数值分析第五版答案(全)

数值分析第五版答案(全)
数值分析第五版答案(全)

第一章 绪论

1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*

****

r e x x

e x x δ-=

=

= 而ln x 的误差为()1

ln *ln *ln **

e x x x e x =-≈

进而有(ln *)x εδ≈

2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n

f x x =,则函数的条件数为'()

|

|()

p xf x C f x = 又1

'()n f x nx

-=, 1

||n p x nx C n n

-?∴== 又

((*))(*)r p r x n C x εε≈?

且(*)r e x 为2

((*))0.02n r x n ε∴≈

3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指

出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *

456.430x =,*57 1.0.x =?

解:*

1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .

其中****

1234,,,x x x x 均为第3题所给的数。 解:

*4

1*

3

2*

13*

3

4*

1

51()1021()1021()1021()1021()102

x x x x x εεεεε-----=?=?=?=?=?

***

124***1244333

(1)()()()()

1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? ***

123*********123231132143

(2)()

()()()

111

1.10210.031100.031385.610 1.1021385.610222

0.215

x x x x x x x x x x x x εεεε---=++=???+???+???≈

**

24****

24422

*4

33

5

(3)(/)

()()

11

0.0311056.430102256.43056.430

10x x x x x x x

εεε---+≈

??+??=

?=

5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343

V R π=

则何种函数的条件数为

2

3'4343

p R V R R C V R ππ===

(*)(*)3(*)r p r r V C R R εεε∴≈=

(*)1r V ε=%1

故度量半径R 时允许的相对误差限为εr (V ?)=1

3

?1%=

1

300

6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)

计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?

解:1n n Y Y -=-

10099Y Y ∴=

9998Y Y =

9897Y Y =……

10Y Y =

依次代入后,有1000100Y Y =-

即1000Y Y =

27.982≈, 100027.982Y Y ∴=-

*

310001()()(27.982)102

Y Y εεε-∴=+=?

100Y ∴的误差限为31

102

-?。

7.求方程25610x x -+=的两个根,使它至少具有427.982=)。 解:25610x x -+=,

故方程的根应为1,228x =

故 1282827.98255.982x =≈+=

1x ∴具有5位有效数字

211

280.0178632827.98255.982

x =-=

=≈+

2x 具有5位有效数字

8.当N 充分大时,怎样求1

2

1

1N N

dx x ++?

? 解

1

2

1

arctan(1)arctan 1N N

dx N N x

+=+-+?

设arctan(1),arctan N N αβ=+=。 则tan 1,tan .N N αβ=+=

1

22

11arctan(tan())

tan tan arctan

1tan tan 1arctan

1(1)1

arctan 1

N N dx x N N

N N

N N αβ

αβαβ

αβ++=-=--=++-=++=++? 9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过21cm ? 解:正方形的面积函数为2

()A x x =

(*)2*(*)A A x εε∴=.

当*100x =时,若(*)1A ε≤, 则21

(*)102

x ε-≤

? 故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过21cm 10.设2

12S gt =

,假定g 是准确的,而对t 的测量有0.1±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。 解:

2

1,02

S gt t =

> 2

(*)(*)S gt t εε∴= 当*t 增加时,*S 的绝对误差增加

2*2*

(*)

(*)*

(*)1()2(*)2r S S S gt t g t t t

εεεε=

=

=

当*t 增加时,(*)t ε保持不变,则*S 的相对误差减少。

11.序列{}n y 满足递推关系1101n n y y -=- (n=1,2,…),

若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗? 解:

02 1.41y =≈

201

(*)102

y ε-∴=?

1101n n y y -=-

10101y y ∴=- 10(*)10(*)y y εε∴= 又

21101y y =-

21(*)10(*)y y εε∴=

220(*)10(*)......

y y εε∴=

1010010

2

8(*)10(*)

11010

2

1

102

y y εε

-∴==??=?

计算到10y

时误差为

81

102

?,这个计算过程不稳定。 12

.计算6

1)f =

≈1.4,利用下列等式计算,哪一个得到的结果最好?

