锂电充电时间计算公式

锂电充电时间计算公式
锂电充电时间计算公式

一般来说锂电充电时间计算公式为:(电池容量/充电器的输出电流)×1.2

镍氢电池充电时间计算公式:

充电所需时间=电池容量×充电系数÷充电电流

充电系数随充电电流不同而不同,具体取值如下:

<150mA-----------------------------1.6

150mA~250mA-----------------------1.5

250mA~400mA-----------------------1.4

400mA~600mA-----------------------1.3

600mA~900mA-----------------------1.2

>1000mA----------------------------1.1

说明: 1、1C或1C以上电流充电,可以直接取1。

2、如果是智能快充,充电时间是不需要我们去留意的。

3、建议充电器的指示灯指示充满电后再补充2个小时,因为现在的快充一般是当电池充到98%时就认为充满了!

电池容量看电池外面的标注;充电电流看充电器上标注的输入电流

1、充电电流小于等于电池容量的5%时:

充电时间(小时)=电池容量(mAH)×1.6÷充电电流(mA)

2、充电电流大于电池容量的5%,小于等于10%时:

充电时间(小时)=电池容量(mAH)×1.5÷充电电流(mA)

3、充电电流大于电池容量的10%,小于等于15%时:

充电时间(小时)=电池容量(mAH)×1.3÷充电电流(mA)

4、充电电流大于电池容量的15%,小于等于20%时:

充电时间(小时)=电池容量(mAH)×1.2÷充电电流(mA)

5、充电电流大于电池容量的20%时:

充电时间(小时)=电池容量(mAH)×1.1÷充电电流(mA)

日出、日落时间大体换算方法

各主要季节间日出、日落时间大体换算方法 根据农历二、八月昼夜平(这仅是粗略的说法。实际上不同纬度,昼夜时间不完全均等)这一基本时间,可将我们这一带主要季节之间日出、日落的大体时间用各时期的换算公式予以粗略测定。现以中国科学院南京紫金山天文台计算的济南地区的日出、日落时间为基础予以说明。济南地区在“春分”时日出6:15,日落18:24,在此粗略各取6点钟。 1、“春分”──“夏至”期间日出、日落时间的大体测定 y=6±n·1'20"(式中6为六点钟,n为这一期间的某一“日序”,y为某一日序时当日的日落、日出时间。日落时间为“+”,日出时间为“-”。0≤n≤92)。 例:①当n=0,即代表3月21日“春分”这一天。式中y=6±0,表示这一天为太阳六点钟出,下午六点钟落下。 ②当n=(最大值)92时,即到“夏至”这一天时,y=6±92×1'20"为6±122'即 6±2:02'≈(8:02',3:58'),即“夏至”日时,日出为早上4点钟,日落为晚上8点钟。 ③试问4月14日几点钟日出、日落?根据上述公式n=24(24为“春分”后3月份内有10天加上4月份1~14日的14天两数之和),代入公式后,y=6±24×1'20"= 6±32',即4月14日这一天日出为5点28',日落为下午6点32'。同理,可求得这一期间任意一天的日出、日落的时间。 2、“夏至”──“秋分”期间日出、日落时间的大体(实际情况是“夏至”时,济南4:53日出,19:34'日落)测定 y1=3:58'+n·1'20",y2=8:02'-n·1'20"(0≤n≤94)当n=0时,即夏至日时, y1=3:58'(日出),y2=8:02'(日落),n=(最大值)94时,y1=3:58'+2:05'≈6,y2=8:02'- 2:05≈6,即至秋分时,日出、日落均在早、晚6点钟。同理,可求得这一期间任意一天的日出、日落时间。 3、“秋分”──“冬至”期间日出、日落时间的大体(实际情况是秋分时,济南5:59'日出,18:11'日落)测定 y=6±n·1'20"(0≤n≤90)当n=0时y=6±0,即9月23日这天日出、日落均为早、晚六点钟。当n=90时(即至“冬至”这天),y=6±90×1'20",亦即y=6±120'=8~4,也就是说“冬至”这天早上8点出太阳,下午4点日落。同理,可求得这期间任意一天的日出、日落时间。 4、“冬至”──(翌年)“春分”期间日出、日落时间的大体(实际上冬至时,济南7:21日出,17:00日落)测定 y1=8-n·1'20",y2=4+n·1'20"(0≤n≤89)式中n=0时,y1=8,y2=4,分别为“冬至”日时的日出、日落时间。当n=89即“春分”这一天,y1=8- 1:58'≈6,y2=4+1.58'≈6,即至“春分”时日出、日落又再次各为早、晚六点钟。同理,可求得这一期间任意一天的日出、日落时间。 在此需要指出的是,(1)各年度间天数不太一样,有时是365天,有时是366天,所以各季节间n值会不完全相同。(2)由于是大体测算,运算中会有误差,有时误差还较大,因

