甲烷(CH4)的直接转化利用技术

甲烷(CH4)的直接转化利用技术
甲烷(CH4)的直接转化利用技术

甲烷(CH4)的直接转化利用技术

摘要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。

关键词:甲烷直接转化利用技术

一、甲烷直接制备甲醇

(1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。

(2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。

二、甲烷制备低碳烯烃

(1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性

甲烷水蒸汽转化

天然气转化

天然气转化 甲烷水蒸汽转化(sMR) 甲烷水蒸汽转化工艺(SMR)作为传统的甲烷制合成气过程(图1一2),主要涉及下述反应: CH4+H2O!3H2+COvH298K=206.29kJ/mol 这是一个强吸热过程,转化一般要在高温下进行(>1073K)"产物中HZ/Co约为3:1,为防止催化剂积炭,通常需要通入过量的水蒸汽,依合成气用途,原料气 中HZO/CH4典型的摩尔比为2-5;并且为保持较高的生产速率,工业生产中压力通常高3.OMPa。该反应过程的缺点是能耗高,设备庞大复杂!占地面积大,投资和操作费用昂贵。 联合转化工艺(SM侧oZR) 联合重整工艺流程如图1-3所示,将SMR反应器出口的混合气送入二级氧化反应器内,未完全消耗的甲烷(在SMR出口处CH;转化率为90-92%)与0:发生部分

氧化反应后,再进一步通过催化剂床层进行二次重整反应,生成的合成气HZ/CO 比在2.5~4.0,随后利用水汽转化(WGS)反应(见式4),调整产品中H:和CO比例,来满足下游合成的利用。该工艺有效地减小了SRM的规模,降低了能耗,但不足之处是仍需两个反应器。 CH4+HZO03H2+COvH29sK=一4IkJ/mol 中国石化集团四川维尼纶厂目前在运行的甲醇装置有两套,一为1996年建成投产的直接以天然气为原料的10万t/a甲醇装置,另一为2011年整合建成投产的以乙炔尾气为原料的77万t/a甲醇装置。前者采用成熟的管式转化炉生产合成气,并利用德国Lurgi合成工艺技术生产甲醇;后者利用英国Davy公司合成工艺生产甲醇,并在合成环路驰放气的处理上采用了膜分离与ATR 转化工艺技术,以提高装置产能和降低综合能耗。10万t/a甲醇装置通过天然气蒸汽转化制取合成气,故合成气具有氢多、碳少、惰性气体(CH4、N2、Ar 等)含量低的特点,其气质组成有利于甲醇合成反应。77万t/a 甲醇装置以乙炔尾气为原料,由于乙炔尾气属于天然气部分氧化法制乙炔工艺的副产气,因而具有氢少、碳多、惰性气体含量偏高的特点,属于乏氢气质,需对系统进行补氢。为深度利用甲醇合成环路驰放气和提高装置产能,工艺上增设了膜分离与ATR转化流程,但伴随而来的是驰放气中大量惰性气体随 ATR 转化气循环返回合成系统并累积,导致合成环路惰性气体的体积分数长期高达25%~30%,这也是该套装置甲醇产品质量不易控制、部分物耗能耗指标达不到设计值且制约甲醇产量进一步提高的主要原因。针对如何利用天然气制合成气来降低乙炔尾气甲醇装置合成环路的惰性气体含量,提高甲醇产量,使装置运行更加优化与合理,本文通过现场调查以及对相关数据的计算、分析和研究,提出可工程实施的优化运行方案。

