热力学第一定律总结

热力学第一定律总结
热力学第一定律总结

热力学第一定律总结 Final approval draft on November 22, 2020

热一定律总结

一、 通用公式

ΔU = Q + W

绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V

恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0

焓的定义式:H = U + pV ΔH = ΔU + Δ(pV )

典型例题:3.11思考题第3题,第4题。

二、 理想气体的单纯pVT 变化

恒温:ΔU = ΔH = 0

变温: 或

或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相

等。

C p , m – C V , m = R

双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2

典型例题:3.18思考题第2,3,4题

书2.18、2.19

三、 凝聚态物质的ΔU 和ΔH 只和温度有关

或 典型例题:书2.15

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)

ΔU ≈ ΔH –ΔnRT

ΔU = n C V,

T 2 T 1 ∫ ΔH = n C p,

T 2

T 1

ΔU = nC V, m (T 2-ΔH = nC p, m (T 2-ΔU ≈ ΔH = n C p, m d T T 2

T 1

ΔU ≈ ΔH = nC p,

ΔH = Q p = n Δ H m α β

(Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。

101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数

不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m

计算。

或 典型例题:3.18作业题第3题

五、化学反应焓的计算

其他温度:状态函数法

量。)

典型例题:3.25思考题第2题

典型例题:见本总结“十、状态函数法。典型例题第3题” 六、体积功的计算

Δ H m (T ) = ΔH 1 +Δ H m (T 0) +

α β

β

α Δ α

β Δ H m (T 0) α β

可逆相变

298.15 K:

ΔH = nC p, m (T 2-ΔH = n C p,

T 2

T 1 ∫

通式:δW = -p amb ·d V 恒外压:W = -p amb ·(V 2-V 1)

恒温可逆(可逆说明p amb = p ):W = nRT ·ln(p 2/p 1) = -nRT ·ln(V 2/V 1) 绝热可逆:pV γ= 常数(γ = C p , m /C V , m )。 利用此式求出末态温度T 2,则W =ΔU = nC V , m (T 2 – T 1)

或:W = (p 2V 2 – p 1V 1)/( γ–1)

典型例题: 书2.38,3.25作业第1题 七、p -V 图

斜率大小:绝热可逆线 > 恒温线 典型例题:

如图,A→B 和A→C 均为理想气体变化过程,若 B 、C 在同一条绝热线上,那么U AB 与U AC 的关系是: (A) U AB > U AC ; (B) U AB < U AC ;

(C) U AB = U AC ; (D) 无法比较两者大小。

八、可逆过程 可逆膨胀,系统对环境做最大功(因为膨胀意味着p amb ≤ p ,可逆时p amb 取到最大值p );可逆压缩,环境对系统做最小功。 典型例题:

1 mol 理想气体等温(313 K)膨胀过程中从热源吸热600 J ,所做的功仅是变到相同终态时最大功的1/10,则气体膨胀至终态时,体积是原来的___倍。

九、求火焰最高温度: Q p = 0, ΔH = 0

求爆炸最高温度、最高压力:Q V = 0, W = 0 ΔU = 0 典型例题:见本总结“十、状态函数法。典型例题第3题” 十、状态函数法(重要!) 设计途径计算系统由始态到终态,状态函数的变化量。 典型例题:

1、 将373.15K 及0.5p Θ的水汽100 dm 3,可逆恒温压缩到10 dm 3,试

计算此过程的W,Q 和ΔU。

2、 1mol 理想气体由2atm 、10L 时恒容升温,使压力到20 atm 。再恒

压压缩至体积为1L 。求整个过程的W 、Q 、ΔU 和ΔH。

恒容过程 恒压过程

p 恒温过程

绝热可逆过程

p V

3、298K时,1 mol H

2(g)在10 mol O

2

(g)中燃烧

H 2(g) + 10O

2

(g) = H

2

O(g) + 9.5O

2

(g)

已知水蒸气的生成热Δ

r H

m

(H

2

O, g) = -242.67 kJ·mol-1, C p,m(H2)

= C p,m(O2) = 27.20 J·K-1·mol-1, C p,m(H2O) = 31.38 J·K-1·mol-1.