,

3

(3-, , 99-

解:设6

(1)y x =-,

若x =

* 1.4x =,则*11

102x -ε()=?。

计算y 值,则 **

*7

**

*7

**1(1)

6(1)

y x x y x x y x ε()=--6?ε()+ =

ε()+ =2.53ε()

若通过3

(3-计算y 值,则

**2****

**(32)6

32y x x y x x

y x ε()=-3?2?-ε() =

ε()- =30ε()

计算y 值,则 ***4

***7

**1

(32)

1

(32)

y x x y x x y x ε()=--3?ε()+ =6?

ε()+ =1.0345ε()

计算后得到的结果最好。

13

.()ln(f x x =,求(30)f 的值。若开平方用6位函数表,问求对数时误差有多

大?若改用另一等价公式。ln(ln(x x =-+

计算,求对数时误差有多大? 解

()ln(f x x =

, (30)ln(30f ∴=-

设(30)u y f ==

则*

u =29.9833

*41

2

u -∴ε()=?10

***

*3

1

0.0167

y u u

u -1

ε()≈-ε()30- =

ε()

≈3?10

若改用等价公式

ln(ln(x x =-

则(30)ln(30f =-+ 此时,

***

*7

1

59.9833y u u

u -1

ε()=∣-∣ε()30+ =

?ε()

≈8?10

第二章 插值法

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解:

0120121200102021101201220211,1,2,

()0,()3,()4;()()1

()(1)(2)()()2()()1

()(1)(2)

()()6

()()1

()(1)(1)

()()3

x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------=

=-+--

则二次拉格朗日插值多项式为

2

20

()()k k k L x y l x ==∑

0223()4()

14

(1)(2)(1)(1)23

537623

l x l x x x x x x x =-+=---+

-+=

+- 2.给出()ln f x x =的数值表

用线性插值及二次插值计算的近似值。

解:由表格知,

01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144

x x x x x f x f x f x f x f x ======-=-=-=-=-

若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<

2

112

1

221

11122()10(0.6)()10(0.5)()()()()()

x x l x x x x x x l x x x x L x f x l x f x l x -==----=

=---=+

6.93147(0.6) 5.10826(0.5)x x =---

1(0.54)0.62021860.620219L ∴=-≈-

若采用二次插值法计算ln0.54时,

1200102021101201220212001122()()

()50(0.5)(0.6)

()()

()()

()100(0.4)(0.6)

()()()()

()50(0.4)(0.5)

()()

()()()()()()()

x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------=

=----=++

500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5)

x x x x x x =-?--+---?--2(0.54)0.615319840.615320L ∴=-≈-

3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。

解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤时, 令()cos f x x = 取0110,(

)606018010800

x h ππ

===?=

令0,0,1,...,5400i x x ih i =+= 则5400902

x π

=

=

当[]1,k k x x x -∈时,线性插值多项式为

11111()()

()k k

k k k k k k

x x x x L x f x f x x x x x ++++--=+--

插值余项为

111

()cos ()()()()2

k k R x x L x f x x x x ξ+''=-=

-- 又

在建立函数表时,表中数据具有5位有效数字,且[]cos 0,1x ∈,故计算中有误差传播

过程。

*5

**11

2111*11

11*1*1

(())102

()(())(())

(())(

)

1

(())()

(())

k k k k k k k k k k k k k k k k

k k k k f x x x x x R x f x f x x x x x x x x x f x x x x x f x x x x x h

f x εεεεεε-++++++++++∴=?--=+----≤+--=-+-=

∴总误差界为

12*1*12*85

5()()

1

(cos )()()(())21

()()(())211

()(())22

1

1.0610102

0.5010610k k k k k k k R R x R x x x x x f x x x x x f x h f x ξεεε++---=+=

---+≤?--+≤?+=?+?=? 4.设为互异节点,求证: (1)

0()n

k k

j j j x l x x

=≡∑ (0,1,,);k n =

(2)0

()()0n

k j

j j x

x l x =-≡∑ (0,1,

,);k n =

证明

(1) 令()k

f x x =

若插值节点为,0,1,

,j x j n =,则函数()f x 的n 次插值多项式为0

()()n

k n j j j L x x l x ==∑。

插值余项为(1)1()

()()()()(1)!

n n n n f R x f x L x x n ξω++=-=

+ 又

,k n ≤

(1)()0()0

n n f R x ξ+∴=∴=

()n

k k

j j

j x l x x =∴=∑ (0,1,,);k n =

000

(2)()()