生物质的生物转化与利用

食品技术进展讲座报告

【摘要】生物质的生物转化与利用在生物质能源开发、生物质材料制备和生物活性药物制取等领域已取得了丰厚的研究成果,本文以上几个方面进行了综述,并对生物质资源生物转化的方式与途径进行了分析。 【关键词】生物质生物转化生物能源生物材料生物活性药物 【前言】建立在石油、煤炭及天然气等化石资源基础上的现代化学工业,一度成为满足人类生活和保障社会经济发展的重要基础工业。但由于化石资源的过度开发与利用累计的效应,相继也出现了诸多问题,化石资源储量的有限性,诱发了化石资源的渐趋枯竭问题;化石资源转化过程中产生的环境污染物,导致区域性和全球性环境、生态问题;另外,众多由化石资源而来的化学合成品的不可降解性,使用之后的残留物成为危害环境的世界性公害。为控制或减少化石资源的使用、降低环境和生态成本,各国政府纷纷颁布政策法规,鼓励开发利用可再生资源,尤其是生物质资源[1],因此生物质资源的转化与利用也成为当今各国化学化工领域研究的热点问题 [2]。从理论上讲,生物质资源的转化与利用主要有以下4种方式:生物质资源的物理转化与利用、生物质资源的物理化学转化与利用、生物质资源的化学转化与利用和生物质资源的生物转化与利用。实践证明,前3种方式都不同程度地存在着转化与利用条件苛刻、资源利用率较低和环境污染等问题,而生物质资源的生物转化与利用的条件比较温和,并能实现多级循环利用,不仅不会对环境造成危害,而且还有利于改善已经被破坏了的环境与生态。本文主要从生物质资源的生物转化与利用在生物质能源开发、生物质材料制备和生物活性药物制取等领域研究现状进行了概述和前瞻。 【正文】 1 生物质生物转化生物质能源 生物质资源是由生物直接或间接利用绿色植物光合作用而形成的有机物。它包括所有的植物、动物或微生物,以及由这些生物产生的排泄物和代谢物。各种生物质资源中都含有能量,可以转化为能与环境协调发展的可再生能源,即生物质能。利用生物转化技术能将生物质资源转化为各种洁净的“含能体能源”,如沼气、燃料乙醇、生物氢和生物油等。因此,对生物质资源生物转化能源的研究成为目前能源研究领域的重要课题。 1.1生物质资源生物转化沼气[3]-[6] 沼气是有机物在厌氧条件下经微生物分解发酵而生成的一种可燃性气体。主要原料:人畜禽粪便、秸秆、农业有机废弃物、农副产品加工的有机废水、工业废水、城市污水和垃圾、水生植物和藻类等有机物质。 在各种可供开发的生物质资源中,农作物秸秆是最为丰富的一种富含有机质(80%—90%的生物质资源)。早在20世纪80年代,我国以植物秸秆为发酵原料生产沼气的技术就在户用沼气池中有过应用,后来由于产气效果不理想及出料难等问题没有解决而逐渐停滞。近年来,随着生物技术的进步以及农业主产区秸秆资源的过剩和部分地区农民就地焚烧秸秆带来环境问题,植物秸秆生物转化沼气研究重新引起重视。以沼气为纽带综合开发利用生物质资源的途径,即种、养、沼、加工业相结合的物质循环模式是最有实效的,三个效益(经济、社会、生态环境)的观点是开发农业废弃物资源化全过程的出发点和归宿。[3] 如今的沼气建设重点是由户用沼气池转移到大中型沼气池,沼气工程以产气为主要发展为处理有机废弃物治理环境,沼气残留综合利用为主。在沼气残留物综合利用的研究中,要从单纯的有机肥效果向饲料添加剂和提取生物粪活性物质发展。用高科技方法研究沼气工作的设计、设备、发酵工艺及综合利用。使之成

甲烷转化的基础知识

甲烷转化的基础知识 一、甲烷部分氧化(POM): 甲烷部分氧化(POM)制合成气的一个优势是温和的放热反应。在750~800℃下,甲烷平衡转化率可达90%以上,CO和H2的选择性高达95%,反应接触时间短(下于10-2s),可避免高温非催化部分氧化法伴生的燃烧反应,生成合成气的CO和H2摩尔比接近2,适合于甲醇生产要求。 二、甲烷转化的化学反应: 甲烷部分氧化制合成气的总反应式如下: CH4+ 1/2O2=CO+2H2+35.5kJ/mol 但实际反应过程非常复杂,而且伴有一些副反应发生,包括氧化反应、重整反应、水煤气变换反应以及积炭和消炭反应等。 ①氧化反应 CH4 + 2O2=CO2+2H2O +802kJ/mol CH4 + 3/2O2=CO+2H2O +519kJ/mol CH4 + 1/2O2= CO2+H2+561kJ/mol CH4 + 3/2O2= CO2+2H2+319kJ/mol H2+ 1/2O2= H2O +241.83kJ/mol CH4+ O2=CO+ H2O +H2+278kJ/mol ②重整反应 CH4+ H2O≒CO+3H2-206kJ/mol CH4+ CO2≒2CO+2H2-247kJ/mol ③水煤气变换反应 CO+ H2O≒CO2+H2+41.2kJ/mol ④积炭和消炭反应 CH4≒C+H2-74.9 kJ/mol 2CO≒CO2+C +172.4 kJ/mol C+ H2O≒CO +H2-131.36 kJ/mol 三、甲烷部分氧化制合成气反应的平衡常数: 甲烷部分氧化制合成气反应的平衡常数可用下面公式表示: k p= (p CO·p H22) / (p CH4·p O21/2) 式中k p——甲烷部分氧化制合成气反应的平衡常数 p CH4、p CO、p H2、p O2——分别表示甲烷、一氧化碳、氢气、氧气的平 衡分压。 对甲烷部分氧化制合成气反应CH4+ 1/2O2=CO+2H2用公式计算结果的平衡