a)求298 K时燃烧反应的Δ

c U

m ;

b)求498 K时燃烧反应的Δ

c H

m ;

c)若反应起始温度为298 K,求在一个密封氧弹中绝热爆炸的最高

温度。

十、了解节流膨胀的过程并了解节流膨胀是绝热、恒焓过程

典型例题:

1、理想气体经过节流膨胀后,热力学能____(升高,降低,不变)

2、非理想气体的节流膨胀过程中,下列哪一种描述是正确的:

(A) Q = 0,H = 0,p < 0 ;

(B) Q = 0,H < 0,p < 0 ;

(C) Q > 0,H = 0,p < 0 ;

(D) Q < 0,H = 0,p < 0 。

十一、其他重要概念

如系统与环境,状态函数,平衡态,生成焓,燃烧焓,可逆过程等,无法一一列举

典型例题:

1、书2.21

2、体系内热力学能变化为零的过程有:

(A) 等温等压下的可逆相变过程

(B) 理想气体的绝热膨胀过程

(C) 不同理想气体在等温等压下的混合过程

(D) 恒容绝热体系的任何过程

十二、本章重要英语单词

system 系统surroundings 环境

state function 状态函数equilibrium 平衡态

open/closed/isolated system 开放/封闭/隔离系统

work 功heat 热energy 能量

expansion/non-expansion work 体积功/非体积功

free expansion 自由膨胀vacuum 真空

thermodynamic energy/internal energy 热力学/内能

perpetual motion machine 永动机

The First Law of Thermodynamics热力学第一定律

heat supplied at constant volume/pressure 恒容热/恒压热

adiabatic 绝热的diathermic 导热的 exothermic/endothermic 放热的/吸热的

isothermal 等温的 isobaric 等压的

heat capacity 热容

heat capacity at constant volume/pressure 定容热容/定压热容

enthalpy 焓

condensed matter 凝聚态物质

phase change 相变sublimation 升华vaporization 蒸发 fusion 熔化

reaction/formation/combustion enthalpy反应焓/生成焓/燃烧焓

extent of reaction 反应进度Kirchhoff’s Law 基希霍夫公式

reversible process 可逆过程

Joule-Thomson expansion 焦耳-汤姆逊膨胀/节流膨胀

isenthalpic 恒焓的

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

热力学定律应用论文作业

热力学定律的应用 【摘要】本文主要是从热力学定律的本质为出发点,而后分别简要的介绍了三大热力学定律在各个学科领域内得到的广泛地应用。 【关键词】热力学定律、本质、应用 【Abstract】This article mainly from the nature of the second law of thermodynamics as a starting point, and then briefly introduces respectively the three laws of thermodynamics in various disciplines should be extensively 【Key words】second law of thermodynamics, nature ,application 【引言】 热力学定律是人们在生活实践,生产实践和科学实验的经验总结,它们既不涉及物质的微观结构,也不能用数学加以推导和证明。但它的正确性已被无数次的实验结果所证实。而且从热力学严格地导出的结论都是非常精确和可靠的。有关该定律的实质和应用是本文讨论的重点。热力学第一定律即能量守恒定律,利用它可解决各种变化过程中的能量守恒问题;热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律;而热力学第三定律的确立,可以由热性质计算物质在一定状态下的规定熵,实现了完全由热性质判断化学变化的方向。由于在生活实践中,自发过程的种类极多,热力学定律的应用非常广泛,诸如热能与机械能的传递和转换、流体扩散与混合、化学反应、燃烧、辐射、溶解、分离、生态等问题,本文将做相关介绍。 1. 热力学定律的实质 1.1、热力学第一定律的实质

