频率响应法--奈奎斯特稳定判据

频率响应法--奈奎斯特稳定判据

频率响应法--奈奎斯特稳定判据

频率响应法--奈奎斯特稳定判据前面我们从代数角度出发讨论了控制系统稳定性的定义和劳斯-赫尔维茨稳定判据。本节介绍判别系统稳定性的另一种判据――奈奎斯特稳定判据。该判据是根据开环频率特性来判定闭环系统的稳

定性。同时,它还能反映系统的相对稳定的程度,对于不稳定的系统,判据与劳斯稳定判据一样,还能确切回答闭环系统有多少个不稳定的特征根。

对于图5-34 所示的反馈控制系统,闭环传递函数为:

(5-38)其特征方程式为

(5-39)令

(5-40)将式(5-40)代入式(5-39)得

(5-39)式中,、、…、是的零点,也是闭环特征方程式的根;、、…、是的极点,也是开环传递函数的极点。因此根据前述闭环系统稳定的充分必要条件,要使闭环系统稳定,特征函数的全部零点都必须位于s 平面的左半平面上。

5.4.1 辐角原理

由于是s 的有理分式,则由复变函数的理论知道,除了在s 平面上的有限个奇点外,它总是解析的,即为单值、连续的正则函数。因而对于s 平面上的每一点,在平面上必有唯一的一个映射点与之相对应。同理,对s 平面上任意一条不通过的极点和零点的闭合曲线,在平面上必有唯一的一条闭合曲线与之相对应,如图5-35 所示。若s 平面上的闭合曲线按顺时针方向运动,则其在平面上的映射曲线的运动方向可能是顺时针,也可能是逆时针,它完全

奈奎斯特判据

5.4 频域稳定判据 5.4.1 奈奎斯特稳定判据 闭环控制系统稳定的充要条件是:闭环特征方程的根均具有负的实部,或者说,全部闭环极点都位于左半s 平面。第3章中介绍的劳斯稳定判据,是利用闭环特征方程的系数来判断闭环系统的稳定性。这里要介绍的频域稳定判据则是利用系统的开环频率特性)(ωj G 来判断闭环系统的稳定性。 频域稳定判据是奈奎斯特于1932年提出的,它是频率分析法的重要内容。利用奈奎斯特稳定判据,不但可以判断系统是否稳定(绝对稳定性),也可以确定系统的稳定程度(相对稳定性),还可以用于分析系统的动态性能以及指出改善系统性能指标的途径。因此,奈奎斯特稳定判据是一种重要而实用的稳定性判据,工程上应用十分广泛。 1.辅助函数 对于图5-33所示的控制系统结构图,其开环传递函 数为 )()()()()(0s N s M s H s G s G = = (5-59) 相应的闭环传递函数为 )()()()() (1)()(1)()(000s M s N s G s N s N s G s G s G s +=+=+=Φ (5-60) 式中,为开环传递函数的分子多项式,阶;为开环传递函数的分母多项式,阶,。由式(5-59)、式(5-60)可见,)(s M m )(s N n m n ≥)()(s M s N +和分别为闭环和开环特征多项式。现以两者之比构成辅助函数 )(s N ()()()1()() M s N s F s G s N s +==+ (5-61) 实际系统传递函数分母阶数n 总是大于或等于分子阶数,因此辅助函数的分子、分母同阶,即其零点数与极点数相等。设)(s G m 1z ?,2z ?,…,n z ?和1p ?,,…,分别为其零、极点,则辅助函数可表示为 2p ?n p ?)(F s ) ())(()())(()(2121n n p s p s p s z s z s z s s F ++++++=L L (5-62)

相关文档
最新文档