(())()()(())

n

k j j j n n

j i k i k j j j i n

n

i

k i

i k

j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑

0i n ≤≤又 由上题结论可知

()n

k i

j j

j x l x x ==∑

()()0

n

i k i i

k i k C x x x x -=∴=-=-=∑原式

∴得证。

5设[]2

(),f x C a b ∈且()()0,f a f b ==求证:

21

max ()()max ().8

a x

b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为

10

101010

()()

()x x x x L x f x f x x x x x --=+--

=()

()

x b x a

f a f b a b x a

--=+--

1()()0

()0

f a f b L x ==∴=又

插值余项为1011

()()()()()()2

R x f x L x f x x x x x ''=-=

-- 011

()()()()2

f x f x x x x x ''∴=

-- []012

012102()()

1()()21()41

()4

x x x x x x x x x x b a --??≤-+-????

=-=-又

∴21

max ()()max ().8

a x

b a x b f x b a f x ≤≤≤≤''≤- 6.在44x -≤≤上给出()x

f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?

解:若插值节点为1,i i x x -和1i x +,则分段二次插值多项式的插值余项为

2111

()()()()()3!i i i R x f x x x x x x ξ-+'''=

--- 211441

()()()()max ()6i i i x R x x x x x x x f

x -+-≤≤

'''∴≤---

设步长为h ,即11,i i i i x x h x x h -+=-=+

4343

21().627R x e h ∴≤=

若截断误差不超过610-,则

6243

6()10100.0065.R x h h --≤≤∴≤ 7.若44

2,.n n n n y y y δ=?求及,

解:根据向前差分算子和中心差分算子的定义进行求解。

2n n y =

44(1)n n y E y ?=-

4

404

4044044(1)4(1)4(1)2(21)2j j n

j j n j

j j j

n

j n

n n

E y j y j y j y y -=+-=-=??

=- ?????

=- ?????=-? ???=-==∑∑∑ 114

4

2

2()n n y E E y δ-=-

14

422

422

()(1)2n

n

n n E E y E y y ----=-=?==

8.如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分

()(0)k f x k m ?≤≤是m k -次多项式,并且1()0m f x +?=(l 为正整数)。

解:函数()f x 的Taylor 展式为

2()(1)11

11()()()()()()2

!(1)!

m m m m f x h f x f x h f x h f x h f h m m ξ++'''+=++

++

++ 其中(,)x x h ξ∈+ 又

()f x 是次数为m 的多项式

(1)()0

()()()

m f f x f x h f x ξ+∴=∴?=+-

2()

1

1()()()2

!

m m f x h f x h f x h m '''=+

++

()f x ∴?为1m -阶多项式

2()(())f x f x ?=?? 2()f x ∴?为2m -阶多项式

依此过程递推,得()k

f x ?是m k -次多项式

()m f x ∴?是常数 ∴当l 为正整数时,

1()0m f x +?=

9.证明1()k k k k k k f g f g g f +?=?+? 证明

11()k k k k k k f g f g f g ++?=-

111111111()()k k k k k k k k

k k k k k k k k k k k k k k

f g f g f g f g g f f f g g g f f g f g g f +++++++++=-+-=-+-=?+?=?+?

∴得证

10.证明

1

1

0010

n n k k

n n k k k k f g

f g f g g f --+==?=--?∑∑

证明:由上题结论可知

1()k k k k k k f g f g g f +?=?-?

1

01

101

1

10

(())()n k k

k n k k k k k n n k k k k

k k f g f g g f f g g f -=-+=--+==∴?=?-?=?-?∑∑∑∑

111

0110022111100

()()

()()()

k k k k k k n k k k n n n n n n f g f g f g f g f g f g f g f g f g f g f g f g ++-=--?=-∴?=-+-++-=-∑

1

1

0010

n n k k n n k k k k f g f g f g g f --+==∴?=--?∑∑

得证。 11.证明

1

2

00

n j n j y y y -=?

=?-?∑

证明

1

1

2

10

()n n j j j j j y y y --+==?

=?-?∑∑

102110

()()()

n n n y y y y y y y y -=?-?+?-?++?-?=?-?

