圆幂定理及等幂轴的探究

圆幂定理及等幂轴的探究
圆幂定理及等幂轴的探究

圆幂定理及等幂轴的探究

麟游县九成宫初级中学 田宏刚

摘要:圆幂定理是平面几何中重要定理之一,有着及其广泛的应用。关于等幂轴的轨迹探究,

更能加深学生的逻辑思维。以上内容在2011版初中数学《课程标准》中不作要求,但对于学有余力,有兴趣爱好的初中读者,可作为提升知识、思想、方法的途径。对于在职教师,可作为阅读参考。

关键词:圆幂定理 等幂轴 探究

圆幂定理的发现及证明分析:我们知道,若p 为圆O (r )外部一点,过点p 作割线 PAB 则

PA ·PB 为一常量,这一常量由⊙O (r )与点P 决定,不因割线的位置而改变,这一定理称为割线定理,下面进行证明。

证:如图,设P 为⊙O 外一点,过点P 作圆O 的两条不同割线分别为PAB 和PA ′B ′,连接AA ′,BB ′,则AA ′B ′B 为圆的内接四边形,由圆内接四边形的外角等于内对角知:∠PAA ′=∠PB ′B ,又∵∠APA ′=∠B ′PB,∴△PAA ′∽△PB ′B ,∴ PA/PB ′=PA ′/PB ,因而PA ·PB=PA ′PB ′。 T

B ′

下面探究这一常量(定值)究竟是多少?有下面的定理。分析:设P 为圆O 的切线(如上图1)P A B 为圆O 的一条普通割线。而PA ′B ′是经过圆心O 的一条特殊割线,由上述割线定理知,

这一常是不因割线位置而改变。且P= P A ·PB=PA ′·PB ′总成立,而P A ·PB=(PO-r)(PO+r)=P O 2-r 2.由于PT 是切线,T 为切点,所以有RT △PTO,且有PO 2-R 2=t 2 (t 表切线PT 的长)于是切割线定理表述为:

设P 为O (r )外一点。PT 为O 的切线。T 为切点,PAB 和PA ′B ′为圆O 的两条不同割线,

那么PA ·PB=PA ′PB ′= 2PT

文字语言表述为:从圆外一点引圆的一条割线和一条切线,那么这一点到割线上两割点的距离

之积等于这一点到圆的切线的长的平方。

仿此,若P 为圆O(r))内部一点,如(图2)过点P 作任一弦APB ,则PA,PB 为常量(证明是相交弦定理),为求这一常量P 是多少,可取过点P 与PO 垂直的弦A ′B =-PA 2 (此地用有向线段) =-(2r -2po )=po 2- r 2,我们把P=PA ·PB=PO 2-r 2 (1)

定义为P 对于圆O (r )的幂,这是一代数量,当p 在圆外时, 图2

P为正,其值等于由P所作的切线长的平方;当p在圆上时,PO2=r2;因而P=O;当P在圆内时,

幂P为负,此时,P A·PB=PA′·PB′正是相交弦定理,(如上图2)证明用到相似三角形的性质,

并以下面的引理为前提:

引理1:在同圆或等圆中,同弧所对的圆周角相等。

(这一定理的证明在初中数学课本中讲过,不再赘述)下证

相交弦定理:设P为圆内任一点,过点P作圆的两条弦AB和A′B′,则:

PA·PB=PA′·PB′。

证:如图2,连结A′A和B′B,则∠A′AP=∠BB′P,又∵AB和A′B′相交于点P,∴∠APA′

=∠BPB′,因而△A′AP∽△BB′P,所以有AP/B′P=A′P/BP?P A·PB=PA′·PB′. 证毕

分析:相交弦定理是P在⊙O内的情况;割线定理是点P在⊙O外的情况,由割线定理的推

论切割线定理求得了点P在⊙O外时,圆幂P的值等于t2(t表切线的长),不论P在圆外,

圆上,圆内,圆幂P的值总是存在的,我们把相交弦定理,割线定理,切割线定理统称为圆

幂定理。其圆幂的概念由此而来,圆幂定理是平面几何中的重要定理,有着广泛的应用。

下面我们来介绍等幂轴的概念及其相关轨迹命题:

