宽带射频功率放大器的匹配电

宽带射频功率放大器的匹配电

宽带射频功率放大器的匹配电

介绍了一种分析同轴线变换器的新方法,建立了理想与通用模型,降低了分析难度和简化了分析过程。通过研究分析,提出了一种同轴变换器与集总元件相结合的匹配电路设计方法,通过优化同轴线和集总元件的参数,实现放大器的最佳性能。利用该方法设计了一款应用于推挽式功率放大电路的匹配电路,仿真结果表明,匹配效率高达99.93%.

?

?

阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。

?

?

?

?

?

大功率宽带射频脉冲功率放大器设计

大功率线性射频放大器模块广泛应用于电子对抗、雷达、探测等重要的通讯系统中,其宽频带、大功率的产生技术是无线电子通讯系统中的一项非常关键的技术。随着现代无线通讯技术的发展,宽频带大功率技术、宽频带跳频、扩频技术对固态线性功率放大器设计提出了更高的要求,即射频功率放大器频率宽带化、输出功率更大化、整体设备模块化。 通常情况下,在HF~VHF频段设计的宽带射频功放,采用场效应管(FET)设计要比使用常规功率晶体管设计方便简单,正是基于场效应管输入阻抗比较高,且输入阻抗相对频率的变化不会有太大的偏差,易于阻抗匹配,另外偏置电路比较简单,设计的放大电路增益高,线性好。 本文的大功率宽频带线性射频放大器是利用(MOSFET)来设计的,采取AB类推挽式功率放大方式,其工作频段为O 6M~10MHz,输出的脉冲功率为1200W。经调试使用,放大器工作稳定,性能可靠。调试、试验和实用时使用的测试仪器有示渡器、频谱分析仪、功率汁、大功率同轴衰减器、网络分析仪和射频信号发生器。 1 脉冲功率放大器设计 1.1 电路设计 设计的宽频带大功率脉冲放大器模块要求工作频段大于4个倍频程,而且输出功率大,对谐波和杂波有较高的抑制能力;另外由于谐波是在工作频带内,因此要求放大器模块具有很高的线性度。 针对设计要求,设计中射频功率放大器放大链采用三级场效应管,全部选用MOSFET。每级放大均采用AB类功率放大模式,且均选用推挽式,以保证功率放大器模块可以宽带工作。考虑到供电电源通常使用正电压比较方便,因此选用增强型MOS场效应管。另外为了展宽频带和输出大功率,采用传输线宽带匹配技术和反馈电路,以达到设计要求。 由于本射频功率放大器输出要求为大功率脉冲式发射,因此要求第一、二级使用的MOSFET应具备快速开关切换,以保证脉冲调制信号的下降沿和上升沿完好,减少杂波和谐波的干扰。设计中第一、二级功率放大选用MOSFET为IRF510和IRF530。最后一级功放要求输出脉冲功率达到1200W,为避免使用功率合成技术,选用MOSPRT MRFl57作为最后的功率输出级。所设计的射频脉冲功率放大器电路原理图如图1所示。

宽带高频功率放大器

5.4 宽带高频功率放大器 以LC谐振回路为输出电路的功率放大器,因其相对通频带只有百分之几甚至千分之几,因此又称为窄带高频功率放大器。这种放大器比较适用于固定频率或频率变换范围较小的高频设备,如专用的通讯机、微波激励源等。除了LC谐振回路以外,常用于高频功放电路负载还有普通变压器和传输线变压器两类。这种以非谐振网络构成的放大器能够在很宽的波段内工作且不需调谐,称之为宽带高频功率放大器。 以高频变压器作为负载的功率放大器最高工作频率可达几百千赫至十几兆赫,但当工作频率更高时,由于线圈漏感和匝间分布电容的作用,其输出功率将急剧下将,这不符合高频电路的要求,因此很少使用。以传输线变压器作为负载的功率放大器,上限频率可以达到几百兆赫乃至上千兆赫,它特别适合要求频率相对变化范围较大和要求迅速更换频率的发射机,而且改变工作频率时不需要对功放电路重新调谐。本节重点分析传输线变压器的工作原理,并介绍其主要应用。 5.4.1 传输线变压器 1. 传输线变压器的结构及工作原理 传输线变压器是将传输线(双绞线、带状线、或同轴线)绕在高导磁率铁氧体的磁环上构成的。如图5-24(a)所示为1:1传输线变压器的结构示意图。 传输线变压器是基于传输线原理和变压器原理二者相结合而产生的一种耦合元件,它是以传输线方式和变压器方式同时进行能量传输。对于输入信号的高频频率分量是以传输线方式为主进行能量传输的;对于输入信号的低频频率分量是以变压器方式为主,频率愈低,变压器方式愈突出。 如图5-24(b)为传输线方式的工作原理图,图中,信号电压从1、3端输入,经传输线 R上。如果信号的波长与传输线的长度相比拟,变压器的传输,在2、4端将能量传到负载 L 两根导线固有的分布电感和相互间的分布电容就构成了传输线的分布参数等效电路,如图 5-24(d)所示。若认为分布参数为理想参数,信号源的功率全部被负载所吸收,而且信号的上限频率将不受漏感、分布电容及高导磁率磁芯的限制,可以达到很高。 图5-24 1:1传输线变压器的结构示意图及等效电路