用EXCEL计算起止时间在各个时间段内的时长

用EXCEL计算起止时间在各个时间段内的时长 EXCELL中,常遇到这样的问题:已知起始时间和结束时间,如何计算该起止时间在指定时间段上的时间长度? 比如: 由于起止时间有多种跨越情况,且有零点转换,用EXCEL的自带公式和函数很难实现。下面这个VBA自定义函数,能够轻松解决上面的难题。 函数名tj(t1,t2,n) 3个参数:t1-开始时间,t2-结束时间,为“时分秒”时间格式,可直接引用单元格 n-整数{1|2|3},(分别代表峰平谷的时间段) 返回值:以“时分秒”形式返回起(t1)止(t2)时间在参数n所代表的时间段内的时长。 在EXCEL工作表中,打开VBA编辑器,将下列代码作为模块插入,保存后即可在单元格中直接调用,格式开如:=Tj($A2,$B2,1),返回开始时间A2、结束时间B2在7-11点时间段内的时长。 以下代码,在解决不同问题时,对部分参数适当修改即可实现。 Function Tj(t1, t2, n As Integer) Dim f(2) As Integer, Ti(2), arr(2, 1) As Date n = n - 1 arr(0, 0) = TimeValue("7:00:00") arr(0, 1) = TimeValue("4:00:00") arr(1, 0) = TimeValue("11:00:00") arr(1, 1) = TimeValue("8:00:00") arr(2, 0) = TimeValue("19:00:00") arr(2, 1) = TimeValue("12:00:00") s = t2 - t1 '总时长 If s < 0 Then s = TimeValue("23:59:59") + s + TimeValue("00:00:01") End If '------------计算开始时间属于哪一时间段,存储于f(0),并将其后的时间段存储于f(1)、f(2) Select Case t1

地理时间计算方法

地理时间计算方法

?地理时间计算方法 地理时间计算方法 一、地方时的计算 由于地球自西向东自转,所以同纬度上不同的地区见到日出的时间有早有晚,东边的时刻比西边的时刻要早,这种因经度不同而产生的不同时刻,称为地方时。由于时刻东早西晚,所以每向东15°时间要早1小时,每向西15°时间要晚1小时,经度相差1°,时间 相差4分钟。 二、区时的计算 为了便于不同地区的交流,1884年国际上按统一标准划分时区,实行分区计时的办法。按照这个划分方法,地球上每15°作为一个时区,全球共分24个时区,每个时区中央经线的地方时即为该时区的标准时间区时。区时的计算一般分以下几个步骤: 1. 时区的计算: 如果要求某一经度的区时,首先要计算出该经度所在的时区。经度换算时区的公式:经度数÷15°=M(商)……n(余数)(n<7.5°时,时区数=M;n>7.5°时,时区数=M 1)。根据此公式也可以计算M时区所跨的经度范围,即:15°×M(时区数)±7.5°(15°×时区数为这个时区的中央经线的经度)。 2. 区时差的计算: 如果知道甲地的区时,求乙地的区时,首先要计算两地的区时差。如果甲、乙两地位于中时区的同侧,计算区时差用减法,如东八区与

东二区差6个区时,西九区与西二区差7个区时。如果甲、乙两地位于中时区的两侧,计算区时差用加法,如西六区与东六区差12个 区时。 3. 区时的计算: 区时的计算遵循“东加西减”的原则。已知甲地的时间,求乙地的时间,那么乙地的时间=甲地的时间±甲、乙两地所在时区的区时差(乙地在甲地的东侧用“ ”,乙地在甲地的西侧用“-”)。 4. 计算结果的处理: 由于全天采用24小时制,所以计算结果若大于24小时,要减去24小时,日期加一天,即为所求的时间;计算结果若为负值,要加24小时,日期减一天,即为所求的时间。碰到跨年、月时,要注 意大月、小月、平年、闰年。 三、日界线 日界线简单地说就是“今天”和“昨天”的分界线。从本初子午线开始,如果向东到180°经线,那么180°经线比本初子午线要早12小时;如果向西到180°经线,那么180°经线比本初子午线要晚12小时。这样,同是180°经线,时间却相差24小时。因此,国际上规定,把180°经线作为国际日期变更线,它既是一天的开始,又是一天的结束,即东十二区和西十二区时刻相同,日期相差一天,东十二区比西十二区早一天。值得注意的是,国际日期变更线并非与180°经线完全重合,受各国领土的影响,有些地方日界线不得不改变它的位置而发生弯曲。另一条日界线为0时日界线(或子夜日界