得证。

12.若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,

证明:

11

00,02;(),1

k n

j

j j k n x f x n k n -=≤≤-?=?'=-?∑

证明:

()f x 有个不同实根12,,

,n x x x

且1011()n n n n f x a a x a x a x --=++++

12()()()

()n n f x a x x x x x x ∴=--- 令12()()()()n n x x x x x x x ω=---

1

1()()k k n

n j j j j j n n

j x x f x a x ω===''∑

而2313()()()()()()()n

n n x x x x x x x x x x x x x ω'=---+---

121()()

()n x x x x x x -+

+--- 1211()()()()()

()n

j j j j j j j j n x x x x x x x x x x x ω-+'∴=-----

令(),k

g x x =

[]121,,

,()k n

j

n j n j

x g x x x x ω=='∑

则[]121,,

,()k n

j

n j n

j x g x x x x ω=='∑

又[]121

1,,,()k n

j

n j j n

x g x x x f x a =∴

='∑

11

00,02;(),1

k n

j

j j k n x f x n k n -=≤≤-?∴=?'=-?∑

∴得证。

13.证明n 阶均差有下列性质: (1)若()()F x cf x =,则[][]0101,,

,,,,;n n F x x x cf x x x =

(2)若()()()F x f x g x =+,则[][][]010101,,,,,,,,,.n n n F x x x f x x x g x x x =+

证明: (1)

[]120011()

,,

,()

()()

()

j n

n j j j j j j j n f x f x x x x x x x x x x x =-+=----∑

[]120011()

,,

,()

()()()

j n

n j j j j j j j n F x F x x x x x x x x x x x =-+=----∑

011()

()()()()

j n

j j

j j j j j n cf x x

x x x x x x x =-+=

----∑

011()

(

)()()()

()

j n j j

j j j j j n f x c x

x x x x x x x =-+=----∑

[]01,,,n cf x x x =

∴得证。

(2)()()()F x f x g x =+

[]00011()

,

,()

()()()

j n

n j j j j j j j n F x F x x x x x x x x x x =-+∴=----∑

0011()()()()()()

j j n

j j

j j j j j n f x g x x

x x x x x x x =-++=

----∑

0011()

)()()()()

j n

j j j j j j j n f x x

x x x x x x x =-+=

----∑

+

011()

)()()()

()

j n j j

j j j j j n g x x

x x x x x x x =-+----∑

[][]00,,,,n n f x x g x x =+

∴得证。

14.7

4

()31,f x x x x =+++求01

72,2,,2F ???

?及0182,2,,2F ???

?。

解:

74()31f x x x x =+++

若2,0,1,

,8i

i x i ==

则[]()01(),,

,!n n f f x x x n ξ=

[](7)017()7!,,,17!7!f f x x x ξ∴===

[](8)018()

,,

,08!

f f x x x ξ==

15.证明两点三次埃尔米特插值余项是

(4)22

311()()()()/4!,(,)k k k k R x f x x x x x x ξξ++=--∈

解:

若1[,]k k x x x +∈,且插值多项式满足条件

33

()(),()()k k k k H x f x H x f x ''== 3113

11()(),()()k k k k H x f x H x f x ++++''== 插值余项为3()()()R x f x H x =- 由插值条件可知1()()0k k R x R x +== 且1()()0k k R x R x +''==

()R x ∴可写成221()()()()k k R x g x x x x x +=--

其中()g x 是关于x 的待定函数,

现把x 看成1[,]k k x x +上的一个固定点,作函数

2231()()()()()()k k t f t H t g x t x t x ?+=----

根据余项性质,有

1()0,()0k k x x ??+==

22

313()()()()()()()()()0

k k x f x H x g x x x x x f x H x R x ?+=----=--=

223

11()()()()[2()()2()()]k k k k t f t H t g x t x t x t x t x ?++'''=----+-- ()0k x ?'∴=

1()0k x ?+'=

由罗尔定理可知,存在(,)k x x ξ∈和1(,)k x x ξ+∈,使

12()0,()0?ξ?ξ''==

即()x ?'在1[,]k k x x +上有四个互异零点。

根据罗尔定理,()t ?''在()t ?'的两个零点间至少有一个零点, 故()t ?''在1(,)k k x x +内至少有三个互异零点, 依此类推,(4)

()t ?