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

射频功放设计

基于ADS的射频功率放大器仿真设计 1.引言 各种无线通信系统的发展,如GSM、WCDMA、TD-SCDMA、WiMAX和Wi-Fi,大大加速了半导体器件和射频功放的研究过程。射频功放在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线通信系统需要设计性能优良的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于采用了不同调制类型和多载波信号,射频工程师为减小功放的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用Agilent ADS 软件进行电路设计可以掌握设计电路的性能,进一步优化设计参数,同时达到加速产品开发进程的目的。功放(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 2.功率放大器基础 2.1功率放大器的种类 根据输入与输出信号间的大小比例关系,功放可以分为线性放大器与非线性放大器两种。输入线性放大器的有A、B、AB类;属于非线性放大器的则有C、E 等类型的放大器。 (1)A类:其功率器件再输入信号的全部周期类均导通,但效率非常低,理想状态下效率仅为50%。 (2)B类:导通角仅为180°,效率在理想状态下可达到78%。 (3)AB类:导通角大于180°但远小于360°。效率介于30%~60%之间。 (4)C类:导通角小于180°,其输出波形为周期性脉冲。理论上,效率可达100%。 (5)D、E类:其原理是将功率器件当作开关使用。 设计功放电路前必须先考虑系统规格要求的重点,再来选择电路构架。对于射频功放,有的系统需要高效率的功放,有些需要高功率且线性度佳的功放,有些需要较宽的操作频带等,然而这些系统需求往往是相互抵触的。例如,B、C、E类构架的功率放大器皆可达到比较高的效率,但信号的失真却较为严重;而A

实验四线性宽带功率放大器

47 实验四 线性宽带功率放大器 一、实验目的 了解线性宽带功率放大器工作状态的特点 二、实验内容 1. 了解线性宽带功率放大器工作状态的特点 2. 掌握线性功率放大器的幅频特性 三、实验原理及实验电路说明 1. 传输线变压器工作原理 现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。当然,所付出的代价是输出功率和功率增益都降低了。因此,一般来说,宽带功率放大器适用于中、小功率级。对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。 最常见的宽带高频功率放大器是利用宽带变压器做耦合电路的放大器。宽带变压器有两种形式:一种是利用普通变压器的原理,只是采用高频磁芯,可工作到短波波段;另一种是利用传输线原理和变压器原理二者结合的所谓传输线变压器,这是最常用的一种宽带变压器。 传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。图9-1为4:1传输线变压器。图9-2 为传输线变压器的等效电路图。

的扩展方法是相互制约的。为 了扩展下限频率,就需要增大 初级线圈电感量,使其在低频 段也能取得较大的输入阻抗, 如采用高磁导率的高频磁芯和 增加初级线圈的匝数,但这样 做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频 率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈 的匝数,但这样做又会使下限频率提高。 把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决 带宽问题。传输线变压器有两种工作方式:一种是按照传输线方式来工作, 即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好 相互抵消。因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。 这种工作方式称为传输线模式。另一种是按照变压器方式工作,此时线圈 中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。这种方式称 为变压器模式。传输线变压器通常同时存在着这两种模式,或者说,传输 变压器正是利用这两种模式来适应不同的功用的。 当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小, 可以忽略,故变压器方式起主要作用。由于磁芯的磁导率很高,所以虽然 传输线段短也能获得足够大 的初级电感量,保证了传输 线变压器的低频特性较好。 图9-3传输线变压器高频段等效电路图 48

射频功率放大器宽带匹配如何解决

射频功率放大器宽带匹配如何解决 在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。 1方案设计 同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。 1.1 同轴变换器原理 同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。