古代时间的计算方法

中国古代时间的计算方法(1) 现时每昼夜为二十四小时,在古时则为十二个时辰。当年西方机械钟表传入中国,人们将中西时点,分别称为“大时”和“小时”。随着钟表的普及,人们将“大时”忘淡,而“小时”沿用至今。 古时的时(大时)不以一二三四来算,而用子丑寅卯作标,又分别用鼠牛虎兔等动物作代,以为易记。具体划分如下:子(鼠)时是十一到一点,以十二点为正点;丑(牛)时是一点到三点,以两点为正点;寅(虎)时是三点到五点,以四点为正点;卯(兔)时是五点到七点,以六点为正点;辰(龙)时是七点到九点,以八点为正点;巳(蛇)时是九点到^一点,以十点为正点;午(马)时是^一点到一点,以十二点为正点;未(羊)时是一点到三点,以两点为正点;申(猴)时是三点到五点,以四点为正点;酉(鸡)时是五点到七点,以六点为正点;戌(狗)时是七点到九点,以八点为正点;亥(猪)时是九点到^一点,以十点为正点。 古人说时间,白天与黑夜各不相同,白天说“钟”,黑夜说“更”或“鼓”。又有“晨钟暮鼓”之说,古时城镇多设钟鼓楼,晨起(辰时,今之七点)撞钟报时,所以白天说“几点钟”;暮起(酉时,今之十九点)鼓报时,故夜晚又说是几鼓天。夜晚说时间又有用“更” 的,这是由于巡夜人,边巡行边打击梆子,以点数报时。全夜分五个更,第三更是子时,所以又有“三更半夜”之说。 时以下的计量单位为“刻”,一个时辰分作八刻,每刻等于现时的十五分钟。旧小说有“午时三刻开斩”之说,意即,在午时三刻钟(差十五分钟到正午)时开刀问斩,此时阳气最盛,阴气即时消散,此罪大恶极之犯,应该“连鬼都不得做”,以示严惩。阴阳家说的阳气最盛,与现代天文学的说法不同,并非是正午最盛,而是在午时三刻。古代行斩刑是分时辰开斩的,亦即是斩刑有轻重。一般斩刑是正午开刀,让其有鬼做;重犯或十恶不赦之犯,必选午时三刻开刀,不让其做鬼。皇城的午门阳气也最盛,不计时间,所以皇帝令推出午门斩首者,也无鬼做。 刻以下为“字”,关于“字”,广东广西的粤语地区和福建广东的闽南语地区至今仍然使用,如“下午三点十个字”,其意即“十五点五十分”。据语言学家分析,粤语中所保留的“古汉语”特别多,究其原因,盖因古中原汉人流落岭南,与中原人久离,其语言没有与留在中原的人“与时俱进”。“字”以下的分法不详,据《隋书律历志》载,秒为 古时间单位,秒以下为“忽”;如何换算,书上没说清楚,只说:“’秒’如芒这样细; '忽’如最细的蜘蛛丝”。

日出日落方向图解

日出日落方向图解 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

学生理解:北回归线以北昼长大于昼长,且正午太阳在南,因此东北_南_西北,太阳视运动轨迹大于180度。 钟表定向推导:夏季日出时在6时以前,因此太阳自东北升起,西北落下。 不过以上两种方法缺乏必要的科学性,虽然都能解释、并使学生进一步记忆,但却不利于进一步探究。对于初中及高一学生来说足以。 简易图解释: 太阳光线与晨昏线垂直(上图中能表示),站在晨线上看太阳(图中选择了几个点,也就是蓝点位置),应该就是顺着太阳光线的方向看到的。从图中可以明显看出,夏至日除极昼、极夜区外,太阳都从东北升起,赤道上是东偏北23度26分,向南北两侧角度变大。夏半年的其它日期同理可得。 视运动图分析: 左图是南半球中纬度的太阳视运动,右图是北半球中纬度的太阳视运动,可以很明显的看出日出日落方向。 下面是从原初中课本上的图简化来的。 这是网友制作的,大家都可以依据地概的相关知识制作,也都可以说明日出日落的方向。

如果再进一步细化的分析:要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式: 方位角=90 - 0.5arccos[2(sinM/cosN)^2 - 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。 【例如】北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得:方位角=31度 意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。 下面是一些特殊地区,特殊时间的日出日落方位。 结论:? 北半球夏半年,全球除极昼极夜现象的地区外,太阳均从东北升起,从西北落下。 北半球冬半年,全球除极昼极夜现象的地区外,太阳均从东南升起,从西南落下。 春分、秋分,从正东升起从正西落下(极点除外)