农村沼气推广分析

农村沼气推广存在的主要问题与对策 李恋恋 (湖南农业大学,长沙,410008 ) 摘要:农村沼气工程,用沼气工程技术处理人畜粪便,既能有效解决农村生活能源问题,又能获得农业生产所需的有机肥料,改善农村人居环境,具有良好的经济、生态和社会效益。但在实际推广过程中,全国大部分省份或多或少面临推广难题,解决这一问题,在农村推广沼气将具有重要的、积极的现实意义. 关键词:农村沼气推广效益 农村沼气工程是一件造福万民的工程,将沼气、沼液、沼渣(简称“三沼”)运用到生产过程中,降低生产成本,提高经济效益的一项接口技术措施。经过多年实践,许多综合利用技术日趋成熟,取得了良好的经济效益和社会效益。全国开展沼气综合利用项目已达几十个,范围涉及到种植业、养殖业、加工业、服务业、仓贮业等诸多方面。沼气综合利用把沼气与农业生产活动直接联系起来,成为发展庭院经济、生态农业,增加农户收入的重要手段,也开拓了沼气应用的新领域。通过沼气综合利用,可促进农村产业结构调整,改善生态环境,提高农产品的产品质量,增加农民收入,实现可持续发展。 2010年,全国有4000万农户使用户用沼气,达到适宜农户的30%左右;全国规模化养殖场大中型沼气工程总数达到4700处左右,达到适宜畜禽养殖场总数的39%左右。全国4000万户农村户用沼气,每年产生约154亿立方米的沼气,相当于替代2420万吨标准煤的能源消耗和1.4亿亩林地的年蓄积量,农民每年可增收节支200亿元。 一、沼气的含义与功能 沼气,是有机物在厌氧条件下经微生物的发酵作用而生成的一种可燃烧的混合气体,是一种可再生的清洁能源,由于这种气体最先是在沼泽中发现的,所以称为沼气。沼气是一种混合气体,主要成分是甲烷、其余为二氧化碳、氧气、氮气和硫化氢,其中甲烷含量约为55%--70%,二氧化碳含量约为30%--45%。甲烷的热值为35.9MJ/m3,沼气低热值20--25MJ/m3,与空气混合燃烧时,呈蓝色火焰,温度高达1400℃,能够产生大量的热量,每立方米沼气的热值相当于5500大卡原煤3.3公斤。 沼气的功能有很多。一是可以能解决人们的炊事照明;二是减少薪柴的砍

甲烷新工业的催化转化新进展

甲烷新工业的催化转化新进展 引言 甲烷是天然气的主要成分。随着天然气在世界能源结构中的比例日趋增大,对甲烷的加工利用愈来愈受到重视。未来10年,全世界天然气消费增长率每年将保持在3. 9%左右,发展速度将超过石油、煤炭等其他能源;在全球能源结构中,天然气消费量占一次性能源消费量的比例将从现在的23. 8%提高到35. 0%。目前,我国天然气的开采和利用尚处于初级阶段,产量仅为300多亿m3 / a。甲烷作为化工原料主要限于生产合成氨、甲醇及其衍生物,其用量占天然气消耗量的5% ~7%。对此,我国提出在21世纪大力发展天然气,并与石油和煤的开发利用形成互补。可见,天然气工业将在我国21世纪的能源战略中占有举足轻重的地位。炼焦过程中产生的副产物焦炉煤气也是甲烷气体的重要来源。焦炉煤气主要由氢气和甲烷构成,同时含有少量一氧化碳、二氧化碳、氧气、氮气、硫化氢和其他烃类,对其充分利用将对环境保护、合理利用资源和实现可持续发展起到重要的作用。以3亿t/ a焦炭计算,在煤焦化过程中可副产1 350亿m3 / a焦炉煤气。其中,除部分回焦炉自身加热和用作城市煤气及发电外,有约1 /3的富余煤气,这部分焦炉煤气就成为待利用的资源。但是,由于焦炉煤气中的甲烷产生的温室效应要比二氧化碳大几十倍,其破坏臭氧层的能力也与氟利昂类似。所以,焦炉煤气的充分利用成为环境保护的需要。甲烷水合物,即天然气水合物,是甲烷的另外一个潜在来源,它是由水分子和天然气分子在一定温度和压力下形成的似冰雪状结晶化合物,又称为可燃冰。可燃冰是一种不同于常规油气的清洁环保、储量丰富的新型能源。据国际地质勘探组织估算,目前,天然气化合物含甲烷资源占全球煤、石油和天然气甲烷资源的53% ,其总能量是所有煤、天然气、石油等化石燃料能量总和的2倍~3倍。我国的甲烷水合物资源量虽未完全探明,但已经发现,我国领海及专属经济区具备甲烷水合物形成的地质构造和物源条件,具备良好的找矿前景,而且在我国南海北部等海域有存在天然气水合物矿藏的可能性。有专家认为,一旦该能源得到开采,将使人类的燃料使用延长几个世纪。甲烷水合物研究已经随着能源短缺的日益加剧,成为当代地球科学研究和能源工业发展的一大热点。综上所述,在石油资源日益减少、我国的能源消耗又日益增加的今天,充分利用甲烷资源,将甲烷直接转化成合成气和液体燃料的研究,具有巨大的经济价值和战略意义。 1甲烷催化转化制合成气的主要途径 甲烷作为化工原料生产化学品有直接转化和间接转化2种途径[ 224 ] 。直接转化是将甲烷直接转化为工业上需求的产品, 包括甲烷氧化偶联制乙烷[ 5 ] 、乙烯,甲烷选择性氧化制甲醇、甲醛等以及甲烷无氧芳构化等反应[ 628 ] 。直接转化法中,甲烷转化率和产品收率低,短期内无法实现工业化。间接转化法是将甲烷转化成合成气,进而合成氨、甲醇、乙醇等化工产品。目前,甲烷的大规模利用主要依赖于间接转化法。甲烷分子的活化是甲烷转化利用的基础,无论是何种转化,都必须经过甲烷的活化。甲烷是最简单的烷烃,甲烷分子中4个氢原子的地位完全相同,用其他原子取代其中任何1个原子,只能形成1个取代甲烷。甲烷分子具有正四面体的空间结构,这种稳定的正四面体结构决定了甲烷化学性质的不活泼性。甲烷重整就是在一定的反应条件下,通过催化作用促使甲烷的C—H键断裂,重新组合新的化学键,以利于后续工艺对甲烷的充分利用。以甲烷为原料制取合成气的传统方法为甲烷水蒸气重整法,这种方法目前已在工业上大规模应用。但甲烷水蒸气重整反应是强吸热过程,设备投资和能耗都很高,而且生产出的合成气中H2 的含量较高[ n (H2 ) /n (CO)约为3 ][ 9 ] ,不利于进一步的费托合成和甲醇合成反应的进行。利用甲烷制合成气,除了可以采用水蒸气转化及部分氧化技术以外,还可以采用二氧化碳进行重整反应。该方法可生成富含CO的合成气,既可解决蒸汽转化法中氢过剩的问题,又可实现CO2 的减排。这一堪称环境友好工程的研究动向是在