同轴变换器处于集中参数与分布参数之问。因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。 当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。在大多数情况下,电缆长度不能超过最小波长的八分之一。为了保证低频响应良好,还必须有一定绕组长度,可以依据下列经验公式来估算在频率高端和频率低端时所需绕组的长度。 在高频端: lmax≤ 18 O00n/fh(cm) (1) (1)式中,fh为最高工作频率(MHz);n为常数,一般取为0.08左右。 在低频端: lmin≥ 50Rl / [ (1 u/uo ) × fl ] (2) (2)式中,fl为最低工作频率(MHz);u/uo为磁芯在时的相对磁导率。 磁芯的影响可以用等效电感来反应,等效电感决定了频段低段反射量的大小,计算为: L=uo ur n2 (S/J) (3)

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

射频功率放大器的主要技术指标

射频功率放大器是各种无线发射机的主要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大如缓冲级、中间放大级、末级功率放大级,获得足够的射频功率后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器电路设计需要对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题进行综合考虑。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。 为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 3.1.1输出功率 在发射系统中,射频末级功率放大器输出功率的范围可小到毫瓦级(便携式移动通信设备)、大至数千瓦级(发射广播电台)。 为了要实现大功率输出,末级功率放大器的前级放大器单路必须要有足够高的激励功率电平。显然大功率发射系统中,往往由二到三级甚至由四级以上功率放大器组成射频功率放大器,而各级的工作状态也往往不同。 根据对工作频率、输出功率、用途等的不同要求,可以用晶体管、FET 、射频功率集成电路或电子管作为射频功率放大器。 在射频功率方面,目前无论是在输出功率或在最高工作频率方面,电子管仍然占优势。现在已有单管输出功率达2000kW 的巨型电子管,千瓦级以上的发射机大多数还是采用电子管。 当然,晶体管、FET 也在射频大功率方面不断取得新的突破。例如,目前单管的功率输出已超过100W ,若采用功率合成技术,输出功率可以达到3000W 。 3.1.2效率 效率是射频功率放大器极为重要的指标,特别是对于移动通信设备。定义功率放大器的效率,通常采用集电极效率?c 和功率增加效率PAE 两种方法。 1. 集电极效率?c 集电极效率?c 定义为输出功率P out 与电源供给功率P dc 之比,即 dc out p P =c η (3.1.1) 2.功率增加效率(PAE ,power added efficiency ) 功率增加效率定义为输出功率P out 与输入功率P in 的差于电源供给功率P dc 之比,即 c p dc in out PAE A P P P PAE ηη)11(-=-== (3.1.2) 功率增加效率PAE 的定义中包含了功率增益的因素,当有比较大的功率增益。 如何提高输出功率和保证高的效率,是射频功率放大器设计目标的核心。 3.1.3线性 ? 衡量射频功率放大器线性度的指标有三阶互调截点(IP3)、1dB 压缩点、谐波、邻道功率比等。邻道功率比衡量由放大器的非线性引起的频谱再生对邻道的干扰程度。 ? 由于非线性放大器的效率高于现行放大器的效率,射频功率放大器通常采用非线性放大器。但是分线性放大器在放大输入信号的放大的同时会产生一系列的有害影响。 ? 从频谱的角度看,由于非线性的作用,输出信号中会产生新的频率分量,如三阶互调分 量、五阶互调分量等,它干扰了有用信号并使被放大的信号频谱发生变化,即频带展宽了。