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

RC电路充放电时间计算

RC电路充放电时间计算 V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 求充电到90%VCC的时间。(V0=0,V1=VCC,Vt=0.9VCC) 代入上式: 0.9VCC=0+VCC*[[1-exp(-t/RC)] 既 [[1-exp(-t/RC)]=0.9; exp(-t/RC)=0.1 - t/RC=ln(0.1) t/RC=ln(10) ln10约等于2.3 也就是t=2.3RC。 带入R=10k C=10uf得。 t=2.3*10k*10uf=230ms RC回路充放电时间的推导过程需要用高等数学,简单的方法只要记住RC回路的时间常数τ=R×C,在充电时,每过一个τ的时间,电容器上电压就上升(1-1/e)约等于0.632倍的电源电压与电容器电压之差;放电时相反。 如C=10μF,R=10k,则τ=10e-6×10e3=0.1s 在初始状态Uc=0时,接通电源,则过0.1s(1τ)时,电容器上电压Uc为0+(1-0)×0.632=0.632倍电源电压U,到0.2s(2τ)时,Uc为0.632+(1-0.632)×0.632=0.865倍U……以此类推,直到t=∞时,Uc=U。放电时同样运用,只是初始状态不同,初始状态Uc=U。

单片机复位(上电复位和按键复位,复位脉宽10ms,R常取值10k~47k,c 取值10~100uf,电容大些为好): 原理:如果复位是高电平复位,加电后电容充电电流逐渐减少,此时经电阻接地的单片机IO是没电压的,因为电容是隔直流的,直到充电完毕开始放电,放电的过程同样是电流逐渐减少的,开始放电时电流很大,加到电阻上后提供给IO高电平,一段时间(电容器的充放电参数:建立时间等)后,电流变弱到0,但是复位引脚已经有了超过3us的高电平,所以复位就完成了; 手动复位,如加按键,则是直接将电容短路,给复位引脚送高电平,此部分就只有电容在起作用;当然电源较大(一般3.3v-5v)的话,加电阻是为了分压,防止烧坏引脚。

日出日落时间计算程序(C语言)

//日出日落时间计算C语言程序 #define PI 3.1415926 #include #include using namespace std; int days_of_month_1[]={31,28,31,30,31,30,31,31,30,31,30,31}; int days_of_month_2[]={31,29,31,30,31,30,31,31,30,31,30,31}; long double h=-0.833; //定义全局变量 void input_date(int c[]){ int i; cout<<"Enter the date (form: 2009 03 10):"<>c[i]; } } //输入日期 void input_glat(int c[]){ int i; cout<<"Enter the degree of latitude(range: 0°- 60°,form: 40 40 40 (means 40°40′40″)):"<

cin>>c[i]; } } //输入纬度 void input_glong(int c[]){ int i; cout<<"Enter the degree of longitude(west is negativ,form: 40 40 40 (means 40°40′40″)):"<>c[i]; } } //输入经度 int leap_year(int year){ if(((year%400==0) || (year%100!=0) && (year%4==0))) return 1; else return 0; } //判断是否为闰年:若为闰年,返回1;若非闰年,返回0 int days(int year, int month, int date){ int i,a=0; for(i=2000;i

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

日出日落时间计算程序(C语言)

日出日落时间计算程序(C语言)

//日出日落时间计算C语言程序 #define PI 3.1415926 #include #include using namespace std; int days_of_month_1[]={31,28,31,30,31,30,31,3 1,30,31,30,31}; int days_of_month_2[]={31,29,31,30,31,30,31,3 1,30,31,30,31}; long double h=-0.833; //定义全局变量

void input_date(int c[]){ int i; cout<<"Enter the date (form: 2009 03 10):"<>c[i]; } } //输入日期 void input_glat(int c[]){ int i;

cout<<"Enter the degree of latitude(range: 0°- 60°,form: 40 40 40 (means 40°40′40″)):"<>c[i]; } } //输入纬度 void input_glong(int c[]){ int i; cout<<"Enter the degree of longitude(west is negativ,form: 40 40 40

(means 40°40′40″)):"<>c[i]; } } //输入经度 int leap_year(int year){ if(((year%400==0) || (year%100!=0) && (year%4==0))) return 1; else return 0; }

充电电池充电时间计算

充电电池充电时间计算 SANY GROUP system office room 【SANYUA16H-SANYHUASANYUA8Q8-

一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。 知道了快慢充的概念后,我们还需要了解充电器的情况才能对电池正确充电。目前市场上的充电器主要分为恒流充电器和自动充电器两种 二、恒流充电器 恒流充电器是市场上最常见的充电器,从镍镉电池时代,我们就开始使用恒流充电器。恒流充电器通常使用慢速充电电流,它的使用相对比较简单,只需将电池放在电池仓中即可充电。需要注意的是,对充电时间的计算要准确。 对充电时间的计算有个简单的公式:Hour=1.5C/充电电流。例如:对1200mAH的电池充电,充电器的充电电流为150mA,则时间为1800mAH/150mA等于12小时。