沼气脱硫技术概述

天津农学院 课程论文(2016—2017学年第一学期) 题目:沼气脱硫技术 课程名称沼气综合利用工程 学生姓名 学号 学院工 专业班级 2013级新能源科学与工程1班成绩评定

摘要 本文简单的介绍了沼气的概念、相关性质以及气体成分,并对其中的硫化S)的过滤原因做了一些说明。简单的综述了近年研究人员开发沼气脱硫氢(H S 方法在干式法、湿法和生物脱硫技术方面所做的研究,从原理及所涉及的反应方程式、一般工艺流程图、优点等方面介绍氧化铁、碱性液体等等比较典型的以及新型的脱硫方法。 关键字:沼气;硫化氢;脱硫

1.引言 沼气是一种可再生的清洁能源,既可替代秸秆、薪柴等传统生物质能源,也可替代煤炭等商品能源,而且能源效率明显高于秸秆、薪柴、煤炭等,因此沼气的利用备受关注。我国作为一个农业大国,每年都会产生大量的农作物秸秆和农产品加工废弃物,这些大量的农业废弃物中蕴含着巨大的沼气资源。同时畜牧业产生的禽畜粪便、工业产生的有机废弃物、城市生活垃圾和城市生活污水均有沼气潜能。对农业、畜牧业、工业、生活中的有机废弃物进行厌氧发酵产沼气时, 因为含硫化合物会被转化为H 2S,所以产生的沼气中都含有H 2 S气体。由于它是 一种腐蚀性很强的化合物,所以对沼气中的H 2 S进行去除是沼气利用的关键环 节。一般而言,沼气中H 2 S的质量浓度在1~12g·m -3之间,由于其受发酵原料和发酵工艺的影响很大,当原料的蛋白质或硫酸盐含量较高时,发酵后沼气中 的H 2 S质量浓度就较大。我国环保标准严格规定,利用沼气发电时,沼气气体中 H 2 S含量不得超过200~300mg·m -3;若将沼气并入燃气管道或作为车载燃料,则 H 2S要小于或等于15 mg·m -3[1]。可看出,沼气中H 2 S的质量浓度远远超过规定 值,所以无论在工业或民用气体中,都必须尽可能的除去。 2.概念介绍 2.1沼气 是有机物质在厌氧条件下,经过微生物的发酵作用而生产的一种混合性可燃气体。 2.2主要成分 其中甲烷(CH 4)占50~70%,其次是二氧化碳(CO 2 )占30~40%,还有少量的 氮、氢、氧、氨、一氧化碳(CO)和硫化氢(H 2 S)等气体。 2.3物理特性 改气体具有无色、无味、无毒,比空气轻,难溶于水的特性。 2.4 硫化氢(H 2 S) 是无色气体,有类似腐烂臭鸡蛋的恶臭味,剧毒、易溶于水。