(完整版)物理化学上热力学第一定律知识框架图总结

1 第一章, 热力学第一定律 各知识点架构纲目图如下: 及过程 溶解及混合 化学变化 相变化 热(Q ):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。 功(W ):除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U ):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值 不知道。 热力学第一定律数学表达式:△U =Q +W ,在封闭系统,W 非=0,恒容条件下,△U =Q V 。 焓函数(H ):定义,H ≡U +pV , 是状态函数,且为广度量,但绝对值不知道。在封闭系统, W 非=0,恒压条件下,△H =Q p 。 热力学第 一定律及 焓函数 系统与环境 间交换能量 的计算(封闭 系统,W 非=0) 简单的pTV 变化 理想气体(IG)系统:2211 ,,;T T V m p m T T U n C dT H n C dT ?=?=?? 理想气体 恒温过程 焦尔实验:(1)结论:(?U /?V)T =0; (2)推论:U IG =f (T ); H IG =g (T ) △U =△H =0; W =-Q =2121ln /V V pdV nRT V V -=-? (可逆) 恒容过程:W =0;Q V =△U= 21 ,;T V m T n C dT ? 绝热过程:Q =0;△U = W 不可逆(恒外压):nC V ,m (T 2-T 1)=-p 2(V 2-V 1) 可逆: 11,21 11 2111()()1V m p V nC T T V V γ γγγ---=-- Q p =△H =2 1 ,;T p m T n C dT ?W =-p 外(V 2-V 1); △U =△H -p △V (常压下,凝聚相:W ≈0;△U ≈△H ) 恒压过程: 节流膨胀:Q =0;△H =0;μJ-T =(d T /d p )H =0 T 不变(例如理想气体) <0致热 >0 致冷 相变化 △U =△H -p △V Q p =△H ; W =-p △V ≈0,△U ≈△H (常压下凝聚态间相变化) =-nRT (气相视为IG) 相变焓与温度关系:21 21,()()T m m p m T H T H T C dT ββαα?=?+?? 化学变化 摩尔反应焓的定义:△r H m =△r H /△ξ 恒压反应热与恒容反应热的关系:△r H m =△r U m +∑νB (g)RT 标准摩尔反应焓的计算:1B ()(B,)r m f m H T H T ν?=∑?!! 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 基希霍夫公式:21 ,21,();()()T r m p r p m r m r m r p m T H C H T H T C dT T ??=??=?+???! !! 系 统状态变化时,计算系统与环境间交换的能量

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

热力学第一定律及其思考论文.

热力学第一定律及其思考 指导老师:李成波 姓名:杜学科 学号:201205010060 院系:化学与环境工程 班级:化学工程与工艺1班

摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理

(完整版)物理化学上热力学第一定律知识框架图总结.doc

第一章,热力学第一定律各知识点架构纲目图如下: 系统:隔离系统;封闭系统;敞开系统 环境:在系统以外与系统密切相关部分 状态:系统的所有物理性质和化学性质的综合体现系统及状态及状态函数类型:广度量;强度量 状态状态函数 (热力学性质 ) 特性:①改变值只与始、末态有关而与具体途径无关; ②不同状态间的改变值具有加和性。 即殊途同归,值变相等;周而复始,其值不变。热力学平衡:热平衡;力学平衡;相平衡;化学平衡 单纯的 pTV 变化 状态变化 溶解及混合 及过程 相变化 化学变化 系 统 状 态 变 简单的化 时 pTV 变化, 计 算 系 统 与 环 境 系统与环境 间 交间交换能量 换 的计算 (封闭 的 能 恒压过程 (p 始 =p 终 =p 环 ) 恒温过程 (T 始=T 终=T 环 ) 恒容过程 (V 始=V 终) 绝热过程 (Q = 0) 节流过程 (H = 0) 理想气体 (IG) 系统:U T2 C V ,m dT ; H n T2 n C p,m dT T2 T1 T1 Q p =△ H= n C p ,m dT ;W=-p外(V2-V1); 恒压过程:T1 △U=△ H -p△ V ( 常压下,凝聚相: W ≈ 0;△ U≈△ H) 理想气体焦尔实验: (1)结论: (?U/?V) T=0; (2)推论: U IG=f ( T); H IG=g (T) 恒温过程 △U=△H=0; W=-Q = V2 nRT lnV2 /V1 (可逆 ) V pdV 1 恒容过程:W=0; Q V =△ U= T2 n C V ,m dT ; T1 绝热过程: Q=0;△ U= W 不可逆(恒外压):nC V,m( T2 -T1)=- p2(V2-V1) 可逆:p1V1 1 1 T1 ) ( nC V , m (T2 1 1 1 ) >0 V 2 V1 致冷 节流膨胀: Q=0 ;△H=0;J-T=(d T/dp) H =0 T 不变 ( 例如理想气体 ) <0 致热 量系统, W 非 =0) 相变化Q p =△ H; W=-p△V △U= △H- p△ V =-nRT (气相视为IG) ≈0,△ U≈△ H (常压下凝聚态间相变化) 相变焓与温度关系:T2 H m (T2 )H m (T1 ) C p,m dT T1 热力学第一定律及焓函数 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 摩尔反应焓的定义:△r H m=△ r H/△ 化学变化 标准摩尔反应焓的计算: ! B ! r H m (T1 ) f H m (B, T ) 恒压反应热与恒容反应热的关系:△r H m=△ r U m+∑νB(g)RT ! T2 基希霍夫公式:( r H m ) C ; H ! (T ) H ! (T ) C dT p r r r p, m T r p ,m m 2 m 1 T1 热(Q):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。功 (W) :除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值不知道。 热力学第一定律数学表达式:△ U=Q+W,在封闭系统, W 非 =0,恒容条件下,△ U=Q V。 焓函数 (H):定义, H≡ U+pV, 是状态函数,且为广度量,但绝对值不知道。在封闭系统, 1 W非 =0,恒压条件下,△H=Q p。