对于两个不同的定圆(圆心确定的圆)有等幂的点的轨迹,是垂直于连心线的一条直线,

此直线称为两圆的等幂轴。

此命题由下面的引理可以轻而易举得到。

引理2:到两定点距离的平方差为常量的点的轨迹,是垂直于两点连线的一条直线。

证法:设A,B为两定点,k为常量,先探求满足条件的MA2—MB2=K的点的轨迹(如图3)

探究:若M符合条件,显然M关于直线AB的对称点也符合条件,所以轨迹如果是直线,

必有直线上两点对称于AB,因而此直线与l垂直,所以只需知道这直线与AB交点N, 这个

轨迹就完全确定了,设AB上过点N垂直于AB的直线l上满足条件,(图3)由K=MA2—

MB2=( AN2+NM2)—(NB2+NM2)

=(AN+NB)(AN—NB)

=AB「AN—(AB—AN)」

=AB(2AN —AB)

解得AN=(

2

22

AB K

AB AB

+),由此式确定点N而垂直于AB的直线L.

证明: 1 .由刚才的探究过程,符合条件的点M在过AB上的定点N且垂直于AB的直线l上。

2.反之,在l上任取一点有:MA2—MB2=AN2—NB2=AN—(AB—AN)2

=AN2—AB2+2ABAN—AN2

=2AB 2—AB2

=2A B·(

2

22

AB K

AB AB

+)—AB2

=K

即点M满足条件。证毕

特别地,当K=O时,L就是众所周知的AB的中垂线,此时,L上的点M在AB中垂线上,

显然有MA2—MB2=0。

下由引理2来证两圆等幂轴的轨迹命题。

设两圆为圆O和圆O',点P 对于两圆的幂各为:

P=PO2—r2及P′= PO′2—r ′2,则:

P对于两圆有等幂轴的充要条件是P=P'或PO 2—PO′2= r2—r′2≡K

证:1.(充分性)两圆有等幂,由上述分析及引理2推论其等幂轴是垂直于两圆连心线的一条直线。

2.(必要性)作两圆连心线的垂线,在垂线上取一点P,∵P=PO2—r2及P′=PO′2—r′2,所以P—P′=(PO 2—r2)—(P O′2—r′2)=(PO 2—P O′2)—(r2—r′2)所以即当PO 2—P O'2= r2—r′2≡K时,

显然有P—P′=0即P= P′证毕。

下面讲一下两圆的等幂轴的作法,若两圆相交,(图4)则两交点对于两圆的幂同等于零(P在圆上)所以等幂轴即两交点连线;若两圆相切,则等幂轴为两圆的公切线.(图5)若两圆无公共点,则任作一圆交圆O于A,B两点,交圆O′于A',B'两点。以P表AB与A'B'的交点,则P对于圆O 的幂P=PA g PB= PA′·PB′=点P对于圆O′的幂P′(图6)。

所以过点P作O O'的垂线即得等幂轴。

图3 图4

图5 图6

圆幂定理

圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理) 概述 相交弦定理为圆幂定理之一,其他两条定理为: 切割线定理 割线定理 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB ∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。 P 不是圆心 3比较

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=PA·PB(切割线定理推论)(割线定理) 由上可知:PT2=PA·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=PA·PB

证明:连接AT, BT ∵∠PTB=∠PAT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·PA 3比较 相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求直线段长度。 割线定理:指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等, 1定义 文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有LA·LB=LC·LD=LT^2。如下图所示。(LT为切线)

《1.3.1圆幂定理》教学案3

《1.3.1圆幂定理》教学案 【教学目标】 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 【教学重难点】 重点:相交弦定理、切割线定理及其推论之间的关系以及应用; 难点:灵活运用圆幂定理解题. 【教学过程】 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等. 定理 圆内的两条相交弦,被交点分成的两条线段长的积相等.(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 几何语言:若弦AB、CD交于点P则P A·PB=PC·P D(相交弦定理) 2证明 证明:连结AC,BD 由圆周角定理的推论,得∠A=∠D,∠C=∠B.(圆 周角推论2: 同(等)弧所对圆周角相等.) ∴△P AC∽△PDB ∴P A∶PD=PC∶PB,P A·PB=PC·PD 注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性.其逆定理也可用于证明四点共圆. 3比较 相交弦定理、切割线定理以及他们的推论统称为圆幂定理.一般用于求线段长度. 4相交弦定理推论 定理 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项. 说明几何语言:若AB是直径,CD垂直AB于点P,则=P A·PB(相交弦定理推论)