宽带功率放大器预失真技术综述

宽带功率放大器预失真技术综述 摘要:随着无线需求和无线业务的不断增加,传输信号必将不断向高质量高速率宽带宽发展。在宽带应用中,由于传输信号带宽增加,宽带功率放大器不同于窄带输入下的无记忆特性,将表现出频率有关的记忆非线性特性。本文重点阐述了功率放大器的线性化技术,数字预失真的基本原理及学习结构,功率放大器的基本模型及模型的评估指标。 关键词:功率放大器,线性化,数字预失真,模型 0引言 随着无线通信技术的日益发展和普遍使用,为高速多媒体业务需求而开发的移动通信 3G技术在通讯容量与质量等方面将不能满足人们日趋增长的需求,而且移动4G系统也日益商用化,其系统不只是单一地为了适应宽带和用户数的增长,更为重要的是它适应多媒体的传输需求,将多媒体等洪量信息通过信道高速传输出去,而且对通讯服务质量提出了更高的要求。近年来,随着全球对环保要求的提高,人们关注的不仅仅是频谱效率的提高问题,还关注到功率效率、能量效率的提高问题。绿色通信的概念正是在这样的背景下提出的,大量提高功效和能效的技术也涌现出来。绿色通信技术主要采用创新性的分布式技术、高功率放大器、多载波等技术以减小能量消耗。作为无线通信系统中不可或缺的重要部件之一,关于功率放大器的线性化研究及其实现,对推动绿色通信概念及理论的深入发展、对节能减排的意义重大,是一项具有理论意义和实际应用价值的课题。 功率放大器是通信系统中的一个关键部件,功放的非线性特性引起的频谱扩张会对邻道信号产生干扰,并且带内失真也会增加误码率。随着新业务的发展,现代无线通信系统中广泛采用了正交幅度调制(Quadrature Amplitude Modulation, QAM)、正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术等高频谱利用率的调制方式。这些调制方式对发射机中射频功放的线性度提出了很高的要求。因此为了保障通信系统的功率效率和性能,必须有效的补偿放大器的非线性失真,使放大器能够高效的线性工作。 1功率放大器的线性化技术 为了更好地利用频谱资源和实现更高速率的无线传输,通常会选择具有更高效、更先进的无线通信技术,如QAM和OFDM技术,QAM技术采用非恒定包络调制方式,对放大器线性度要求高,与非线性功率放大器在通信系统中的共同使用,会由于功率放大器对信号产生的畸变,使信号频谱扩展,导致对相邻信道其他用户的干扰,恶化系统误比特率(bit error rate, BER)性能。OFDM技术以其高的频谱利用率、很强的抗多径干扰及窄带干扰能力、便于移动接收等优点,成为无线通信高速率传输中十分有竞争力的一种技术。但是OFDM 技术对同步误差的高度敏感性以及高的峰均比(peak-to-average power ratio, PAPR)是OFDM 系统面临的主要难题。高PAPR会使传输的射频信号工作在功率放大器的临近饱和区,从而在接收端产生无法恢复的畸变。另外,对于便携移动设备,比如手机,平板电脑,功率放大器是产生功耗的最大的一部分,如果采用一定的线性化技术来提高功率放大器的效率,就能在很大程度上减小便携移动设备的耗电量,从而延长待机时间。 国内外关于功率放大器的非线性特性及线性化技术的研究,截止目前,已先后提出了一系列技术,各种技术都有自己的优、缺点。常用的功率放大器线性化技术有:功率回退技术(power back off, PBO)[1][2]、包络消除和恢复技术(envelope elimination and restoration,

(完整版)射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代,发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、 1

高频宽带功率放大器的设计与制作

----有关遥控 有关射频 有关无线通讯的 专业文档资料站 315MHz.COM 遥控网 RF315.COM 射频网  RF315.COM首页 | 遥控制作(无线 红外 载波 DTMF等) | 相关元器件 | 基础知识 | 标准、法规 | │传感器 单片机 自控 CAD等综合版│ 基础知识>Follow me Radio跟我学无线电>第二章:高频宽带功率放大器的设计与制作(2)输入回路阻抗变换电路的设计 输出1W功率高频晶体管放大电路的设计 输出回路阻抗变换电路的设计  日期:2006-01-11 15作者:来源:microearonline.com 《高频电路设计与制作》第二章高频放大器设计与制作2-4 高频宽带功率放大器的设计与制作(第二部分) 输入回路阻抗变换电路的设计 输出1W功率高频晶体管放大电路的设计 输出回路阻抗变换电路的设计 《高频电路设计与制作》章节目录 第一章高频电路基本常识 第二章高频放大器设计与制作 第三章高频振荡电路的设计与制作 第四章PLL数字锁相环电路设计与制作 第五章变频器电路设计与制作 第六章FM频率调制/解调电路的设计制作 第七章AM幅度调制/解调电路设计与制作 第八章实用高频电测仪表制作 回总目录页查看28个制作总装效果 电路原理图PCB墨稿PROTEL格式文件器材供应 第二章高频放大器设计与制作查看本章节详细目录 2-1 高频信号放大器所应具备的特征 2-2 使用FET(场效应管)高频放大期的设计-制作 2-3 使用IC的宽频带放大器的设计-制作 2-4 宽频带功率放大器的设计-制作 小信号放大器与功率放大器的差异 功率放大器工作点选取方法 阻抗匹配-提高效率 本AB类功率放大器的设 计要点