甲烷转化催化剂使用技术资料

转化催化剂使用技术 讲座 西南化工研究设计院四川天一科技股份有限公司

目录前言 Ⅰ转化催化剂的装填及蒸汽钝化 Ⅱ转化催化剂还原技术要求 Ⅲ转化催化剂运转中活性与强度损伤原因分析

前言 自七十年代后我国相继引进和建设了一大批大、中型合成氨装置,这批装置与国内其它中、小型厂相比,具有技术先进、能耗低、经济效益高的特点,如80年代初引进的以AMV工艺为主体的河南中原化肥厂总能耗可减少到29.7GJ/T氨,采用美国S·F布朗公司的深冷净化法的涪陵816厂、锦西化肥厂、合江化肥厂、新疆乌石化厂等总能耗为29.9 GJ/T氨。但与先进国家相比差距仍比较大。占我国合成氨总产量的60%的中、小型厂基本上仍使用60年代的技术。七十年代初引进的十二套大型合成氨厂能耗仍徘徊在40 GJ/T 氨,这些厂设备需要更新,还需要及正在引进部分先进技术进行节能改造。 转化炉是合成氨厂、制氢厂的关键设备,其投资高,能量损失大,转化工段能量损失占总能耗的50%以上,因而节能措施很大部分集中在一段转化炉,如降低一段炉H2O/C,回收烟气余热,将一段炉由外供热式改造为换热式,与节能工艺想适应的新型节能转化催化剂的研制等。 采用先进节能工艺对企业进行改造的同时,应充分发挥现有企业的生产能力,挖潜革新,使装置作到稳定、长周期运行,实现降低能耗及生产成本,提高氨生产能力的目标。 转化催化剂的使用性能直接影响氨厂的运转率,而且会影响转化炉管及设备的寿命,使催化剂处于最佳性能状态,是保证氨厂、制氢厂长周期稳定运转,提高经济效益的重要手段。 本讲义拟从催化剂的装填及催化剂的氧化还原等两个关键操作步骤探讨如何使催化剂处于最佳性能状态。 本讲义的各章节是独立的,并无相互关连,敬请参考阅读。

《生物质能源转化及利用》课程教学大纲

《生物质能源转化及利用》课程教学大纲 课程名称:生物质能源转化及利用 课程代码:400+ 学分/学时:3学分/51学时 开课学期: 适用专业:热能与动力工程,新能源科学与工程 先修课程:工程热力学、流体力学、传热学 后续课程: 开课单位:机械与动力工程学院 一、课程性质和教学目标 课程性质:生物质能源转化及利用是热能与动力工程、新能源科学与工程等专业的一门新兴应用技术基础课程。 教学目标:生物质能是目前世界上继石油、煤炭、天然气之后的第四大能源,也是今后可再生能源技术的主要利用对象。生物质能也是唯一可储存的可再生能源,而且生物质可以转化为固体燃料、液体燃料和气体燃料,是唯一可全面替代化石能源,在未来建设低碳能源体系和可持续发展社会中将起到十分关键的作用。对我国目前社会经济高速发展、城镇化不断扩大的历史阶段,存在大量的废弃秸秆和城市生活垃圾的清洁处理和资源化利用问题,所以开发利用生物质能不仅是解决化石能源不可持续的问题,也是解决我国社会经济发展所面临的迫切问题,掌握生物质能源转化的基本原理,熟悉生物质能利用技术,是能源工作者必须具备的基本素质,也是作为工程技术人员和管理人员必须具备的基本知识。 本课程由课程知识和课程大作业两部分组成。课程知识以生物质资源、生物质前处理技术、生物质能源转化技术及多元化利用为主线,介绍生物质能基本特征、转化途径及基本原理、利用系统构建等,同时介绍我国在开发利用生物质能方面所面临的问题,以及国际上生物质能发展趋势。课程大作业以我国能源体系为背景,结合我国生物质资源分布的特点和利用问题,针对特定区域的用能需求,提出因地制宜的生物质能利用方案和相应的政策支持,使学生不仅活学活用所学过的基本知识,而且养成全面系统地分析问题和解决问题的综合能力,以及创新思维能力。 二、课程教学内容及学时分配 1.课程知识部分 概述:(3学时)