切割线定理 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.是圆幂定理的一种. 切割线定理示意图 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=P A·PB(切割线定理) 推论: 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: ∵PT是⊙O切线,PBA,PDC是⊙O的割线 ∴PD·PC=P A·PB(切割线定理推论)(割线定理) 由上可知:PT2=P A·PB=PC·PD 2证明 切割线定理证明: 设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT2=P A·PB 证明:连接AT,BT ∵∠PTB=∠P AT(弦切角定理 ) 切割线定理的证明 ∠APT=∠APT(公共角) ∴△PBT∽△PTA(两角对应相等,两三角形相似) 则PB:PT=PT:AP 即:PT2=PB·P A

初中数学中被删掉的有用知识圆幂定理及其应用

圆幂定理及其应用 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程,从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD 是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外 一点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过 的切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点 旋转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可 得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2; 在图(2)中,PA·PB=PT2=OP2-OT2 =OP2-R2 在图(3)中,PA·PB=PC·PD=PT2 =OP2-R2. 教师指出,由于PA·PB均等于|OP2-R2|,为一常数,叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理. 二、例题分析(采用师生共同探索、讲练结合的方式进行) 例1 如图7-170,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆

圆知识梳理+题型归纳附答案_详细知识点归纳+中考真题

圆 【知识点梳理】 一、圆的概念 集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内?d r ?点A在圆外; A

三、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧 AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 B D

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

切割线定理割线定理相交弦定理等及几何题解

切割线定理割线定理相交弦定理等及几何题解 南江石 2018年4月7日星期六 圆的切线,与圆(圆弧)只有一个公共交点的直线叫做圆的切线。 圆的割线,与圆(圆弧)有两个公共点的直线叫做圆的割线。 圆的弦,圆(圆弧)上两点的连接线段叫做圆(圆弧)的弦。 弦是割线的部分线段。 公共弦线:两圆相交,两交点的连线为公共弦线——共弦线,共割线。 公共切线:两圆相切,过两圆切点的公切线为公共切线——共切线。 几何原理 几何原理 共弦线垂直于连心线共切线垂直于连心线共割线平分公切线 共切线平分公切线 4切线长度相等—— 4切点共圆,圆心在两线交点 3切线长度相等——3切点共圆,圆心在两线交点 共割线上任意一点到圆的 4个切线的长度相等,4切点共圆 共切线上任意一点到圆的3个切线的长度相等,3切点共圆 圆幂定理 是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一。 圆幂定理及相交弦定理、切割线定理和割线定理的实质是相似三角形。 点对圆的幂 P 点对圆O 的幂定义为 2 2 R OP F B 性质

点P 对圆O 的幂的值,和点P 与圆O 的位置关系有下述关系: 点P 在圆O 内→P 对圆O 的幂为负数; 点P 在圆O 外→P 对圆O 的幂为正数; 点P 在圆O 上→P 对圆O 的幂为0。 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 PB PT PT PA = PB PA PT ?=2 222Am Pm PT -= 割线定理(切割线定理的推论) 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。 PD PC PB PA ?=? 2222Cn Pn Am Pm -=- 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等,或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。 PD PC PB PA ?=? 2222A Pn Cn Pm m -=- 垂径定理(相交弦定理推论) 如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。 垂直于弦的直径平分弦且平分这条弦所对的两条弧。 PB PC PC PA = PB PA PC ?=2 222OP R PC -= P 点在圆外,切割线定理、割线定理 2222222Cn Pn Am Pm R OP PD PC PB PA PT -=-=-=?=?= P 点在圆内,相交弦定理、垂径定理 222222Pn Cn Pm Am OP R PD PC PB PA -=-=-=?=? 222OP R PB PA PC -=?=