射频功率放大器

射频功率放大器 射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 目录 一、什么是射频功率放大器 二、射频功率放大器技术指标 三、射频功率放大器功能介绍 四、射频功率放大器的工作原理 五、射频放大器的芯片 六、射频功率放大器的技术参数 七、射频放大器的功率参数 八、射频功率放大器组成结构 九、射频功率放大器的种类 正文

一、什么是射频功率放大器 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 射频功率放大器是对输出功率、激励电平、功耗、失真、效率、尺寸和重量等问题作综合考虑的电子电路。在发射系统中,射频功率放大器输出功率的范围可以小至mW,大至数kW,但是这是指末级功率放大器的输出功率。为了实现大功率输出,末前级就必须要有足够高的激励功率电平。 射频功率放大器的主要技术指标是输出功率与效率,是研究射频功率放大器的关键。而对功率晶体管的要求,主要是考虑击穿电压、最大集电极电流和最大管耗等参数。为了实现有效的能量传输,天线和放大器之间需要采用阻抗匹配网络。 二、射频功率放大器技术指标 1、工作频率范围 一般来讲,是指放大器的线性工作频率范围。如果频率从DC开始,则认为放大器是直流放大器。 2、增益

工作增益是衡量放大器放大能力的主要指标。增益的定义是放大器输出端口传送到负载的功率与信号源实际传送到放大器输入端口的功率之比。 增益平坦度,是指在一定温度下,整个工作频带范围内放大器增益的变化范围,也是放大器的一个主要指标。 3、输出功率和1dB压缩点(P1dB) 当输入功率超过一定量值后,晶体管的增益开始下降,最终结果是输出功率达到饱和。当放大器的增益偏离常数或比其他小信号增益低1dB时,这个点就是大名鼎鼎的1dB压缩点(P1dB)。一般说放大器的功率容量,就是拿1dB压缩点来表示的了。 4、效率 由于功放是功率元件,需要消耗供电电流。因此功放的效率对于整个系统的效率来讲极为重要。 功率效率是功放的射频输出功率与供给晶体管的直流功率之比。 ηp=射频输出功率/直流输入功率 5、交调失真(IMD) 交调失真是指具有不同频率的两个或者更多的输入信号通过功率放大器而产生的混合分量。这是由于功放的非线性特质造成的。

利用数字预失真线性化宽带功率放大器

利用数字预失真线性化宽带功率放大器 2. Wiener系统 Wiener模型是Volterra模型一种有意义的简化,包括一个线性滤波器,后接无记忆非线性。可以采用查询表对非线性进行模型化,也可用FIR 滤波器线性对线性滤波器进行模型化。Werner系统在模型化大多数RF功率放大器方面的有效性有限。模型参数的估算相当复杂,这使其对实时自适应没有吸引力。 3.Hammerstein系统此外,Hammerstein模型也是Volterra模型的一种简化,包含一个无记忆非线性,后跟一个线性滤波器。这是一种简单的记忆模型,其模型参数的计算比Wiener模型要简单。这种模型对模型化所有不同类型RF功放的有效性有限。 4. Wiener-Hammerstein 将一个线性滤波器、一个无记忆线性与另一个线性滤波器级联起来就构成了Weiner-Hammerstein模型。这种模型比Weiner或Hammerstein模型更加一般,包括Volterra数列许多项,可以更好地进行非线性模型化。 5. 记忆多项式限制(1)中的Volterra数列,使除了中心对角线上的项以外,各个项都为0,即只有i1=i2=i3…时hn(i1,i2,i3…) != 0,得到如式子B所示的记忆多项式模型,其中M为记忆长度,K为非线性阶数。

已经证明这种模型(及其变种)对线性化宽带功放是有效的,硬件和软件计算要求也合适。 文献中也提出了上述模型的不同组合,每一种都有其优缺点。商业上可实施的前置补偿器要求能够擅长处理大量非线性行为,对不同应用可能需要不同模型。对于这些模型中的大多数而言,前置补偿器系数适合采用最小二乘法识别的间接学习架构。 本文第三部分将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在无线系统中,功放(PA)线性度和效率常是必须权衡的两个参数。工程师都在寻找一种有效而灵活的基于Volterra的自适应预失真技术,可用于实现宽带RF 功放的高线性度。本文将概述不同数字预失真技术,介绍一种创新性DPD线性化电路特有的自适应算法。 本文的第二部分介绍了线性化方案对于前置补偿器具有高度精确模型的需求。下面我们将讨论如何采用采用算术和模型简化方法的混合来实现前置补偿。 在GC5322前置补偿实施中,为易于实现,采用算术和模型简化方法的混合。通