日出日落方位详解

(一)、日出和日落方位问题: 不论是南半球还是北半球的任何地点(出现极昼和极夜的区域除外),其太阳出没点的地平方位是偏南还是偏北,取决于太阳直射南半球还是北半球,而与观测地点位于南北半球无关。具体来说: (1)在两分日时,太阳直射赤道,全球各地太阳正东升,正西落(极点除外) (2)北半球的夏半年(太阳直射点位于北半球,即从春分日经过夏至日到秋分日),全球各地太阳东北升,西北落,而且纬度越高,太阳升落的方位越偏北(极点和出现极昼夜的地方除外);北半球的冬半年(太阳直射南半球,从秋分经过冬至到春分日),全球各地太阳东南升,西南落,纬度越高,太阳升落的方位越偏南(极点和出现极昼夜的地方除外)。 (3)就某一地点而言,在太阳直射点向北运动期间,太阳升落的方位将日渐偏北;反之则日渐偏南。(4)南北极点上,太阳高度在一天中是不变的(即太阳周日视运动轨迹总是与极点的地平圈平行),太阳在一天中没有明显的升起和落下。 (二)、太阳视运动图的判断方法: 太阳视运动是地球自转造成的,一天中,地球自西向东自转,看太阳在天空中以观测者为中心,自东向西运动,

一天转一圈。观测者所在的平面是地表切面,叫做地平圈,以观测者为中心的大球面为天球,天体在天球上运动。 (1)太阳视运动最高位置为正午,正午太阳高度为从地平圈中心向太阳最高位置的连线与地平圈的交角,地平圈以上部分长度反映昼长,以下表示夜长。(2)不同半球的正午太阳偏向:北回归线以北和南回归线以南地区,太阳轨迹是平行的。北回归线以北地区,一年中太阳总是偏向南方,每天太阳最高时太阳在正南,南回归线以南地区,一年中太阳总是偏向北方,太阳最高时在正北,根据一年中太阳视运动最高、最低、居中位置来判断季节。 (3)南北回归线之间地区,太阳轨迹也是平行的,只不过正午时太阳有时位于观测者以北,有时位于观测者正头顶(正午太阳高度为90度,正午太阳高度为太阳与地平

日出日落时间的计算以及中国常见的日出日落时间

日出日落时间的计算以及中国常见的日出日落时间 以地球中心为原点O,赤道所在平面为XY平面,东经120度指向西经60度为Y轴正方向.球心指向北极为Z 轴正方向.有了Y轴与Z轴就可定X轴的方向(从东经30度指向西经150度) 球面方程:X^2 + Y^2 + Z^2 = 1 (设地球直径为1) 日出日落时刻圈方程:Y^2 + Z'^2 = 1 (Z'以Z轴作坐标变换,见下面) Z'=Z*sin(β+90) (β为太阳光直射点纬度) 求纬度α度时日出时刻.先解出纬度为α度时的X,Y坐标. X=sinα*sin(β+90)*cos(β+90)/(cosβ*cosβ) Y=-SQRT(1-X^2-sinα*sinα) (SQRT为平方根) 有了XY坐标,求反正切,得出一个角度值(由于在XY平面内,0度在X轴正向,实际的东经120度在Y轴负方向上,即270度角.所以要换算一下,才能得出经度差) 实算一下:代入杭州的纬度为30.15度,夏至日时,太阳直射点纬度为23.4333度. 算出X=-0.21835,Y=-0.83578,反正切得出-104.64度.计算时假设杭州在Y轴负方向上(即270度或-90度).两者之间相差14.64度,换成时间就是58.56分钟. (计算出的14.64度的含义是指,夏至日那天,当赤道上(北纬0度)东经120度的地方看到日出时,北纬30.15度,东经(120-14.64)度的地方也正好看到日出.) (换句话说:当赤道上东经120度的地方看到日出时,北纬30.15度东经120度的地方日出已经过去58.56分钟了.由于赤道上是昼夜等分的(假设太阳是个点光源),即日出时刻一定在6:00.那么同一经度的北纬 30.15度地方,日出时间是5:01:26左右.杭州东经120度10分.比120度还早了40秒钟.所以日出时间为5:00:46) 查寿星万年历,杭州在夏至日的日出时间为4:58:07,日落时间19:04:07. 实测数据 2009年5月1日星期五所有时间为北京时间 (任意地点日月升落时刻查询) 省会城市