数学竞赛辅导讲义——圆幂与根轴

数学竞赛辅导讲义——圆幂与根轴 一、圆幂的定义: 在平面上,从点P 作半径为r 的圆O 的割线,从P 起到和该圆周相交为止的两线段之积是一个定值,称为点P 对于此圆周的圆幂. 圆幂定理: (1)当P 在圆O 外时,点P 对于此圆的幂等于22OP r -; (2)当P 在圆O 内时,点P 对于此圆的幂等于22r OP -; (3)当P 在圆O 上时,规定:点P 对于此圆的幂等于0. 二、根轴及其性质 1.根轴的定义: 对于两个已知圆的圆幂相等的点的轨迹是一条直线,该直线称为这两圆的根轴. 2.根轴的性质: (1)若两圆1O 与2O 相离(半径分别为1r ,2r 且12r r ≤),点M 为12O O 的中点,点H 在 线段1O M 上,且2221122r r MH O O -=,则此两圆的根轴是过点H 且垂直于12O O 的直线.特别 地,当两圆相离且半径相等时,它们的根轴是线段12O O 的中垂线. (2)若两个圆是同心圆,则这两个圆不存在根轴. (3)若两个圆相交,则它们的公共弦所在的直线就是它们的根轴. (4)若两圆相切,则过两圆切点的公切线是它们的根轴. (5)若三个圆的圆心互不相同,则任意两个圆的根轴共三条直线,它们相交于一点或互相平行. (6)若两圆相离,则两圆的四条公切线的中点共线(都在根轴上). 思考:能否从解析几何的角度看根轴?

三、例题 例1 如图,设I 和O 分别是ABC ?的内心和外心,r 和R 分别是ABC ?的内切圆和 外接圆的半径,过I 作ABC ?的外接圆的弦AK . 求证:(1)IK BK =; (2)2AI IK Rr ?=; (3)222OI R Rr =-.(欧拉公式) 例2 如图,设圆1O 与圆2O 相离,引它们的一条外公切线切圆1O 于A ,切圆2O 于B , 又引它们的一条内公切线切圆1O 于C ,切圆2O 于D , 求证:(1)AC BD ⊥;(2)直线12O O 是分别以AB ,CD 为直径的圆3O ,4O 的根轴;(3)直线AC 和BD 的交点K 在两圆的连心线12O O 上 . 例1 K

圆幂定理及其证明#(优选.)

圆幂的定义 假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂; 若P点在圆内,则圆幂为R^2-OP^2; 综上所述,圆幂为|OP^2-R^2|。 圆幂恒大于或等于零。 圆幂的由来 过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值) 若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。 圆幂定理 定理内容 过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有 。[1] 圆幂定理的所有情况 考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有

圆幂定理的证明 图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以 。所以有: ,即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以有 ,同上证得 图Ⅲ:切割线定理。如图,连接AC、AD。∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有 易证

专题13相似三角形定理与圆幂定理

专题十三相似三角形定理与圆幂定理 本专题主要复习相似三角形的进一步认识、圆的进一步的认识.通过本专题的复习,了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推论.掌握相交弦定理、割线定理、切割线定理;理解圆内接四边形的性质定理与判定定理.【知识要点】 1.相似三角形概念 相似三角形:对应角相等,对应边成比例的两个三角形是相似三角形. 相似比:相似三角形对应边的比. 2.相似三角形的判定 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为:两角对应相等两三角形相似). 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似). 如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似). 3.直角三角形相似的判定定理 直角三角形被斜边上的高分成两个直角三角形和原三角形相似. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 4.相似三角形的性质 相似三角形对应角相等,对应边成比例. 相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比. 相似三角形的面积比等于相似比的平方. 5.相关结论 平行于三角形一边的直线截其他两边,截得的三角形与原三角形的对应边成比例. 三角形的内角平分线分对边成两段的长度比等于夹角两边长度的比. 经过梯形一腰中点而平行于底边的直线平分另一腰. 梯形的中位线平行于两底,并且等于两底和的一半. 若一条直线截三角形的两边(或其延长线)所得对应线段成比例,则此直线与三角形的第三边平行. 6.弦切角定理 弦切角定义:切线与弦所夹的角. 弦切角的度数等于它所夹的弧的圆心角的度数的一半. 7.圆内接四边形的性质 圆的内接四边形的对角互补,并且任意一个外角等于它的内对角. 8.圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D则有PA·PB=PC·PD.【复习要求】 1.了解平行线等分线段定理和平行截割定理;掌握相似三角形的判定定理及性质定理;理解直角三角形射影定理. 2.理解圆周角定理及其推论;掌握圆的切线的判定定理及性质定理;理解弦切角定理及其推