物理化学论文,热力学

物理化学论文 系别: 专业: 姓名: 学号: 班级:

热力学定律论文 论文摘要:本论文就物理化学的热力学三大定律的具体内容展开思考、总结论述。同时,也就物理化学的热力学三大定律的生活、科技等方面的应用进行深入探讨。正文: 一、热力学第一定律: 热力学第一定律就是宏观体系的能量守恒与转化定律。“IUPAC”推荐使用‘热力学能’,从深层次告诫人们不要再去没完没了的去探求内能是系统内部的什么东西”,中国物理大师严济慈早在1966年就已指出这点。第一定律是1842年前后根据焦耳等人进行的“功”和“热”的转换实验发现的。它表明物质的运动在量的方面保持不变,在质的方面可以相互转化。但是,没有多久,人们就发现能量守恒定律与1824年卡诺定理之间存在“矛盾”。能量守恒定律说明了功可以全部转变为热:但卡诺定理却说热不能全部转变为功。1845年后的几年里,物理学证明能量守恒定律和卡诺定理都是正确的。那么问题出在哪呢?由此导致一门新的科学--热力学的出现。 自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,在转化中,能量的总量不变。其数学描述为:Q=△E+W,其中的Q和W分别表示在状态变化过程中系统与外界交换的热量以及系统对外界所做的功,△E表示能量的增量。 一般来说,自然界实际发生的热力学过程,往往同时存在两种相互作用,即系统与外界之间既通过做功交换能量,又通过传热交换能量。热力学第一定律表明:当热力学系统由某一状态经过任意过程到达另一状态时,系统内能的增量等于在这个过程中外界对系统所作的功和系统所吸收的热量的总和。或者说:系统在任一过程中所吸收的热量等于系统内能的增量和系统对外界所作的功之和。热力学第一定律表达了内能、热量和功三者之间的数量关系,它适用于自然界中在平衡态之间发生的任何过程。在应用时,只要求初态和终态是平衡的,至于变化过程中所经历的各个状态,则并不要求是平衡态好或无限接近于平衡态。因为内能是状态函数,内能的增量只由初态和终态唯一确定,所以不管经历怎样的过程,只要初、终两态固定,那么在这些过程中系统内能的增量、外界对系统所作的功和系统所吸收的热量的之和必定都是相同的。热力学第一定律是能量转化和守恒定律在射击热现象的过程中的具体形式。因为它所说的状态是指系统的热力学状态,它所说的能量是指系统的内能。如果考察的是所有形式的能量(机械能、内能、电磁能等),热力学第一定律就推广为能量守恒定律。这个定律指出:自然界中各种不同形式的能量都能从一种形式转化为另一种形式,由一个系统传递给另一个系统,在转化和传递中总能量守恒。能量守恒定律是自然界中各种形态的运动相互转化时所遵从的普遍法则。自从它建立起来以后,直到今天,不但没有发现任何违反这一定律的事实,相反地,大量新的实践不断证明着这一定律的正确性,丰富着它所概括的内容。能量守恒定律的确立,是生产实践和科学实验长期发展的结果,在长期的实践中,人们很早以来就逐步形成了这样一个概念,即自然界的一切物质在运动和变化的过程中,存在着某种物理量,它在数量上始终保持恒定。能量守恒定律的实质,不仅在于说明了物质运动在量上的守恒,更重要的还在于它揭示了运动从一种形态向另一形态的质的转化,所以,只有当各