在1(,)k k x x +内至少有一个零点。

记为1(,)k k x x ξ+∈使

(4)(4)(4)3()()()4!()0f H g x ?ξξξ=--=

(4)3()0H t =

(4)1()

(),(,)4!

k k f g x x x ξξ+∴=∈

其中ξ依赖于x

(4)221()

()()()4!

k k f R x x x x x ξ+∴=--

分段三次埃尔米特插值时,若节点为(0,1,

,)k x k n =,设步长为h ,即

0,0,1,,k x x kh k n =+=在小区间1[,]k k x x +上

(4)22

1(4)

22

1()

()()()4!1()()()()4!

k k k k f R x x x x x R x f x x x x ξξ++=--∴=--

22(4)122(4)14

(4)44(4)1

()()max ()

4!

1[()]max ()

4!2

11max ()

4!2

max ()384k k a x b k k a x b a x b a x b

x x x x f x x x x x f x h f x h f x +≤≤+≤≤≤≤≤≤≤

---+-≤=?=

16.求一个次数不高于

4

次的多项式

P (x ),使它满足

(0)(0)0,(1)(1)0,(2)0P P P P P ''=====

解:利用埃米尔特插值可得到次数不高于4的多项式

0101010,10,10,1

x x y y m m ====== 1

1

30

2

01001012

()()()

()(12

)()(12)(1)j j j j j j H x y x m x x x x x x x x x x x x αβα===+--=---=+-∑∑

2

10110102

()(12)()(32)x x x x x x x x x x x α--=---=-

202

1()(1)()(1)x x x x x x

ββ=-=-

22323()(32)(1)2H x x x x x x x ∴=-+-=-+

设22

301()()()()P x H x A x x x x =+--

其中,A 为待定常数

3222

(2)1

()2(1)

P P x x x Ax x =∴=-++-

14

A ∴=

从而2

21()(3)4

P x x x =

- 17.设2

()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,

计算各节点间中点处的()h I x 与()f x 值,并估计误差。 解:

若0105,5x x =-= 则步长1,h =

0,0,1,

,10i x x ih i =+=

2

1

()1f x x

=

+ 在小区间1[,]i i x x +上,分段线性插值函数为

1111()()()i i

h i i i i i i

x x x x I x f x f x x x x x ++++--=

+--

122

111

()

()11i i

i i x x x x x x ++=-+-++ 各节点间中点处的()h I x 与()f x 的值为 当 4.5x =±时,()0.0471,()0.0486h f x I x == 当 3.5x =±时,()0.0755,()0.0794h f x I x == 当 2.5x =±时,()0.1379,()0.1500h f x I x == 当 1.5x =±时,()0.3077,()0.3500h f x I x == 当0.5x =±时,()0.8000,()0.7500h f x I x == 误差

12

55max ()()max ()8i i h x x x x h f x I x f ξ+≤≤-≤≤''-≤ 又

2

1

()1f x x =

+ 22

2233

24

2(),

(1)62

()(1)2424()(1)x

f x x x f x x x x f x x -'∴=+-''=

+-'''=

+

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析第三版课本习题及答案

第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1 234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y . (五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字 . 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 2 12S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相 对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…), 若0 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一 等价公式 ln(ln(x x =- 计算,求对数时误差有多大? 14. 试用消元法解方程组 { 101012121010;2. x x x x +=+=假定只用三位数计算,问结果是否可靠?

数值分析第五版全答案chap1

第一章 绪 论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又1'()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*5 7 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) *** 124x x x ++,(2) ***123x x x ,(3) **24 /x x . 其中****1234,,,x x x x 均为第3题所给的数。 解:

*4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***124***1244333 (1)() ()()() 111101010222 1.0510x x x x x x εεεε----++=++=?+?+?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ **24****24422 *4 33 5 (3)(/)()() 110.0311056.430102256.43056.430 10x x x x x x x εεε---+≈??+??=?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 2 3 '4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值分析第五版答案(全)

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为***** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又 1'()n f x nx -=, 1||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =, *57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***124***1244333 (1)() ()()() 111101010222 1.0510x x x x x x εεεε----++=++=?+?+?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ **24****24422 *4 33 5 (3)(/)()() 110.0311056.430102256.43056.430 10x x x x x x x εεε---+≈??+??=?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 23'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=%1

