(2011考研)合工大 数学二

(2011考研)合工大 数学二
(2011考研)合工大 数学二

2019年考研数学(二)真题及解析

2019年考研数学二真题 一、选择题 1—8小题.每小题4分,共32分. 1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( ) (A )1 (B )2 (C )3 (D )4 2.曲线3sin 2cos ()2 2 y x x x x π π =+- << 的拐点是( ) (A )(0,2) (B )(,2)π- (C )(,)22ππ - (D )33(,)22 ππ - 3.下列反常积分发散的是 ( ) (A ) x xe dx +∞ -? (B )2 x xe dx +∞ -? (C )20 arctan 1x dx x +∞ +? (D )201x dx x +∞+? 4.已知微分方程x y ay by ce '''++=的通解为12()x x y C C x e e -=++,则,,a b c 依次为( ) (A )1,0,1 (B )1,0,2 (C )2,1,3 (D )2,1,4 5.已知平面区域{(,)|}2 D x y x y π =+≤ ,记1D I =,2D I =??, 3(1D I dxdy =-?? ,则 ( ) (A )321I I I << (B )213I I I << (C )123I I I << (D )231I I I << 6.设函数(),()f x g x 的二阶导函数在x a =处连续,则2 ()() lim 0() x a f x g x x a →-=-是两条曲线()y f x =,()y g x =在x a =对应的点处相切及曲率相等的 ( ) (A )充分不必要条件 (B )充分必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 7. 设A 是四阶矩阵,*A 为其伴随矩阵,若线性方程组0Ax =的基础解系中只有两个向量,则(*)r A =( ) (A )0 (B )1 (C )2 (D )3 8.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若2 2A A E +=,且4A =,则二次型T x Ax 的规范形是 ( ) (A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222 123y y y --- 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.( ) 20 lim 2 x x x x →+= .

2019年考研数学二考试题完整版

2019考研数学二考试真题(完整版) 来源:文都教育 一、选择题1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的. 1.当x →0时,tan k x x x -与同阶,求k ( ) A.1 B.2 C.3 D.4 2.sin 2cos y x x x =+3(,)22x ππ? ?∈-???? 的拐点坐标 A.2,22π?? ??? B.()0,2 C.(),2π- D.33(,)22 ππ- 3.下列反常积分收敛的是 A. 0x xe dx +∞-? B. 20x xe dx +∞-? C.20tan 1arc x dx x +∞ +? D.201x dx x +∞+? 4.已知微分方程x y ay by ce '''++=的通解为12()x x y C C x e e =++,则a 、b 、c 依次为 A. 1,0,1 B. 1,0,2 C. 2,1,3 D. 2,1,4 5.已知积分区域{(,)|||||}2D x y x y π =+≤, 222222123d ,d ,(1)d d D D D I x y x y I x y x y I x y x y =+=+=-+????,试比较123,,I I I 的大

小 A.321I I I << B.123I I I << C.213I I I << D.231I I I << 6.已知(),()f x g x 二阶导数且在x =a 处连续,请问f (x ), g (x )相切于a 且曲率相等是 2 ()()lim 0()x a f x g x x a →-=-的什么条件? A.充分非必要条件. B.充分必要条件. C.必要非充分条件. D.既非充分又非必要条件. 7.设A 是四阶矩阵,A *是A 的伴随矩阵,若线性方程Ax =0的基础解系中只有2个向量,则A *的秩是( ) A.0 B.1 C.2 D.3 8.设A 是3阶实对称矩阵,E 是3阶单位矩阵,若22.A A E +=且4A =,则二次型T x Ax 规范形为 A.222123y y y ++ B.222123y y y +- C.222123y y y -- D.222123y y y --- 二、填空题:9~14小题,每小题4分,共24分. 9.()20lim 2x x x x →+= . 10.曲线sin 1cos x t t y t =-??=-?在32t π=对应点处切线在y 轴上的截距为 . 11.设函数()f u 可导,2()y z yf x =,则2z z x y x y ??+=?? . 12.设函数lncos (0)6 y x x π =≤≤的弧长为 .