甲烷(CH4)的直接转化利用技术

2010年第09期甲烷(CH4)的直接转化利用技术 苗蓓蓓 大庆炼化公司档案管理中心 黑龙江大庆 163411 摘 要:目前较为成熟的技术路线是将甲烷转化为合成气,再合成甲醇或合成氨,进而开发相关的下游产品。但由于间接利用甲烷的技术路线存在投资费用高、工艺流程复杂,生产成本较高等原因,目前在工业上还并未得到大规模化应用。从原理上看,甲烷直接转化利用是最直接有效的途径。研究表明,由于甲烷的化学惰性,目前的很难在较高的甲烷转化率下获得理想的产物选择性。因此,甲烷直接转化法在工业上应用的较少,大都还处于实验室研究阶段。一旦催化技术有所突破,天然气必将成为最理想的石油替代品。 关键词:甲烷 直接转化 利用技术 一、甲烷直接制备甲醇 (1)甲烷直接部分氧化制备甲醇。甲烷直接部分氧化制备甲醇的关键技术还是催化剂,常见的催化剂目前主要是过渡金属的氧化物。例如陈立宇,杨伯伦等采用V2O5为催化剂,在发烟H2SO4中进行了甲烷液相选择性氧化的研究。V2O5催化甲烷液相部分氧化反应遵循亲电取代机理,反应为一级反应,甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。王利娟等研究了CoM004负载Mo-V-Cr-Bi氧化物催化剂上甲烷部分氧化反应,发现反应存在一转折温度,当反应温度低于此温度时,CO是主要产物,氧化产物中甲醇的选择性低于20%,而当反应温度高于此温度时,CO的选择性大大降低,而CO2的选择性大大升高,主要产物变为CO2,甲醇的选择性降为0。在甲烷首先转化生成醋酸甲酯,醋酸甲酯水解生成甲醇。在压力0.1MPa、温度267-280℃下,甲烷转化率为26.61%,目的产物选择性97.26%。 (2)甲烷和水合成甲醇。甲烷和水直接合成甲醇和H2,具有天然气资源和清洁氢能源综合开发利用的应用价值。桑丽霞,钟顺和在固定床环隙反应器中,150℃下,MoO3-TiO2/SiO2为催化剂光催化气相甲烷和水合成了目的产物甲醇和H2,甲醇选择性达87.3%。 二、甲烷制备低碳烯烃 (1)甲烷部分氧化制备烯烃。1982年美国的Union Carbide化学公司首次公开发表了甲烷催化偶联制乙烯的研究成果,该工艺是迄今为止天然气制乙烯最简捷的工艺,反应一步完成。最近LG化学公司正在进行利用天然气的主要成分甲烷生产乙烯的技术开发。这是目前世界上利用甲烷生产乙烯的首例技术尝试。甲烷氧化偶联制乙烯的技术关键在于催化剂,目前催化剂品种多达2000种以上。其中,碱金属-碱土金属、稀土金属、过渡金属氧化物和具有特定结构的复合金属氧化物等几大体系的催化剂,以及电催化、等离子催化、激光表面催化和以钙钛矿催化膜为核心的催化技术均具有较好的甲烷氧化偶联生成C2烃的反应活性。苑慧敏,张永军等综述了甲烷氧化偶联制乙烯催化剂的研究进展情况。侯思聪等采用浸渍法制备了Li-ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能。在680℃,甲烷转化率为27.3%,C2选择性为65.2%,C2收率为17.8%的结果;在700℃,C2收率达到21.8%。王凡,郑丹星通过平衡常数法研究了500-1000℃、0.1-3.0MPa,以及进料组成中甲烷与氧的摩尔比(即n0,CH4/n0,O2)为1-10下的甲烷转化率及其他各组分收率和选择性的变化情况,在对甲烷氧化偶联制烯烃体系的热力学平衡进行分析后发现,在甲烷氧化偶联制烯烃体系中,H2、CO 的生成相对容易,C2产物(C2H6、C2H4)不容易生成。实验为甲烷氧化偶联反应器和催化剂的开发研究提供热力学依据。由于甲烷氧化偶联制乙烯反应本身受动力学控制,C2烃单程收率低,产物分离困难。目前同时能使甲烷转化率、C2选择性之和达到或接近100%的催化剂为数不多,催化剂筛选成为其实现工业化的重要阻碍。 (2)等离子体催化甲烷合成烯烃。除了传统的催化剂活化甲烷合成乙烯外,电催化、等离子催化、激光表面催化也被用于甲烷氧化偶联的催化研究中。陈韩飞等综述了等离子体活化及等离子体与催化剂协同活化甲烷转化的国内外研究进展。同时对其反应机理进行了讨论,分析了当前利用等离子体活化甲烷所存在的问题,并提出了今后的研究方向。 (3)氯甲烷路线。1988年,TaylorC.E.等人提出了甲烷经氯甲烷合成汽油产品的循环利用途径。氯甲烷转化为低碳烯烃作为天然气利用的一个全新途径,已经引起了甲烷转化研究领域的关注。甲烷首先在催化剂的作用下发生氧氯化反应得到氯甲烷,氯甲烷干燥后在催化剂上转化为汽油产品,而过程中产生的HCl可以通过循环继续参与第一步的反应形成循环过程。使用分子筛催化剂可以将氯甲烷转化为烃类产品,但产物大多数以芳烃和烷烃为主,使用镁和磷镁修饰的催化剂可以提高产物中烯烃的选择性。张大治等经过研究认为镁的修饰对催化剂酸性的影响导致了产物中低碳烯烃的增加。 (4)天然气部分氧化制乙炔。天然气部分氧化制乙炔主要采用气相氧化法,主要有德国的BASF工艺、比利时的SBA工艺和意大利的Motecatini工艺。其中,以BASF工艺为主,约占80%。BASF 工艺原料中的O2,与CH4的摩尔比为0.6,在反应炉进行复杂的气相反应,主要反应通过部分甲烷进行部分氧化提供热量,剩余甲烷被加热到1500℃后裂解缩合为乙炔。 三、甲烷制备芳烃 (1)甲烷部分氧化制备芳烃。上个世纪80年代,Shepelev等对甲烷催化氧化制芳烃技术进行了研究,结果表明,在氧化条件下,甲烷合成芳烃的反应很难控制,甲烷的转化率很低,芳烃选择性和收率也很低,在经济上不具备开发前景。舒玉瑛等发现,不同方法制备的Mo/H-ZSM-5催化剂上甲烷的芳构化反应,对甲烷制备芳烃反应有较大的影响。 (2)甲烷无氧脱氢制备芳烃。从热力学角度来讲,甲烷直接转化为芳烃要比直接转化为乙烷和乙烯更为有利。而且,在无氧条件下也不生成CO和CO2。自1993年大连化学物理研究所首先报道了在无氧和连续流动的反应条件下,甲烷在Mo/HZSM-5催化剂上直接转化为芳烃以来,甲烷无氧芳构化已经成为甲烷直接催化转化研究中的一个重要分支,是目前甲烷直接转化的主要研究内容。魏飞等综述了利用甲烷直接脱氢制备芳烃的催化剂方面的研究情况,此外,郑海涛等人还研究了甲烷和丙烷混合气体在不同催化剂上的无