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析第五版全答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h A h -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析第五版答案

第一章 绪论 p19 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又 1 '()n f x nx -=, 1 ||n p x nx C n n -?∴== 又 ((*))(*)r p r x n C x εε≈? 且(*)r e x 为2% ((*))0.02n r x n ε∴≈ 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又 (*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε= ?≈ 7.求方程2 5610x x -+=的两个根,使它至少具有427.982 =)。 解:2 5610x x -+= , 故方程的根应为1,228x =故 128 2827.98255.982x = ≈+= 1x ∴具有5位有效数字 211 280.0178632827.98255.982 x =-= ≈ =≈+ 2x 具有5位有效数字

9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过2 1cm ? 解:正方形的面积函数为2 ()A x x = p7 当*100x =时,若(*)1A ε≤, 则21 (*)102 x ε-≤ ? 故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过2 1cm 第二章 插值法p48 1.当1,1,2 x =-时,()0,3,4f x =-, 分别用单项式基底、拉格朗日基底、牛顿基底求() f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623 l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知,

数值分析第五版答案

第一章 绪论 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解: *4 1* 3 2* 13* 3 4* 1 51 ()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈

** 24**** 24422 * 4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε= 故度量半径R 时允许的相对误差限为1 (*)10.333 r R ε=?≈ 6.设028Y = ,按递推公式1n n Y Y -= (n=1,2,…) 计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差? 解:1n n Y Y -=- 10099Y Y ∴=- 9998Y Y = 9897Y Y =-…… 10Y Y =- 依次代入后,有1000100Y Y =- 即1000Y Y = 27.982, 100027.982Y Y ∴=-

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

数值分析第五版复习资料

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=Q , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈?Q 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ===g g (*)(*)3(*)r p r r V C R R εεε∴≈=g 又(*)1r V ε=Q %1

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

数值分析习题

第一章 绪论 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2 π=的绝对误差限与相对误差 限。(误差限的计算) 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算) 8 设? -=1 1dx e x e I x n n ,求证: (1))2,1,0(11 =-=-n nI I n n (2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计算方法的比较选择)

第二章 插值法 习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。 1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值) 2 已知9,4,10=== x x x y ,用线性插值求7的近似值。(拉格朗日线性插值) 3 若),...1,0(n j x j =为互异节点,且有 ) ())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- 试证明 ),...1,0()(0 n k x x l x n j k j k j =≡∑=。 (拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计 算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4 1π =x ,2 2π = x 三个节点处的值,写出二次拉格朗日插值 多项式, 并近似计算6 cos π 及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗 日二次插值) 6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差 ]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算) 7 设)())(()(10n x x x x x x x f ---= 求][1,0p x x x f 之值,其中1+≤n p ,而节点 )1,1,0(+=n i x i 互异。(均差的计算) 8 如下函数值表 建立不超过三次的牛顿插值多项式。(牛顿插值多项式的构造) 9求一个次数小于等于三次多项式)(x p ,满足如下插值条件:2)1(=p ,4)2(=p , 3)2(='p ,12)3(=p 。(插值多项式的构造)

数值分析第五章答案

数值分析第五章答案 【篇一:数值分析第五版计算实习题】 第二章 2-1 程序: clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); or j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp(4次牛顿插值多项式); p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs; disp(三次样条函数); for i=1:4 s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1]; s=vpa(collect(s),5) end x2=0.2:0.08:1.08; dot=[1 2 11 12]; figure ezplot(p4,[0.2,1.08]); hold on y2=fnval(pp,x2); x=x2(dot);

y3=eval(p4); y4=fnval(pp,x2(dot)); plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co); title(4次牛顿插值及三次样条); 结果如下: 4次牛顿插值多项式 p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数 x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x + 0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下 2-3(1) 程序: clear; clc; x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8];%插值点 n=length(y1); a=ones(n,2); a(:,2)=-x1; c=1; for i=1:n c=conv(c,a(i,:)); end q=zeros(n,n); r=zeros(n,n+1); for i=1:n [q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk) end dw=zeros(1,n); for i=1:n dw(i)=y1(i)/polyval(q(i,:),x1(i));%系数 end p=dw*q; syms x l8; for i=1:n

相关文档
最新文档