考研数学2019完整版附参考答案

考研数学2019完整版附参考答案 仅供参考 一、选择题:1-8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ?为自变量x 在点0x 处的增量,d y y ?与分别为()f x 在点0x 处对应的增量与微分,若0x ?>,则( ) (A) 0d y y <

2011年考研数学二真题答案解析

2011年考研数学二真题答案解析 2011年考研已经结束,以下是 2011年考研数学二真题答案解析,希望对考生有所帮助 2(111考研数学真题解析——数学二 = XC I €Jk +C J r->)故选( (5)鲁案:(X ) 【解答】 “姻?3铁广他3 占=釜=/V )€ V) X=^|= /f (x)g(y) C i 篇二《/他 3 在(0.0)点 4 = /r (0)g(0) B =?f 伽g “ C= AC-B^ >0 M ^>0=> r (0)<0 g*(0) > 0 故选 A ⑹答案:2 【解存】 x e (0,―) A $m x 0 $ h ?n xdx < $ In cs x

2020考研数学常考证明题答题技巧

2020考研数学常考证明题答题技巧 2018考研数学常考证明题答题技巧 考研数学必考证明题,证明题都会怎么出?怎么证?下面整理了一些常出的证明题,同时分享一些好的方法,18考生注意学习和掌握。 ☆题目篇☆ 考试难题一般出现在高等数学,对高等数学一定要抓住重难点进行复习。高等数学题目中比较困难的是证明题,在整个高等数学, 容易出证明题的地方如下: 数列极限的证明 数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限 的证明,用到的方法是单调有界准则。 微分中值定理的相关证明 微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理: 1.零点定理和介质定理; 2.微分中值定理; 包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以 以前两个定理为主。 3.微分中值定理 积分中值定理的作用是为了去掉积分符号。 在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。

方程根的问题 包括方程根唯一和方程根的个数的讨论。 定积分等式和不等式的证明 主要涉及的方法有微分学的方法:常数变异法;积分学的方法: 换元法和分布积分法。 积分与路径无关的五个等价条件 这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。 ☆方法篇☆ 以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。那么,遇到这类的证明题,我们应该用什么方法解题呢? 结合几何意义记住基本原理 重要的定理主要包括零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。 知道基本原理是证明的基础,知道的程度(即就是对定理理解的 深入程度)不同会导致不同的推理能力。如2006年数学一真题第16 题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是 很容易的,但是如果没有证明第一步,即使求出了极限值也是不能 得分的。 因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则 之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻 松解决,因为对于该题中的数列来说,“单调性”与“有界性”都 是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

2007年考研数学二真题与答案

2007 年考研数学二真题 一、选择题( 1 10 小题,每小题 4 分,共 40 分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。) (1) 当时,与等价的无穷小量是 (A)(B) (C)(D) 【答案】 B。 【解析】 当时 几个不同阶的无穷小量的代数和,其阶数由其中阶数最低的项来决定。 综上所述,本题正确答案是B。 【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较 (2) 函数在上的第一类间断点是 (A)0(B)1 (C)(D) 【答案】A。 【解析】

A:由得 所以是的第一类间断点; B: C: D: 所以都是的第二类间断点。 综上所述,本题正确答案是A。 【考点】高等数学—函数、极限、连续—函数间断点的类型 (3) 如图,连续函数在区间上的图形分别是直 径为 1 的上、下半圆周,在区间上的图形分别是直径为 2 的下、上半圆周,设则下列结论正确的是 , (A) (B) (C) (D) -3-2-10123

【答案】 C。 【解析】 【方法一】 四个选项中出现的在四个点上的函数值可根据定积分的几何意义 确定 则 【方法二】 由定积分几何意义知,排除 (B) 又由的图形可知的奇函数,则为偶函数,从而 显然排除 (A) 和(D), 故选 (C) 。 综上所述,本题正确答案是C。 【考点】高等数学—一元函数积分学—定积分的概念和基本性质,定积分的应用 (4) 设函数在处连续,下列命题错误的是 .. (A) 若存在,则

(B) 若存在,则 (C)若存在,则存在 (D) 若存在,则存在 【答案】 D。 【解析】 (A) :若存在,因为,则,又已知函数在处连续,所以, 故,(A) 正确; (B) :若 (C),则 存在,则, 故 (B) 正确。存 在,知,则 则存在,故 (C) 正确 (D)存在, 不能说明存在 例如在处连续, 存在,但是不存在,故命题 (D) 不正确。 综上所述,本题正确答案是D。 【考点】高等数学—一元函数微分学—导数和微分的概念 (5) 曲线渐近线的条数为 (A)0(B)1 (C)2(D)3