甲烷转化

K.M.Shen for helpful discussions and communications.Experimental studies were supported by the Center for Emergent Superconductivity,an Energy Frontier Research Center,headquartered at Brookhaven National Laboratory (BNL)and funded by the U.S.Department of Energy under grant DE-2009-BNL-PM015,as well as by a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan)and the Global Centers of Excellence Program for Japan Society for the Promotion of Science.C.K.K.acknowledges support from the FlucTeam program at BNL under contract DE-AC02-98CH10886.J.L.acknowledges support from the Institute for Basic Science,Korea.I.A.F.acknowledges support from Funda??o para a Ciência e a Tecnologia,Portugal,under fellowship number SFRH/BD/60952/2009.S.M.acknowledges support from NSF grant DMR-1120296to the Cornell Center for Materials Research.Theoretical studies at Cornell University were supported by NSF grant DMR-1120296to Cornell Center for Materials Research and by NSF grant DMR-0955822.The original data are archived by Davis Group,BNL,and Cornell University. Supplementary Materials https://www.360docs.net/doc/838029600.html,/content/344/6184/612/suppl/DC1Materials and Methods Supplementary Text Figs.S1to S9 References (42–45)Movies S1and S2 21November 2013;accepted 20March 201410.1126/science.1248783 Direct,Nonoxidative Conversion of Methane to Ethylene,Aromatics,and Hydrogen Xiaoguang Guo,1Guangzong Fang,1Gang Li,2,3Hao Ma,1Hongjun Fan,2Liang Yu,1Chao Ma,4Xing Wu,5Dehui Deng,1Mingming Wei,1Dali Tan,1Rui Si,6Shuo Zhang,6Jianqi Li,4Litao Sun,5Zichao Tang,2Xiulian Pan,1Xinhe Bao 1* The efficient use of natural gas will require catalysts that can activate the first C –H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation.We report that single iron sites embedded in a silica matrix enable direct,nonoxidative conversion of methane,exclusively to ethylene and aromatics.The reaction is initiated by catalytic generation of methyl radicals,followed by a series of gas-phase reactions.The absence of adjacent iron sites prevents catalytic C-C coupling,further oligomerization,and hence,coke deposition.At 1363kelvin,methane conversion reached a maximum at 48.1%and ethylene selectivity peaked at 48.4%,whereas the total hydrocarbon selectivity exceeded 99%,representing an atom-economical transformation process of methane.The lattice-confined single iron sites delivered stable performance,with no deactivation observed during a 60-hour test.T he challenge of converting natural gas into transportable fuels and chemicals (1)has been spurred by several emerging indus-trial trends,including rapidly rising demand for H 2(for upgrading lower-quality oils)and a global shortage of aromatics caused by shifting refinery targets toward gasoline.Light olefins,which are key chemical feedstocks,are currently made from methanol,which itself is made through multistage catalytic transformations via syngas (a mixture of H 2and CO)(2,3),although there is also ongoing research to convert syngas directly to light olefins (4,5).However,in all such approaches,either CO or H 2is needed to remove oxygen from CO,result-ing in a carbon-atom utilization efficiency below 50%.Despite their low efficiency,high capital and production costs,and enormous CO 2emissions, syngas routes dominate current and near-term in-dustrial practices for natural gas conversion (6,7).Direct conversion of CH 4is potentially more economical and environmentally friendly but is challenging because CH 4exhibits high C –H bond strength (434kJ/mol),negligible electron affinity,large ionization energy,and low polarizability (8).In the pioneering work of Keller and Bhasin in the early 1980s,CH 4was activated with the assistance of oxygen (9).This finding initiated a worldwide research surge to explore the high-temperature (>1073K)oxidative coupling of methane (OCM)to C 2hydrocarbons (10,11).Hundreds of catalytic materials have since been synthesized and tested,principally during the 1990s,as well as in recent years.Unfortunately,the presence of O 2leads irreversibly to overoxidation,resulting in a large amount of the thermodynamically stable