(完整)圆幂定理讲义(带答案)

(完整)圆幂定理讲义(带答案) 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆幂定理讲义(带答案))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆幂定理讲义(带答案)的全部内容。 1 / 29

圆幂定理 STEP 1:进门考 理念:1。检测垂径定理的基本知识点与题型。 2。垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节. (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器 的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△A OE中,利用勾股定理求得半径OA的长,则MN即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°, ∴CD=BC?sinB=4×=2(cm), ∴OE=CD=2, 在△AOE中,AE=AB=4cm, 则OA===2(cm),则MN=2OA=4(cm).故答案是:4. 2 / 29

《1.3.1圆幂定理》教学案1

《1.3.1圆幂定理》教学案 教学目标 1.知识与技能:(1)理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;(2)学会作两条已知线段的比例中项; 2.过程与方法:师生互动,生生互动,共同探究新知; 3.情感、态度、价值观:通过推论的推导,向学生渗透由一般到特殊的思想方法.教学重、难点 重点:正确理解相交弦定理及其推论 难点:相交弦定理及其推论的熟练运用 教学过程 前面讨论了与圆有关的角之间的关系.下面我们讨论与圆有关的线段的关系及其度量问题.下面沿用从特殊到一般地思路,讨论与圆的相交弦有关的问题. 探究1如图2-20,AB是⊙O的直径,CD⊥AB.AB与CD相交于P,线段P A、PB、PC、P D之间有什么关系? ?=?(老师引导学生完成推导过程) . PA PB PC PD 探究2将图2-20中的AB向上(或向下)平移,使AB不再是直径(图2-21),探究1的结论还成立吗? 连接AD、BC,请同学们自己给出证明. 探究3如果CD与AB不垂直,如图2-22,CD、AB是圆内的任意两条相交弦,探究1的结论还成立吗? 事实上,AB、CD是圆内的任意相交弦时,探究1仍然成立,而证方法不变.请同学们自己给出证明. 由上诉探究和论证,我们有 1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等. 探究4在图2-24中,使割线PB绕P运动到切线的位置(图2-25),线段P A(或PB)、PC、P D之间有什么关系? 2. =?(老师引导学生完成推导过程) PA PC PD

由上诉探究和论证,我们有 3.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 探究5下面对相交弦定理和切割弦定理作进一步分析: 由切割线定理和相交弦定理不难看出,不论点P在圆内或圆外,通过圆的任一条割线交圆于A,B两点,只要点P的位置确定了,则P A? PB都是定值. 设定植为k,则: 当点P在圆外时,如图,由切割线定理,可得 k = P A? PB = PT2= PO2- r2( r表示⊙O的半径 ) 当点P在圆内时,如图,过点P作AB垂直于OP,则: k = P A? PB = P A2= r2 - PO2( r表示⊙O的半径 ) 当点P在圆上时,显然k=0. 由上,我们可以得到: 圆幂定理: 已知⊙(O,r),通过一定点的任意一条割线交圆于A,B两点,则: 当点P在圆外时,k= PO2- r2; 当点P在圆内时,k= r2- PO2; 当点P在⊙O上时,k= 0. 我们称定值k为点P对⊙O的“幂” 【自主检测】 1. 圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为_ ____. 2. 已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若P A·PB=24,OP=5,则⊙O的半径长为_______. 3 . 若P A为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,P A=P C的长为_______. 4. AB、CD是⊙O切线,AB∥CD,⊙O的切线EF和AB、CD分别交于E、F,则∠EOF =______.

圆幂定理讲义带答案

圆幂定理 STEP 1:进门考 理念:1. 检测垂径定理的基本知识点与题型。 2. 垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节。 (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN=cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°,∴CD=BC?sinB=4×=2(cm),∴OE=CD=2, 在△AOE中,AE=AB=4cm, 则OA===2(cm),则MN=2OA=4(cm).故答案是:4.

【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.