2019研究生数学考试数一真题

2019年考研数学—真题及答案解析 一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答案纸指定位置上。 (1)当0x →时,若tan x x -与k x 是同阶无穷小,则k = (A )1. (B )2. (C )3. (D )4. (2)设函数(),0, ln ,0,x x x f x x x x ?≤?=?>??则0x =是()f x 的 A.可导点,极值点. B.不可导点,极值点. C.可导点,非极值点. D.不可导点,非极值点. (3)设{}n u 是单调递增的有界数列,则下列级数中收敛的是 A.1m n n u n =∑ B.() 1 11m n n n u =-∑ C.111m n n n u u =+??- ?? ?∑ D.()22 11 m n n n u u +=-∑ (4)设函数()2,x Q x y y = .如果对上半平面()0y >内的任意有向光滑封闭曲线C 都有() (),,0C P x y d x Q x y d y +=?,那么函数(),P x y 可取为 A.2 3x y y -. B.231x y y -. C.11x y -. D.1x y - . (5)设A 是3阶实对称矩阵,E 是3 阶单位矩阵。若22A A E +=,且4A =,则二次型T x Ax 的规范形为 A.222123y y y ++. B.222 123y y y +- C.222123y y y -- D.222123y y y --- (6)如图所示,有3张平面两两相交,交线相互平行,他们的方程()1231,2,3i i i i a x a y a z d i +++= 组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则

(绝密)2019考研数学完整版及参考答案

2019考研数学完整版及参考答案 一、选择题:1-8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ?为自变量x 在点0x 处的增量,d y y ?与分别为()f x 在点0x 处对应的增量与微分,若0x ?>,则( ) (A) 0d y y <

2011年考研数学试题及参考答案(数学一)

2011年考研数学试题(数学一) 一、选择题 1、 曲线()()()()4 3 2 4321----=x x x x y 的拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】C 【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。 【解析】由()()()()4 3 2 4321----=x x x x y 可知1,2,3,4分别是 ()()()()234 12340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的 关系可知(1)0y '≠,(2)(3)(4)0y y y '''=== (2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。 2、 设数列{}n a 单调减少,0lim =∞ →n n a ,()∑=== n k k n n a S 1 2,1 无界,则幂级数 ()1 1n n n a x ∞ =-∑的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D ) (0,2] 【答案】C 【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。 【解析】()∑=== n k k n n a S 12,1 无界,说明幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≤; {}n a 单调减少,0lim =∞ →n n a ,说明级数()1 1n n n a ∞ =-∑收敛,可知幂级数()1 1n n n a x ∞ =-∑的收敛 半径1R ≥。 因此,幂级数 ()1 1n n n a x ∞ =-∑的收敛半径1R =,收敛区间为()0,2。又由于0x =时幂级数 收敛,2x =时幂级数发散。可知收敛域为[)0,2。 3、 设 函数)(x f 具有二阶连续导数,且0)(>x f ,0)0(='f ,则函数)(ln )(y f x f z =

(完整版)2019考研数学三真题及参考答案解析

2019全国研究生考试数学三真题及参考答案解析 一、选择题 1.() 为同阶无穷小,则与时,若当=-→k x x x x k tan 0 A.0 B.1 C.2 D.3 2. 的取值范围为()个不同的实根,则有已知k k x x 3055=+- A.()4-∞-, B.()∞+,4 C.]44[,- D. ),(44- 3. c ,b ,a ,x C C y ce by y a y x -x x 则的通解为已知e )e (21++==+'+''的值 为( ) A.1,0,1 B.1,0,2 C.2,1,3 D.2,1,4 4.的是()条件收敛,则下列正确绝对收敛,已知∑∑∞ =∞ =11n n n n n v nu A. 条件收敛n n n v u ∑∞=1 B.绝对收敛∑∞ =1n n n v u C. )收敛(n n n v u +∑ ∞ =1 D.)发散(n n n v u +∑∞ =1 5个的基础解析有的伴随矩阵,且为阶矩阵,为已知204* =Ax A A A 线性无关的 解,则 ) ()(=* A r A.0 B.1 C.2 D.3 6.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22 =+,且4=A ,则二次型 Ax x T 的规范形为 A.232221y y y ++. B.232221y y y -+. C.232221y y y --. D.2 32221y y y ---. 7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是

