拌,使溶液中单宁达到一定浓度。静置,沉淀 单宁-酶复合物,调节pH值,沉淀后进行真空干燥,得到酶制品。结果表明,这种方法生产的酶得率较低,仅有7.3%,但酶活力较高,为3.53×105U/g。但是这种方法存在环境污染等问题。1.2目前较为常见的提取方法 目前生产中多采用超滤、絮凝、盐析等方法提取木瓜蛋白酶。 1.2.1超滤法提取木瓜蛋白酶

胶原蛋白的研究进展

https://www.360docs.net/doc/805599899.html, 肉类研究 MEAT RESEARCH  2010.1 收稿日期:2009-11-04 作者简介:王丽娜,1986-,女,硕士研究生,研究方向:兽医公共卫生学.Email:wannnglina@https://www.360docs.net/doc/805599899.html, 通讯作者:黄素珍 山西农业大学动物科技学院 邮政编码:030801 胶原蛋白的研究进展 王丽娜,黄素珍 (山西农业大学 动物科技学院,山西 太谷 030801) 摘 要:本文对胶原蛋白的性质、提取方法以及它的功能和发展前景等研究进行了简单的综述。主要对胶原蛋白的来源做了详细的介绍。关键词:胶原蛋白;来源;功能;研究进展 Research Progress About Collagen WANG Lina ,HUANG Suzhen (Veterinary Medicine and Animal Science, Shanxi Agriculture University, Taigu Shanxi 030801)Abstract: This paper is mainly introduce the development ,the characterize and the distill method of collagen. We make a detail introduction to the source of collagen.Key words: collagen; source; founction; research process 中图分类号:TS201.1 文献标识码:A 文章编号:1001-8123(2010)01-0016-07 0 前言 胶原蛋白是哺乳动物体内含量最丰富、分布最广泛的蛋白质,占人体内蛋白质总25%,相当于体重的6%。它存在于动物皮肤与骨胳中,如猪皮、牛筋、禽的皮肤及骨骼中含有大量的胶原蛋白。 胶原蛋白的营养十分丰富。胶原蛋白富含除色氨酸和半胱氨酸外的18种氨基酸,其中维持人体生长所必需的氨基酸有7种,胶原蛋白中的甘氨酸占30%,脯氨酸和羟脯氨酸共占25%,是各种蛋白质中含量最高的,丙氨酸、谷氨酸的含量也比较高,同时还含有在一般蛋白中少见的羟脯氨酸和焦谷氨酸。 胶原蛋白是细胞外基质的结构蛋白质,分子量为300kD,其分子在细胞外基质中聚集为超分子结构。胶原蛋白最普遍的结构特征是三螺旋结构,由3条a链多肽组成,每一条胶原链都是左手螺旋构型,它们交叉相互缠绕成右手螺旋结构,即超螺旋结构,胶原蛋白独特的三重螺旋结构,使其分子结构非常稳定,并 且具有低免疫原性和良好的生物相容性等。结构决定性质,性质决定用途,胶原蛋白的结构的多样性和复杂性决定其在许多领域的重要地位。胶原蛋白产品具有良好的应用前景。 1 胶原蛋白的特性 1.1 低免疫原性 林炜[1]等认为胶原具有三种类型的抗原因子:第一类是由胶原肽链非螺旋的端肽引起的;第二类是由胶原三螺旋的构象引起的;第三类是由α链螺旋区的氨基酸顺序引起的。第二类抗原因子仅存在于天然胶原分子中,第三类只出现在变性胶原中,而第一类抗原因子在天然和变性胶原中均存在。 1.2 生物相容性 胶原的生物相容性是指胶原蛋白与宿主细胞及组织之间良好的相互作用。胶原本身是构成细胞外基质的骨架,其三股螺旋结构及交联所形成的纤维或网络构成了细胞重要组成成分,对细胞起到锚定和支持作

粗粮含蛋白酶抑制剂

粗粮含蛋白酶抑制剂。荞麦、燕麦、莜麦、高粱面、红薯等粗粮中,含有抗营养素蛋白酶抑制剂。其中,荞麦、莜麦含量最高。粗粮发酵以后,酵母菌大大降低蛋白酶抑制剂的活性,所以粗粮发酵后蒸窝头、贴饼子等食用为好。 各种粗 粮 甘蓝含有硫苷。卷心菜、紫甘蓝、荠菜、萝卜、洋葱、花菜等十字花科蔬菜中,含有抗营养素——硫苷。硫苷降解的某些产物能抑制甲状腺素的合成和对碘的吸收。硫苷具有两面性,虽然它有副作用,但对子宫癌、乳腺癌等多种癌有显著的抑制作用。硫苷对热敏感,将蔬菜炒熟后,可去除其中的大部分硫苷。理想的做法是,将其一半生吃一半熟吃,这样既可保留防癌成分,又有利于其他营养成分的吸收。 黄瓜等含有抗坏血酸氧化酶。黄瓜、西葫芦、莴笋、水芹、花菜、南瓜等食物中,含有抗营养素——抗坏血酸氧化酶。抗坏血酸氧化酶会破坏蔬菜和水果中维生素C的含量。所以食用黄瓜时不必切开,生吃即可。西葫芦、莴笋、水芹、花菜等蔬菜宜大火快炒,最好不要加醋。 蛋白质抑制剂:这是大豆和其它豆类中存在的一种特殊蛋白质,可以抑制体内胰蛋白酶等十几种消化酶的流活性,其代表为胰蛋白酶抑制剂,它能抑制蛋