容器充气时间计算公式quan教程文件

容器充气时间计算公 式q u a n

真空容器充气时间计算公式 真空冷冻干燥结束时,需充气取出工件。向真空容器内充气时间的计算,真空技术网曾经给出了计算公式。作者在利用这些公式计算充气时间时发现了不合理的现象: 充气过程开始慢、中间快、结束时慢,因此对这些公式的适用范围产生了质疑。本文从壅塞流的角度,认为真空技术网提供的公式仅适用于亚音速充气过程,并推导出了音速充气与亚音速充气时间的计算公式、简易计算式,供大家参考、讨论。 壅塞流简介 当通过阀孔向真空容器内充气时,给定气源压力为大气压,真空容器内真空度越高,流速越大,当流速达到音速时,会产生压力突变, 流速不再随真空容器内真空度的升高而增加,保持音速充气。 真空容器充气时间计算 研究表明,当气源压力与真空容器内压力之比大于临界压力比时,充气过程为音速充气过程,反之则为亚音速充气过程。对于空气,临界压力比约为1.9(1/0.525)。真空冷冻干燥过程结束时的充气可视为气源压力为101325Pa,容器压力为0.5Pa的充气过程。压比远大于临界压力比,因此,此充气过程为先音速充气,后亚音速充气。容易证明,大气压下的空气通过阀孔流入真空容器时,不论真空容器内的压力如何改变,流动状态只能是粘滞流。在粘滞流状态下,气体流经小孔的流量为 式中A———充气阀孔截面积,m2 Pa———大气压力,Pa P2———真空容器内压力,Pa K———绝热指数,取k=1.4 R———气体常数,8.3143J/(K.mol) M———气体摩尔质量,kg/mol T———气体温度,K

Q———流量,Pa.m3/s 真空状态下流量公式为 式中P———容器压力,Pa V———气体体积,m3 t———时间,s 音速充气所需时间 音速充气时,充气流量为定值,由式(2)知容器压力与充气时间成线性关系。因此可以很容易的推导出音速充气时间计算公式: 式中t ———充气时压力由P0上升到P所需时间,s P0———真空容器充气前初始压力,Pa P———真空容器充气后压力,Pa Qc———音速状态下流量,Pa.m3/s 对于20℃的空气,P0= 0.5Pa可得到简易计算式: 当然式(4)成立的条件是P/Pa≤0.525。 对于式(4),令P=0.525Pa,就得到音速充气的总时间:

关于日出日落方位的计算与分析

关于太阳视运动日出日落方位探究 四川省成都市武侯高级中学赵廷权 摘要:太阳在天空中的运动是我们日常生活中最容易观测到的自然现象之一,探究它的运动规律可以培养我们的空间想象力和逻辑思维能力。非极昼地区太阳视运动应抓住三个特殊位置:日出、日落和正午太阳所处位置,通过这三个位置即可绘出一天中太阳视运动路线。高中地理的难点在地球运动,而太阳视运动又是地球运动的难点之一,涉及的内容为解日出日落方位、日影朝向、太阳高度变化等问题提供解题依据。本文将在有关天球系统等地理原理基础之上,运用较为简单的数学方法,计算日出日落方位并进行具体分析。 关键词:太阳视运动天球日出日落方位 日出日落方位的问题,一直广受关注,引起一系列热烈讨论。本文将从认识天球系统开始,运用较为简单的数学方法,对日出日落方位进行具体分析。 一、天球系统 天球是人类为方便观察天体在天空中的视位置而假想的一个球体。天球的球心是观测者或地心,天球的半径是任意的。地平圈是通过地心,且垂直于当地铅垂线的平面的无限扩大,同天球相割而成的天球大圆。它把天球分为可见和不可见两部分。地平圈的两极是天顶和天底。天赤道是地球赤道平面的无限扩大,同天球相割而成的天球大圆。天赤道南北两半球。它的两极叫天北极(P)和天南极(P’),如图1。根据以上关系,还可以得到这样的关系:天顶赤纬=当地纬度=仰极高度。[1]如图2。 图1 图2 在地球上的观测者看来,整个天球像是在围绕着我们旋转。这种视运动是地球自转的反映。人们感觉不到地球的自转而是感觉到地外的天空,包括全部日月星辰,概无例外地以相反的方向(向西)和相同的周期(1日)运动。这种视运动被叫做天球周日运动。在北半球看来,天球的周日绕转中心是天北极。紧靠天北极有一颗较明亮的恒星,被称为北极星。天体周日运动行经的路线叫周日圈。天体的周日圈,就是它所在的那条赤纬圈,与天赤道平行。[2]太阳的周日视运动就是这样的情况。并且,由于黄赤交角的存在,以一年为周期,太阳行经路线圈在23°26′N—23°26′S间作回归运动,如图3。同时,根据图2还可以得出,纬度不同,则当地地平圈与天赤道的交角则不同,那么同一天,不同纬度地