热力学第二定律总结

第三章 热力学第二定律总结 核心内容: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能 对于恒T 、V 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 对于恒T 、p 、W ˊ=0过程: 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 、△S 、△A 、△G 的计算及过程方向的判断。 一、内容提要 1、热力学第二定律的数学形式 不可逆或自发 ?<>?21T Q S δ 可逆或平衡 不可能 上式是判断过程方向的一般熵判据。将系统与环境一起考虑,构成隔离系统则上式变为: 不可逆或自发 02 1 < > -+ =?+?=?? amb r amb iso T Q T Q S S S δ 可逆或平衡 不可能

上式称为实用熵判据。在应用此判据判断过程的方向时,需同时考虑系统和环境的熵变。 将上式应用于恒T 、V 、W ˊ=0或恒T 、p 、W ˊ=0过程有: 不可逆或自发 0)(0,,> < ?-?=-?==?'S T U TS U A W V T 可逆或平衡 反向自发 此式称为亥姆霍兹函数判据。 不可逆或自发 0)(0,,> < ?-?=-?=?='S T H TS H G W p T 可逆或平衡 反向自发 此式称为吉布斯函数判据。 熵判据需同时考虑系统和环境,而亥姆霍兹函数判据和吉布斯函数判据只需考虑系统本身。熵判据是万能判据,而亥姆霍兹函数判据和吉布斯函数判据则是条件判据(只有满足下角标条件时才能应用)。 此外,关于亥姆霍兹函数和吉布斯函数,还有如下关系: r T W A =? r V T W A '=?, r p T W G '=?, 即恒温可逆过程系统的亥姆霍兹函数变化等于过程的可逆功;恒温恒容可逆过程系统的亥姆霍兹函数变化等于过程的可逆非体积功;恒温恒压可逆过程系统的吉布斯函数变化等于过程的可逆非体积功。 下面将△S 、△A 和△G 的计算就三种常见的过程进行展开。 2、三种过程(物质三态pVT 变化、相变、化学反应)△S 、△A 和△G 的计算 (1)物质三态(g 、l 或s 态)pVT 变化(无相变、无化学反应)

大学物理热力学论文

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律基本概念和重点总结要点

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

物理化学知识点总结(热力学第一定律)

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、 体积V等。根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成正 比,如体积、质量、熵、热容等,这种性质的函数具有加 和性,是数学函数中的一次函数,即物质的量扩大a倍, 则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关, 与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: ?U=Q+W 对于一个微小的变化状态为: dU=δQ+δW 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关 而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功 。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一定量的气体装 入一个带有理想活塞的容器中,活塞上部施加外压p 外 。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积δW=?Fdl 因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境 之间可以自由移动的界面。因此推力F实际上是作用于环境,而由p 外 产生的外力则作用于系统,两者属于作用力与反作用力,若A代表活塞的体积,则δW= ?p 外Adl=?p 外 dV,积分得到 2 1 外 d V V W p V =-? 2.如果系统体积膨胀对环境做功,则W<0。环境对系统做功体积压缩,则W>0。 3.若膨胀过程分为无穷多步完成,其中每一步都可以看成是一个平衡态,则可逆膨胀做功计算公式为: W=?∫pdV= V2 V1?∫ nRT V dV=?nRT ln V2 V1 V2 V1