end-products CO 2and H 2O.Thus,the carbon utili-zation efficiency of OCM remains relatively low (12,13).Slow progress in discovering new cata-lysts to circumvent this problem has hindered further development,and no economically viable process has been put into practice so far. In a recent report,elemental sulfur was used as a softer oxidant than O 2(14):For a 5%CH 4/Ar mixture at 1323K,the best catalyst,PdS/ZrO 2,gave a CH 4conversion of ~16%and ethylene selectivity near 20%,albeit at the expense of the by-products CS 2and H 2S (14).In contrast,the bifunctional catalysts based on Mo/zeolites cata-lyze CH 4conversion to aromatics (benzene and naphthalene)nonoxidatively,thereby avoiding CO 2formation (15–18).CH 4is activated on the metal sites forming CH x species,which dimerize to C 2H y .Subsequent oligomerization on the acidic sites located inside the zeolite pores yields ben-zene and naphthalene,as well as copious amounts of coke (19–21).Commercial prospects for this process are further hampered by the instability of zeolites at the very high reaction temperatures.To achieve direct conversion of CH 4efficient-ly,the challenges lie in cleaving the first C –H bond while suppressing further catalytic dehy-drogenation,avoiding both CO 2generation and coke deposition.We report that these conditions can be met using lattice-confined single iron sites embedded in a silica matrix.These sites activate CH 4in the absence of oxidants,generating methyl radicals,which desorb from the catalyst surface and then undergo a series of gas-phase reactions to yield ethylene,benzene,and naphthalene as the only products (with ethylene dominating at short space-times for a selectivity of ~52.7%at 1293K).A methane conversion as high as 48.1%is achieved at 1363K. The catalysts were obtained by fusing ferrous metasilicate with SiO 2at 1973K in air and from commercial quartz,followed by leaching with aqueous HNO 3and drying at 353K (22).The resulting catalyst was designated 0.5%Fe?SiO 2(?denotes confinement and here represents a cat-alyst characterized by the lattice-confined single iron sites embedded within a silica matrix).It con-tained 0.5weight percent (wt %)Fe and had a Brunauer –Emmett –Teller surface area of <1m 2/g.The catalyst was activated in a fixed-bed micro-reactor in the reaction atmosphere [90volume percent (vol %)CH 4/N 2]at 1173K.The efflu-ent was analyzed by online gas chromatography (GC).At 1223K,CH 4conversion was 8.1%(Fig.1A)and increased with temperature,exceeding 48.1%at 1363K (Fig.1B).Only ethylene,ben-zene,and naphthalene were produced;neither coke nor CO 2was detected,despite the relative-ly high reaction temperature.A single-pass yield of 48%hydrocarbons is achieved at 1363K and 21.4liters per gram of catalyst (gcat)per hour.Selectivities vary from 40.9to 52.1%for ethylene,21.0to 29.1for benzene,and 23.6to 38.2%for naphthalene,over the investigated temperature range (1223to 1363K). By comparison,a blank experiment (an empty reactor with no catalyst)under the same conditions showed a CH 4conversion of only 2.5%,and 95%of the product was coke (Fig.1A).A test with unmodified SiO 2as the catalyst yielded virtually 1 State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Peo-ple ’s Republic of China.2State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,People ’s Republic of China.3State Key Laboratory of Fine Chemicals,Institute of Coal Chemical Engineering,School of Chemical Engineering,Dalian University of Technology,Dalian 116012,People ’s Republic of China.4Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,People ’s Republic of China.5Nano-Pico Center,Key Laboratory of Micro-Electro-Mechanical System (MEMS)of Ministry of Education,Southeast University,Nanjing 210096,People ’s Republic of China.6Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201204,People ’s Republic of China.*Corresponding author.E-mail:xhbao@https://www.360docs.net/doc/838029600.html, 9MAY 2014VOL 344 SCIENCE https://www.360docs.net/doc/838029600.html, 616REPORTS o n J u l y 12, 2016 h t t p ://s c i e n c e .s c i e n c e m a g .o r g /D o w n l o a d e d f r o m

相关文档
最新文档