射频功率放大器RFPA概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

宽带直流放大器解析

1 绪论 1.1概述 放大器能把输入信号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。放大器的原理是高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高

频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。 高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360°,适用于小信号低功率放大。乙类放大器电流的流通角约等于180°;丙类放大器电流的流通角则小于180°。乙类和丙类都适用于大功率工作丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 1.2宽带直流放大器的应用前景 随着微电子技术的发展,人们迫切地要求能够远距离随时随地迅速而准确地传送多媒体信息。于是,无线通信技术得到了迅猛的发展,技术也越来越成熟。而宽带放大器是上述通信系统和其它电子系统必不可少的一部分。由此可知,宽带放大器在通信系统中起到非常重要的作用,于是人们也对它的要求也越来越高。直宽带放大器在科研中具有重要作用,宽带运算放大器广泛应用于A∕D转换器、D∕A转换器、有源滤波器、波形发生器、视频放大器等电路。例如在通讯、广播、雷达、电视、自动控制等各种装置中。因此宽带直流放大器应用十分广泛,有非常好的市场前景。 宽带直流能够放大直流信号或变化极其缓慢的交流信号,它广泛应用于自动控制仪表,医疗电子仪器,电子测量仪器等。目前在无线通信、移动电话、卫星通信网、全球定位系统(GPS)、直播卫星接收(DBS)、ITS通信技术及毫米波自动防撞系统等领域有着广阔的应用前景,在光传输系统中,宽带直流放大器也同样占有重要地位。在无线通信、电子战、电磁兼容测试和科学研究等领域,对射频和微波宽带放大器有极大需求,且这些领域对宽带放大器要求各不相同,特别是在通信系统和电子战系统的应用中,对宽带低噪声和功率放大器的性能指标有特殊要求。在设计上传统窄带放大器的端口匹配,一

实验九 线性宽带功率放大器实验

实验九线性宽带功率放大器 一、实验目的 了解线性宽带功率放大器工作状态的特点 二、实验内容 1.了解线性宽带功率放大器工作状态的特点 2.掌握线性功率放大器的幅频特性 三、实验原理及实验电路说明 1.传输线变压器工作原理 现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。当然,所付出的代价是输出功率和功率增益都降低了。因此,一般来说,宽带功率放大器适用于中、小功率级。对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。 最常见的宽带高频功率放大 器是利用宽带变压器做耦合电路 的放大器。宽带变压器有两种形 式:一种是利用普通变压器的原 理,只是采用高频磁芯,可工作 到短波波段;另一种是利用传输 线原理和变压器原理二者结合的 所谓传输线变压器,这是最常用 的一种宽带变压器。 传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。图9-1为4:1传输线变压器。图9-2为传输线变压器的等效电路图。

普通变压器上、下限频率 的扩展方法是相互制约的。为 了扩展下限频率,就需要增大 初级线圈电感量,使其在低频 段也能取得较大的输入阻抗, 如采用高磁导率的高频磁芯和 增加初级线圈的匝数,但这样 做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈的匝数,但这样做又会使下限频率提高。 把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决 带宽问题。传输线变压器有两种工作方式:一种是按照传输线方式来工作,即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好相互抵消。因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。这种工作方式称为传输线模式。另一种是按照变压器方式工作,此时线圈中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。这种方式称为变压器模式。传输线变压器通常同时存在着这两种模式,或者说,传输变压器正是利用这两种模式来适应不同的功用的。 当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小, 可以忽略,故变压器方式起主要作用。由于磁芯的磁导率很高,所以虽然传输线段短也能获得足够大 的初级电感量,保证了传输 线变压器的低频特性较好。 当工作在高频段时,传 输线方式起主要作用,由于两根导线紧靠在一起,所以导线任意长度处的线间电容在整个线长上是均匀分布的,如图9-3所示。也由于两根等长的导线同时绕在一个高μ磁芯上,所以导线上每一线段△l 的电感也是均匀分布在整个线长上的,这是 一种分布参数电路,可以利用分布参数电路理论分析,这里简单说明其工 图9-3传输线变压器高频段等效电路图

相关文档
最新文档