A.).()()(B P A P B A P +=Y B.).()()(B P A P AB P = C.).()(A B P B A P = D.).()(B A P AB P = 8.设随机变量X 与Y 相互独立,且都服从正态分布),(2 σμN ,则{} 1<-Y X P A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关. C.与2 ,σμ都有关. D.与2,σμ都无关. 二.填空题,9~14小题,每小题4分,共24分. 9. ()=???? ? ?+++?+?∞→n n n n 11321211lim Λ 10. 曲线?? ? ??-+=232 cos 2sin ππ < <x x x y 的拐点坐标为 11. 已知()t t x f x d 11 4? += ,则()=?x x f x d 10 2 12. A, B 两种商品的价格为A p ,B p ,A 商品的价格需求函数为 2 22500B B A A p p p p +--,则当A p =10,B p =20时,A 商品的价格需求弹性AA η(0>AA η)= 13. 设????? ??---=11011 11012a A ,??? ? ? ??=a b 10,若b Ax =有无穷多解,则a= 14 设随机变量X 的概率密度为?????<<=,其他, 02 0,2)(x x x f ) (x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E ) ( . 三、解答题

2017-2019年(近三年)3套考研数学一真题

2017年全国硕士研究生入学统一考试数学一试题 一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选 项是符合题目要求的 (1 )若函数0(),0x f x b x >=?≤? 在0x =处连续,则 (A)12ab = (B)1 2 ab =- (C)0ab = (D)2ab = (2)设函数()f x 可导,且()()0f x f x '>则 (A)()()11f f >- (B) ()()11f f <- (C)()()11f f >- (D)()()11f f <- (3)函数()22,,f x y z x y z =+在点()1,2,0处沿向量()1,2,2n 的方向导数为() (A)12 (B)6 (C)4 (D)2 (4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,如下图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则 (A)010t = (B)01520t << (C)025t = (D)025t > () s (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) T E αα-不可逆 (B) T E αα+不可逆 (C) 2T E αα+不可逆 (D)2T E αα-不可逆

(6)已知矩阵200021001A ????=?????? 210020001B ????=??????100020002C ????=?????? ,则 (A) A 与C 相似,B 与C 相似 (B) A 与C 相似,B 与C 不相似 (C) A 与C 不相似,B 与C 相似 (D) A 与C 不相似,B 与C 不相似 (7)设,A B 为随机事件,若0()1,0()1P A P B <<<<,则() () P A B P A B >的充分必要条件是() A.() () P B A P B A > B () () P B A P B A < C. () ( ) P P B A B A > D. () ( ) P P B A B A < (8)设12,......(2)n X X X n ≥来自总体 (,1)N μ的简单随机样本,记1 1n i i X X n ==∑ 则下列结论中不正确的是: (A) 2 ()i X μ∑-服从2 χ分布 (B) 2 12()n X X -服从2 χ分布 (C) 21 ()n i i X X =-∑服从2χ分布 (D) 2 ()n X μ- 服从2 χ分布 二、填空题:9~14小题,每小题4分,共24分。 (9) 已知函数 21 ()1f x x = + ,则(3) (0)f =__________ (10)微分方程230y y y '''++=的通解为y =__________ (11)若曲线积分 22dy 1L xdx ay x y -+-?在区域(){} 2 2D ,1x y x y =+<内与路径无关,则a = (12)幂级数 () 1 11 1n n n nx ∞ --=-∑在区间(-1,1)内的和函数()S x = (13)设矩阵101112011A ?? ??=?????? ,123,,ααα为线性无关的3维列向量组,则向量组

2011年考研数学试题数学二

2011年考研数学试题(数学二) 一、选择题 1.已知当0x →时,函数是等价无穷小,则与k cx x x x f 3sin sin 3)(-= A k=1,c=4 B k=a, c=-4 C k=3,c=4 D k=3,c=-4 2.=-==→3 320 ) (2)(,0)0(0)(lim x x f x f x f x x f x 则处可导,且在已知 A )0(2f '- B )0(f '- C )0(f ' D0 3.函数)3)(2)(1(ln )(---=x x x x f 的驻点个数为 A0 B1 C2 D3 4.微分方程的特解形式为)0(2>+=-'-λλλλx x e e y y A )(x x e e a λλ-+ B )(x x e e ax λλ-+ C )(x x be ae x λλ-+ D )(2x x be ae x λλ-+ 5设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件 A 0)0(,1)0(>''>f f B 0)0(,1)0(<''>f f C 0)0(,1)0(>''