2.(2017?阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为() A.2cm B.cm C.2cm D.2cm 【考点】M2:垂径定理;PB:翻折变换(折叠问题). 【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长. 【解答】解:过点O作OD⊥AB交AB于点D,连接OA, ∵OA=2OD=2cm,∴AD===(cm), ∵OD⊥AB,∴AB=2AD=2cm.故选:D. 【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键. 3.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

圆幂定理练习题

1.在△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,CD ⊥AB 于D ,AB =a ,则DB =( ) A . 4 a B . 3 a C . 2 a D . 4 3a 2.如图,AD 是△ABC 高线,DE ⊥AB 于E ,DF ⊥AC 于F ,则(1)AD 2=BD ·CD (2)AD 2=AE ·AB (3)AD 2 =AF ·AC (4)AD 2=AC 2-AC ·CF 中正确的有( ) A .1个 B .2个 C .3个 D .4个 3.如图,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( ) A .135° B .110° C .145° D .120° 4.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( ) A .∠BAD +∠CAD =90° B .∠BAD >∠CAD C .∠BA D =∠CAD D .∠BAD <∠CAD 二、填空题 5.在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =2,DB =1,则DC =______,AD =______. 6.在Rt △ABC 中,AD 为斜边上的高,S △ABC =4S △ABD ,则AB ∶BC =______. 7.如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =θ , 则tan 2 2 θ ______.

8.如图,AB是⊙O的直径,CB切⊙O与B,CD切⊙O与D,交BA的延长线于E.若AB=3,ED=2,则BC的长为______. 9.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点, (Ⅰ)求∠AOD的度数; (Ⅱ)若AO=8 cm,DO=6 cm,求OE的长. 10.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D. (1)求证:BC是⊙O切线; (2)若BD=5,DC=3,求AC的长. 11.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC. (1)求证:∠ACO=∠BCD; (2)若BE=2,CD=8,求AB和AC的长.

圆幂定理(垂直弦定理)偏难

【例题求解】 【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长. 注:比例线段是几之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例; (3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来. 【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C . 415 D .5 16 (全国初中数学联赛题) 思路点拨 连AC ,CE ,由条件可得多等线段,为切割线定理的运用创设条件.

注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键. 【例3】如图,△ABC接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B. (1)求证:PA是⊙O的切线; (2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值. (北京市海淀区中考题) 思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的程. 【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE (省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=D E,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明. 注:圆中的多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁. 需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几各种类型的问题

圆幂定理练习题.docx

1.在△ ABC中,∠ A∶∠ B∶∠ C=1∶ 2∶ 3, CD⊥ AB 于 D,AB= a,则 DB=() a a a3a A.B.C.D. 4324 2.如图, AD 是△ ABC高线, DE⊥ AB 于 E,DF⊥ AC于 F,则 (1)AD2= BD·CD(2)AD2= AE·AB(3)AD2=AF· AC(4)AD2= AC2- AC· CF 中正确的有 () A. 1 个B. 2 个C.3 个D.4 个 3.如图, AB 是⊙ O 的直径, C, D 是半圆的三等分点,则∠C+∠ E+∠ D=() A. 135°B. 110°C.145°D.120° 4.如图,以等腰三角形的腰为直径作圆,交底边于D,连结 AD,那么 () A.∠ BAD+∠ CAD= 90°B.∠ BAD>∠ CAD C.∠ BAD=∠ CAD D.∠ BAD<∠ CAD 二、填空题 5.在 Rt△ABC中,∠ BAC= 90°, AD⊥ BC于 D, AB= 2, DB= 1,则 DC= ______, AD=______.6.在 Rt△ABC中, AD 为斜边上的高,S△ABC=4S△ABD,则 AB∶ BC=______. 7.如图, AB 是半圆 O 的直径,点 C 在半圆上, CD⊥ AB 于点 D,且 AD= 3DB,设∠ COD=,则 tan 2______. 2

8.如图, AB 是⊙ O 的直径, CB 切⊙ O 与 B,CD 切⊙ O 与 D,交 BA 的延长线于E.若 AB= 3,ED =2,则 BC的长为 ______. 9.如图,在梯形ABCD中, AB∥ CD,⊙ O 为内切圆, E 为切点, (Ⅰ)求∠ AOD的度数; (Ⅱ)若 AO=8 cm, DO= 6 cm,求 OE的长. 10.如图,在△ ABC中,∠ C= 90°, AD 是∠ BAC的平分线, O 是 AB 上一点,以OA 为半径的⊙ O 经过点 D. (1)求证: BC是⊙ O 切线; (2)若 BD= 5, DC=3 ,求 AC的长. 11.如图, AB 是⊙ O 的直径, CD 是⊙ O 的一条弦,且CD⊥ AB 于 E,连结 AC、 OC、BC. (1)求证:∠ ACO=∠ BCD; (2)若 BE= 2, CD=8,求 AB 和 AC 的长.