论文对热力学定律的认识

1 题目:浅谈热力学定律 班级:11物理学本科班 姓名:徐春山 学号:110800048 指导老师:廖昱博

浅谈热力学定律 1 引言 热物理学是整个物理学理论的四大柱石之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用,具有高度的可靠性和普遍性,无论是在热力学理论中或在热工技术中,都有重要的作用。 2 热力学第零定律 什么是温度?人们在日常生活中,凭自己的感觉就能判断一个物体是冷还是热。感到热就认为温度高一些,感到冷就认为温度低一些。当然这种感觉是不可靠的。于是人们就简单地建立起了有关温度的初步概念。温度是描述物体冷热程度的物理量。 在不受外界影响的情况下,只要A物体和B物体同时与C物体处于热平衡,即使A和B没有热接触,他们仍然处于热平衡状态,这种规律称为热平衡定律,也称为热力学第零定律。 热力学第零定律告诉我们,互为热平衡的物体之间必存在一个相同的特征——它们的温度是相同的。实验也证实,在外界条件不变的情况下把已经达到热平衡的系统中的各个部分相互分开,是绝不会改变每个部分本身的热平衡状态的. 3 热力学第一定律 热力学第一定律是能量守恒和转化定律在热力学上的具体表现,能量守恒与转换定律的发现与其他物理规律的发现最大不同之处在于它不是某一位科学家独立研究而提出的,而是由许多科学家在不同的研究领域分别发现的。 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为- 2 -

热力学第一定律的应用

大连理工大学 化工热力学论文(大作业) 题目:热力学第一定律的应用 姓名: 专业:化学工程 学号:31307022 指导教师:张乃文

摘要 热现象是人类最早接触到的自然现象之一。人类从远古时期开始就已经开始知道了如何利用摩擦、燃烧、爆炸等热现象来达到生产和生活的目的。 在过去的一个多世纪里面,经典热力学的发展取得了巨大的进步,从最初的模糊的热的概念逐步演变发展成为一门科学、严谨、庞大的学科。经典热力学的发展历史是人类对热的本质及能量转换规律的认识、掌握和运用的历史。经典热力学是一实验为基础的宏观理论,具有高度的可靠性和普遍性。它研究的内容决定了物理、化学反应进行的方向和限度,对于化工生产的发展意义重大。它决定设计分离过程、化学反应器所需要的化学反应平衡和平衡的数据、参数和状态。能够判断化工生产中一些新的合成工艺是否可行,以及在什么条件下可行,节省了化工开发过程中的人力、物力和研发时间;同时在化工设计、生产过程中的多元平衡数据都需要通过热力学的方法来确定。它在冷凝、汽化、闪蒸、液相节流、蒸馏、吸收、萃取和吸附等单元操作中应用也十分普遍。可以说经典热力学是化工设计、化工生产的基础。 热力学第一定律即能量守恒及转换定律,它是自然界的一条普遍定律,是19世纪的三大发现(进化论、细胞学说和能量守恒及转化定律)之一,在学科的各个领域均得到广泛的应用。热力学第一定律的文字表述是:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另外一种形式,从一个物体传递到另外一个物体,在传递与转化中能量的数量不变。从中可知,能量既不会消失也不会无中生有,转化的过程中具有不灭性,而做功必须由能量转化而来,所以,永动机是不可能实现的。 能量守恒和转化定律的发现是人类认识自然的一个伟大进步,它揭示自然界是一个互相联系、互相转化的统一体,第一次在空前广阔的领域里把自然界各种运动形式联系起来。在理论上,这个定律的发现对自然科学的发展和建立辩证唯物主义自然观提供了坚实的基础。在实践上,它对于永动机之不可能实现,给予了科学上的最后判决,使人们走出幻想的境界,从而致力于研究各种能量形式相互转化的具体条件,以求最有效地利用自然界提供的各种各样的能源。热力学第一定律的建立,为自然科学领域增添了崭新的内容,同时也大大推动了哲学理论的前进。现在,随着自然科学的不断发展,能量守恒和转化定律经受了一次又一次的考验,并且在新的科学事实面前不断得到新的充实与发展。特别是相对论中质能关系式的总结,使人们对这一定律的认识又大大地深化了一步,即在能量和质量之间也能发生转换。 化工热力学也是应用在生活的各个角落,与我们的生活息息相关。并且化工热力学第一定律的发现极大促进了社会的发展。

相关文档
最新文档