2019年考研数学二真题

5 2019年考研数学二真题 一、选择题 1—8小题.每小题4分,共32分. 1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( ) (A )1 (B )2 (C )3 (D )4 2.曲线3sin 2cos ()2 2 y x x x x π π =+- << 的拐点是( ) (A )(0,2) (B )(,2)π- (C )(,)22ππ - (D )33(,)22 ππ - 3.下列反常积分发散的是 ( ) (A ) x xe dx +∞ -? (B )2 x xe dx +∞ -? (C )20 arctan 1x dx x +∞ +? (D )201x dx x +∞+? 4.已知微分方程x y ay by ce '''++=的通解为12()x x y C C x e e -=++,则,,a b c 依次为( ) (A )1,0,1 (B )1,0,2 (C )2,1,3 (D )2,1,4 5.已知平面区域{(,)|}2 D x y x y π =+≤ , 记1D I = ,2D I =?? , 3(1D I dxdy =-?? ,则 ( ) (A )321I I I << (B )213I I I << (C )123I I I << (D )231I I I << 6.设函数(),()f x g x 的二阶导函数在x a =处连续,则2 ()() lim 0() x a f x g x x a →-=-是两条曲线()y f x =,()y g x =在x a =对应的点处相切及曲率相等的 ( ) (A )充分不必要条件 (B )充分必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 7. 设A 是四阶矩阵,*A 为其伴随矩阵,若线性方程组0Ax =的基础解系中只有两个向量,则(*)r A =( ) (A )0 (B )1 (C )2 (D )3 8.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若2 2A A E +=,且4A =,则二次型T x Ax 的规范形是 ( ) (A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222 123y y y --- 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.( ) 20 lim 2 x x x x →+= .

考研数学试题及参考答案数学一

2011年考研数学试题(数学一) 一、选择题 1、 曲线()()()()4 3 2 4321----=x x x x y 的拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】C 【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。 【解析】由()()()()4 3 2 4321----=x x x x y 可知1,2,3,4分别是 ()()()()234 12340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的关系可知 (1)0y '≠,(2)(3)(4)0y y y '''=== (2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。 2、 设数列{}n a 单调减少,0lim =∞ →n n a ,()∑===n k k n n a S 12,1ΛΛ无界,则幂级数()1 1n n n a x ∞ =-∑的 收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )(0,2] 【答案】C 【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。 【解析】()∑=== n k k n n a S 12,1ΛΛ无界,说明幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≤; {}n a 单调减少,0lim =∞ →n n a , 说明级数()1 1n n n a ∞ =-∑收敛,可知幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≥。 因此,幂级数 ()1 1n n n a x ∞ =-∑的收敛半径1R =,收敛区间为()0,2。又由于0x =时幂级数收敛,2 x =时幂级数发散。可知收敛域为 [)0,2。 3、 设 函数)(x f 具有二阶连续导数,且0)(>x f ,0)0(='f ,则函数)(ln )(y f x f z = 在点(0,0)处取得极小值的一个充分条件是( ) (A ) 0)0(1 )0(>''>f f , (B) 0)0(1)0(<''>f f , (C) 0)0(1 )0(>''

2011年考研数学一试卷真题及答案解析

2011年考研数一真题及答案解析 一、选择题 1、 曲线()()()()4 3 2 4321----=x x x x y 的拐点是( ) (A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0) 【答案】C 【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。 【解析】由()()()()4 3 2 4321----=x x x x y 可知1,2,3,4分别是()() ()() 2 34 12340 y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的关系可知(1)0y '≠,(2)(3)(4)0y y y '''=== (2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。 2、 设数列{}n a 单调减少,0lim =∞ →n n a ,()∑=== n k k n n a S 12,1ΛΛ无界,则幂级数() 1 1n n n a x ∞ =-∑的收敛域 为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )(0,2] 【答案】C 【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。 【解析】()∑=== n k k n n a S 12,1ΛΛ无界,说明幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≤; {}n a 单调减少,0lim =∞ →n n a ,说明级数()1 1n n n a ∞ =-∑收敛,可知幂级数()1 1n n n a x ∞ =-∑的收敛半径1R ≥。 因此,幂级数 () 1 1n n n a x ∞ =-∑的收敛半径1R =,收敛区间为()0,2。又由于0x =时幂级数收敛,2x =时 幂级数发散。可知收敛域为[)0,2。 3、 设 函数)(x f 具有二阶连续导数,且0)(>x f ,0)0(='f ,则函数)(ln )(y f x f z = 在点(0,0)处取得极小值的一个充分条件是( ) (A ) 0)0(1 )0(>''>f f , (B) 0)0(1)0(<''>f f , (C) 0)0(1 )0(>''

2011年考研数学考试大纲 数二

2011年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学78% 线性代数22% 四、试卷题型结构 试卷题型结构为: 单项选择题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则