初三数学上册春季班培优讲义.第17讲 托勒密定理-测试题(含答案)【精品】

【精品】

(托勒密定理)四边形ABCD 内接于圆,求证:AC BD AD BC AB CD ?=?+ ?. 【解析】如图,在BD 上取一点P ,使其满足12∠=∠. ∵34∠=∠,∴ACD BCP △∽△,AC AD BC BP = , 即AC BP AD BC ?=? ① 又ACB DCP ∠=∠,56∠=∠, ∴ACB DCP △∽△,AB AC DP CD = ,AC DP AB CD ?=?. ② ①+②,有AC BP AC PD AD BC AB CD ?+?=?+?. 即()AC BP PD AD BC AB CD +=?+?,故AC BD AD BC AB CD ?=?+?. 【教师备课提示】这道题主要考查利用圆幂定理证明四点共圆. (1)如图2-1,点P 为等边ABC △外接圆的?BC 上一点,线段PA 、PB 、PC 间的数量关系为____. (2)如图2-2,AB 为⊙O 的直径,∠ABD =45°,点C 为ABD △外接圆的?AB 上一点,线段CA 、CB 、CD 间的数量关系为____________. (3)如图2-3,30ABC ACB ∠=∠=?,点D 为ABC △外接圆的?BC 上一点,线段DA 、DB 、DC 间的数量关系为_____________. 图2-1 图2-2 图2-3 【解析】(1)PA PB PC =+;(2)2CA CB CD +=;(3)3DB DC DA +=. 【教师备课提示】这道题主要利用托勒密定理解决圆中的Y 字模型,建议讲2中方法. O D C B A B C P O g D A g O C D C A B D C 126345P A B

圆幂定理讲义(带答案解析)知识讲解

圆幂定理讲义(带答案 解析)

圆幂定理 STEP 1:进门考 理念:1. 检测垂径定理的基本知识点与题型。 2. 垂径定理典型例题的回顾检测。 3. 分析学生圆部分的薄弱环节。 (1)例题复习。 1.(2015?夏津县一模)一副量角器与一块含30°锐角的三角板如图所示放置,三角板的直角顶点C落在量角器的直径MN上,顶点A,B恰好都落在量角器的圆弧上,且AB∥MN.若AB=8cm,则量角器的直径MN= cm. 【考点】M3:垂径定理的应用;KQ:勾股定理;T7:解直角三角形. 【分析】作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E,首先求得CD的长,即OE的长,在直角△AOE中,利用勾股定理求得半径OA的长,则MN 即可求解. 【解答】解:作CD⊥AB于点D,取圆心O,连接OA,作OE⊥AB于点E. 在直角△ABC中,∠A=30°,则BC=AB=4cm,在直角△BCD中,∠B=90°﹣∠A=60°, ∴CD=BC?sinB=4×=2(cm),∴OE=CD=2, 在△AOE中,AE=AB=4cm,

则OA===2(cm),则MN=2OA=4(cm).故答案是:4. 【点评】本题考查了垂径定理的应用,在半径或直径、弦长以及弦心距之间的计算中,常用的方法是转化为解直角三角形.

2.(2017?阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为() A.2cm B.cm C.2cm D.2cm 【考点】M2:垂径定理;PB:翻折变换(折叠问题). 【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA, ∵OA=2OD=2cm,∴AD===(cm), ∵OD⊥AB,∴AB=2AD=2cm.故选:D. 【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键. 3.(2014?泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

【经典】圆的有关性质+知识点

圆的有关性质 一、〖知识点〗 圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1.正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题; 6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据; (2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

相关文档
最新文档