白酶对蛋白质的消化吸收。它需经蒸发气加热30分钟或高压蒸气加热15~2 0分钟才能被破坏。 皂角素:大豆中含有的皂角素,对消化道粘膜有强烈的刺激性,人吃了没有煮熟的大豆或豆浆,常会产生恶心、呕吐、腹痛、腹泻等症状,就是由于皂角素没有完全破坏所引起。皂角素需加热至100度才破坏,因此食用豆类或豆浆必须煮开10~20分钟后才能食用。 凝血素:也是一种特殊蛋白质,称为植物血球凝集素,可使人体细胞凝集,但加热即可被破坏,或在体内经蛋白酶作用也可使其失去活性,不致被肠道吸收后引起凝血。 棉子糖合成酶:众所周知,多吃大豆后肚子容易胀气。其原因是大豆中含有一种棉子糖合成酶,它进入人体后,可以合成大量低聚糖,如棉子糖、水苏糖等。这些糖不能被子人体吸收,大部分在肠中被细菌分解利用,同时产生大量二氧化碳、氢和甲烷。但大豆充分加熟后,此酶即被破坏,产气也随之减少;加工成豆制品或发酵制品也可去除这种酶,故吃豆腐、腐乳等豆制品就不会胀气。 植酸:这是一种含磷化合物,一般植物性食品中都含有。但大豆中含量很高,大豆中占60%~80%的磷都是以植酸形式存在,植酸可与蛋白质、无机盐及矿物元素钙、磷、铁、锌等结合而影响其消化吸收。大豆中的锌很难吸收,就是受了植酸的影响,可利用发芽米分解植酸,提高大豆中铁、锌、钙、镁等矿物元素的生物利用率。

常见蛋白酶抑制剂

蛋白酶及蛋白酶抑制剂大全 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepst anti n) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。 蛋白酶抑制剂混合使用 35ug/ml PMSF…………………………………丝氨酸蛋白酶抑制剂 0.3mg/ml EDTA…………………………………金属蛋白酶抑制剂 0.7ug/ml胃蛋白酶抑制剂(Pepstatin)…………酸性蛋白酶抑制剂 0.5ug/ml亮抑蛋白肽酶(Leupeptin)……………广谱蛋白酶抑制剂

木瓜蛋白酶在食品工业中应用的研究进展

木瓜蛋白酶在食品工业中应用的研究进展 江甜 (武汉轻工大学,湖北武汉430023) 摘要:本文主要介绍木瓜蛋白酶,重点阐述提取方法、提取工艺的研究进展,进一步介绍木瓜蛋白酶在食品工业特别是在食品加工中的应用,并对其在医药、化工及未来食品加工方面的应用前景进行展望。 关键词:木瓜蛋白酶;提取工艺;食品加工;应用 Applications of papain in the food industry JIANG Tian (Wuhan Polytechnic University,Wuhan, 430023) Abstract: The papain was described, and its extraction methods, research of extraction technology had been highlighted. Applications of papain in food industry, particularly in food processing it was further described, and its applications in pharmaceutical, chemical industry and the future prospects of food processing have been prospected in this article. Key words: papain; extraction technology; food processing; application 木瓜蛋白酶又称木瓜酶,是一类巯基蛋白酶,广泛地存在于番木瓜(Carica papaya)的根、茎、叶和果实内,未成熟果实的乳汁中含量最丰富[1]。木瓜蛋白酶的作用范围很广,水解温度为10℃~80℃,在pH值3~9的范围内对底物均有作用,且稳定性好。在密封容器内,4℃的条件下或阴凉干燥处保存6个月酶活力仅下降0~10 或10 ~20 [2]。木瓜蛋白酶具有较强的蛋白酶水解和合成能力,还具有凝乳、解脂和溶菌活力,利用木瓜蛋白酶的酶促反应,可把大分子的蛋白质水解成容易消化吸收的小分子多肽或氨基酸[3-4],不仅可以用来改善植物蛋白的营养价值或功能性质,而且也广泛应用于食品行业,如啤酒的澄清、肉的嫩化以及制革、纺织和日化用品等行业中,同时也受了医学界的极力关注和重视[5-6]。 1木瓜蛋白酶的制备 1.1过去的常规提取方法 木瓜蛋白酶最原始的提取方法是烘干法,就是在番木瓜浆液中加入保护剂,然后将浆液离心,

相关文档
最新文档