两个重要极限 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则

2011年全国硕士研究生入学统一考试数学(三)真题及解析

2011年全国硕士研究生入学统一考试 数学三试题 一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 已知当0x →时,()3sin sin3f x x x =-与k cx 是等价无穷小,则 ( ) (A ) k=1, c =4 (B ) k=1,c =-4 (C ) k=3,c =4 (D ) k=3,c =-4 (2) 已知函数()f x 在x =0处可导,且()0f =0,则()() 233 2lim x x f x f x x →-= ( ) (A) -2()0f ' (B) -()0f ' (C) ()0f ' (D) 0. (3) 设{}n u 是数列,则下列命题正确的是 ( ) (A)若 1n n u ∞ =∑收敛,则 21 21()n n n u u ∞ -=+∑收敛 (B) 若2121()n n n u u ∞-=+∑收敛,则1n n u ∞ =∑收敛 (C) 若1 n n u ∞ =∑收敛,则 21 21 ()n n n u u ∞ -=-∑收敛 (D) 若2121 ()n n n u u ∞ -=-∑收敛,则1 n n u ∞ =∑收敛 (4) 设40 ln sin I x dx π= ? ,4 ln cot J x dx π =?,40 ln cos K x dx π =?,则,,I J K 的大小关 系是( ) (A) I J K << (B) I K J << (C) J I K << (D) K J I << (5) 设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得 单位矩阵,记1100110001P ?? ?= ? ???,2100001010P ?? ? = ? ??? ,则A = ( ) (A) 12P P (B) 112P P - (C) 21P P (D) 1 21-P P (6) 设A 为43?矩阵, 123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为( ) (A) 23 121()2 k ηηηη++- (B) 23 121()2 k ηηηη-+-

2019年考研数学选择题拿分的8个方法

2019 年考研数学选择题拿分的8 个方法 直推法即直接分析推导法。直推法是由条件出发,使用相关知识,直接分析、推导或计算出结果,从而作出准确的判断和选择。计算类选择题一般都用这种方法,其它题也常用这种方法,这是最基本、最常用、最重要的方法。 方法2:反推法 反推法即反向推导或反向代入法。反推法是由选项(即选择题的各个选项)反推条件,与条件相矛盾的选项则排除,相吻合的则是准确选项,或者将某个或某几个选项依次代入题设条件实行验证分析,与题设条件相吻合的就是准确的选项。 方法3:反证法 在选择题的 4 个选项中,若假设某个选项不准确(或准确)能够推出矛盾,则说明该选项是准确选项(或不准确选项)。选择先从哪个选项着手证明,须根据题目条件具体分析和判断,有时可能需要一些直觉。 方法4:反例法 如果某个选项是一个命题,要排除该选项或说明该命题是错误的,有时只要举一个反例即可。举反例通常是用一些常用的、比较简单但又能说明问题的例子。如果大家在平时复习或做题时适当注意积累一下与各个知识点相关的不同反例,则在考试中可能会派上用场。 方法5:特例法(特值法) 如果题目是一个带有普遍性的命题,则能够尝试采取一种或几种特殊情况、特殊值去验证哪些选项是准确的、哪些是错误的,或者哪 些极有可能是准确的或错误的,从而做出准确的选择。

特例法用于以下几种情况时特别有效:(1) 条件和结论带有一定的普遍性时,通过取特例来确定或排除某些选项;(2) 对于不成立或极有可能不成立的结论需用举反例的方法证明其是错误时;(3) 对于一些难以作出判断的题,假设在特殊情况下来考察其准确与否。 方法6:数形结合法 根据条件画出相对应的几何图形,结合数学表达式和图形实行分析,从而做出准确的判断和选择。这种方法常用于与几何图形相关的选择题,如:定积分的几何意义,二重积分的计算,曲线和曲面积分等。 方法7:排除法 如果能够通过一种或几种方法排除 4 个选项中的 3 个,则剩下的那个当然就是准确的选项,或者先排除 4 个选项中的2个,然后再对其余的 2 个实行判断和选择。 方法8:直觉法 如果采用以上各种方法仍无法作出选择,那就凭直觉或第一印象作选择。虽然直觉法不是很可靠,但能够作为一种参考,况且人的直觉或第一印象有时还是有一定效果的。 在以上方法中,基本的方法是直推法,就是使用数学基本知识和方法实行分析判断,从四个选项中找出符合要求的那个选项; 排除法是对所有考试中做选择题都适用的方法,是一种普遍性的方法; 反例法是针对以数学命题作为选项的题目很有用和有效的一种方法,使用得当能够很快找出答案;

相关文档
最新文档