全国各大城市日出日落时间表

全国各大城市日出日落时间表全国各大城市日出日落时间表1日期 北京 天津 石家庄 太原 呼和浩特 沈阳 长春 哈尔滨 上海

南京 月日 时分时分时分时分时分时分时分时分时分时分时分时分时分时分时分时分时分时分

时分时分 1 1 1 11 1 21 7 37 17 00 7 36 17 09 7 32 17 20 7 31 16 59 7 30 17 08 7 27 17 19 7 39 17 13 7 39 17 22 7 35 17 33 7 46 17 21 7 46 17 30

7 58 17 16 7 57 17 26 7 53 17 37 7 14 16 26 7 13 16 36 7 08 16 47 7 13 16 12 7 12 16 22 7 07 16 34 7 15 16 00 7 13 16 10 7 07 16 23 6 53 1 7 03 6 54 17 11 6 52 17 19

7 07 17 19 7 05 17 28 2 1 2 11 2 21 7 24 17 34 7 13 17 46 7 00 17 57 7 19 17 32 7 08 17 44 6 56 17 55 7 27 17 45 7 18 17 56 7 06 18 07 7 35 17 53

7 13 18 15 7 44 17 50 7 33 18 03 7 20 18 46 6 59 1 7 01 6 4 8 17 14 6 34 17 26 6 56 15 49 6 44 1 7 03 6 29 17 16 6 56 16 39 6 43 16 54 6 2 7 17 08 6 4 7 17 29 6 40 17 3 8 6 30 17 46

怎样用经纬度计算日出日落的时间

怎样用经纬度计算日出日落的时间 下面是一种随经纬度变化的日出日落时间计算方法,我成功运用在一智能路灯控制器中,希望对需要的朋友有帮助。 已知:日出日落时太阳的位置h=-0.833°,要计算地的地理位置,经度Long,纬度G1at,时区zone,UTo为上次计算的日出日落时间,第一次计算时UTo=180°。 (1)先计算出从格林威治时间公元2000年1月1日到计算日天数days; (2)计算从格林威治时间公元2000年1月1日到计算日的世纪数t, 则t=(days+UTo/360)/36525; (3)计算太阳的平黄径L=280.460+36000.770×t; (4)计算太阳的平近点角 G=357.528+35999.050×t (5)计算太阳的黄道经度 λ=L+1.915×sinG+0.020xsin(2G); (6)计算地球的倾角ε=23.4393-0.0130×t; (7)计算太阳的偏差δ=arcsin(sinε×sinλ); (8)计算格林威治时间的太阳时间角GHA: GHA=UTo-180-1.915×sinG-0.020×sin(2G) +2.466×sin(2λ)-0.053×sin(4λ) (9)计算修正值e: e=arcos{[ sinh-sin(Glat)sin(δ)]/cos(Glat)cos(δ)} (10)计算新的日出日落时间 UT=UTo-(GHA+Long±e); 其中“+”表示计算日出时间,“-”表示计算日落时间; (11)比较UTo和UT之差的绝对值,如果大于0.1°即0.007小时,把UT作为新的日出日落时间值,重新从第(2)步开始进行迭代计算,如果UTo和UT之差的绝对值小于0.007小时,则UT即为所求的格林威治日出日落时间;

古代时间的计算方法

芈中国古代时间的计算方法(1) 膄现时每昼夜为二十四小时,在古时则为十二个时辰。当年西方机械钟表传入中国,人们将中西时点,分别称为“大时”和“小时”。随着钟表的普及,人们将“大时”忘淡,而“小时”沿用至今。 芁古时的时(大时)不以一二三四来算,而用子丑寅卯作标,又分别用鼠牛虎兔等动物作代,以为易记。具体划分如下:子(鼠)时是十一到一点,以十二点为正点;丑(牛)时是一点到三点,以两点为正点;寅(虎)时是三点到五点,以四点为正点;卯(兔)时是五点到七点,以六点为正点;辰(龙)时是七点到九点,以八点为正点;巳(蛇)时是九点到十一点,以十点为正点;午(马)时是十一点到一点,以十二点为正点;未(羊)时是一点到三点,以两点为正点;申(猴)时是三点到五点,以四点为正点;酉(鸡)时是五点到七点,以六点为正点;戌(狗)时是七点到九点,以八点为正点;亥(猪)时是九点到十一点,以十点为正点。 袈古人说时间,白天与黑夜各不相同,白天说“钟”,黑夜说“更”或“鼓”。又有“晨钟暮鼓”之说,古时城镇多设钟鼓楼,晨起(辰时,今之七点)撞钟报时,所以白天说“几点钟”;暮起(酉时,今之十九点)鼓报时,故夜晚又说是几鼓天。夜晚说时间又有用“更”的,这是由于巡夜人,边巡行边打击梆子,以点数报时。全夜分五个更,第三更是子时,所以又有“三更半夜”之说。 蚆时以下的计量单位为“刻”,一个时辰分作八刻,每刻等于现时的十五分钟。旧小说有“午时三刻开斩”之说,意即,在午时三刻钟(差十五分钟到正午)时开刀问斩,此时阳气最盛,阴气即时消散,此罪大恶极之犯,应该“连鬼都不得做”,以示严惩。阴阳家说的阳气最盛,与现代天文学的说法不同,并非是正午最盛,而是在午时三刻。古代行斩刑是分时辰开斩的,亦即是斩刑有轻重。一般斩刑是正午开刀,让其有鬼做;重犯或十恶不赦之犯,必选午时三刻开刀,不让其做鬼。皇城的午门阳气也最盛,不计时间,所以皇帝令推出午门斩首者,也无鬼做。 羃刻以下为“字”,关于“字”,广东广西的粤语地区和福建广东的闽南语地区至今仍然使用,如“下午三点十个字”,其意即“十五点五十分”。据语言学家分析,粤语中所保留的“古汉语”特别多,究其原因,盖因古中原汉人流落岭南,与中原人久离,其语言没有与留在中原的人“与时俱进”。“字”以下的分法不详,据《隋书律历志》载,秒为古时间单位,秒以下为“忽”;如何换算,书上没说清楚,只说:“‘秒’如芒这样细;‘忽’如最细的蜘蛛丝”。 莁古时计时工具有两种,一是“日晷”,二是“漏”。日晷是以太阳影子移动,对应于晷面上的刻度来计时。日晷不用说了,大家应该在北京故宫里和观象台上见过。诗词中所常用的漏壶,即刻漏制记时法,最早出现于西汉,将一昼夜平分为一百个等分,也称百刻记时制。昼夜的比例是40:60,冬夏相反。漏是以滴水为计时,是由四只盛水的铜壶从上而下互相迭放的组合。上三只底下有小孔,最下一只竖放一个箭形浮标,随滴水而水面升高,壶身上有刻度,以为计时。原一昼夜分100刻,因不能与十二个时辰整除,又先后改为96,108,120刻,到清代正式定为96刻;就这样,一个时辰等于八刻。一刻又分成三份,一昼夜共有二十四份,与二十四个节气相对。注意,这分不是现时的分钟,而是“字”,在两刻之间,用两个奇怪符号来刻,所以叫做“字”。字以下又用细如麦芒的线条来划分,叫做“秒”;秒字由“禾”与“少”合成,禾指麦禾,少指细小的芒。秒以下无法划,只能说“细如蜘蛛丝”来说明,叫做“忽”;如“忽然”一词,忽指极短时间,然指变,合用意即,在极短时间内有了转变。 艿“更”是一种在晚上以击点报时的名称。从酉时(今之晚上七点)起,巡夜人打击手持的梆子或鼓,此称为“打更”。七点至九点一击,为一更;九点至十一点两击,为二更;十一点至凌晨一点三击,为三更;一点至三

超级电容充放电时间计算方法修订稿

超级电容充放电时间计 算方法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

超级电容充放电时间计算方法 1法拉=1000000微法 1微法=1000000皮法 12V,10法拉的电容,对12V,的用电器放电应该在400秒时间内放完 电容没有功率,在电路中只要电压不超过耐压值27v就可以。 普通蓄电池如12V14安时的放电量=14×3600∕12=4200(F) 电流的大小和负载相关,电容放电,电压会降低的,具体可以参考电容的放电曲线。如果想有稳定的电压和电流可以在电容后增加DC-DC的稳压电路 一般应用在太阳能指示灯上时, LED 都釆用之闪烁妁发光, 例如釆用一颗 LED 且控制每秒闪烁放电持续时间为秒, 对超级电容充电电流 100mA 下面以 / 50F在太阳能交通指示灯为例, 超级电容充电时间如下: C X dv = I X t C: 电容器额定容量; V: 电容器工作电压 I: 电容器充电 t: 电容器充电时间 R: 电容器内阻 dv: 工作电压差 故 / 50F 超级电容充电时间为: t = ( C X V) / I = (50 X / = 1250S 超级电容放电时间为: C X dv - I X C X R = I X t 故 / 50F 超级电容从放到放电时间为: t = C X (dv / I - R) = 50 X [ ( - ] / - ] = 5332S 应用在 LED 工作时间为 5332 / = 106640S = hr C: 电容器额定容量 (F) R: 电容器内阻 (Ohm) V work: 正常工作电压 (V) V min : 停止工作电压 (V) t : 在电路中要求持续工作时间 (s) I : 负载电流 (A) 超级电容量的计算方式: )-VminC = (Vwork + Vmin)It / (Vwork 例: 如单片机应用系统中, 应用超级电容作为後备电源,在断电後需要用

相关文档
最新文档