电力电缆交流耐压试验研究论文

电力电缆交流耐压试验研究论文
电力电缆交流耐压试验研究论文

电力电缆交流耐压试验研究

摘要:为了能够有效地发现电力电缆局部出现的缺陷,检测电缆承受过电压绝缘的能力,而对电力电缆进行交流耐压试验是完全必要的,有效体现了电力电缆的绝缘强度,最终确保电力电缆的安全运行。

关键词:电力电缆;交流耐压;试验研究

中图分类号:tm247文献标识码: a 文章编号:

前言:

在电力系统中电缆使用极为广泛,其绝缘状况对电力系统配、供、发电的安全运行产生较大影响,所以对电力电缆进行耐压研究,从而来及时发现其存在的缺陷。而在对电力电缆直流耐压试验中由于电压过低,对电力电缆的自身缺陷反应并不灵敏,而这一缺陷在电力电缆的实际运行过程中会产生较为严重的隐患,所以进行交流耐压试验是有必要的。

对电力电缆进行耐压试验中出现的波形、频率、电压在电力电缆内部的分布,符合实际运行的情况,能够及时反映电力电缆的缺陷,同时电缆本身具有较大的容量,以往的电力电缆的交流耐压试验仪器较为庞大、笨重,且在试验现场很难获得工作电流与电源,因此通常选择串联交流谐振设备,其具有降低工作电源的容量、便于运输、重量轻等特点。

1.试验内容

进行电力电缆的交流串联谐振耐压的试验,主要设备由变频控制

电力电缆耐压试验方法

电力电缆耐压试验方法 ?? ?电力电缆耐压试验方法 电缆串联谐振试验装置采用调节电源的频率的方式,使得电抗器与被试电容器实现谐振,在被试品上获得高电压大电流,是当前高电压试验的一种新的方法和潮流,在国内外已经得到广泛的应用。下面是线缆招聘网整理的关于讨论电力电缆耐压试验方法,希望对你有帮助! 一、测量绝缘电阻 应分别在每一相上进行,其他两相导体,电缆两端的金属屏蔽或金属护套和铠装层接入。对于该项试验,只要注意到电缆是容性设备,对容性设备做绝缘电阻和吸收比时应注意到的情况。例如:试验前后的充分放电,先起火后搭接,先断连后停电摇表等。 绝缘电阻随温度变化而小正,环境温度,埋设好的电缆需要记录土壤温度。黏性浸渍纸绝缘电缆的温度校正系数所示。 线缆 二、直流耐压和泄漏电流试验 油纸绝缘的电缆只做直流耐压,不做交流耐压。因为交流Ig增大有可能导致热击穿;热态时,电场分布不均匀,易损伤电缆,应注意:电缆芯线接负极性:电缆受潮后,水分带正电荷,如果芯接负极性,水分会向芯线集中,绝缘中水分增加,泄漏电流增大,易发现缺陷。如果芯线正极性,水分向铅包渗透,绝缘中水分减少,泄露电流下降,不易发现缺陷。 三、橡塑电缆试验 橡塑电缆指聚氯乙烯、交联聚乙烯、乙丙橡皮绝缘电缆。其特点是容量大,电压等级高结构轻、易弯曲,目前已逐步取代油纸绝缘电缆。

交联聚乙烯电缆和大家熟悉的油浸纸统包电缆的区别除了相间主绝缘是交联聚乙烯塑料外,还有两层半导体胶涂层。在芯线的外表面涂有一曾半导体胶,克服电晕和游离放电,使芯线与绝缘层之间有良好的过渡,在相间绝缘外表面,铜带屏蔽层内涂有第二层半导体体胶。铜带屏蔽层只是一层 0.1mm厚的薄铜带,组成了相间屏蔽层。 1.判断橡塑电缆的内护套及外护套是否进水的方法 用绝缘电阻表测量绝缘电阻,用500V绝缘电阻表,当每千米的绝缘电阻低于0.5MΩ,应采用下述方法判断外护套是否进水。 用万用表测量绝缘电阻,这种方法的依据是:不同金属在电解质中形成原电池。 当交联电缆的外护套破损进水后,由于不是电解质,在铠装层的镀锌带上产生一个对地是 (-0.76)V的电位,如果内衬层也破坏进水,那么铜屏蔽层上会有+0.334V的电位。用万用表的"正"、"负"表笔换测量铠装层对地、铠装层对铜屏蔽层之间的电阻。如果正负两次相测值差较大、则说明原电池形成了,护套有破损。此时在测量回路中由于形成的原电池与万用表的干电池相串联,当极性组合使电压相加时,测得的电阻性较小,反之,测得的电阻值较大,如果没有破损,正接、反接测得的电阻值应一样。 在电缆投运前,重做终端或接头后,内衬层破损进水后:用双臂电桥测量在相同温度下的铜屏蔽和导体的直流电阻。当前者与后者之比与投运前相比增加时,表明屏蔽层的直流电阻增大,铜屏蔽层有可能被腐蚀。当该比值与投运前相比减少时,表明附件中的倒替连接电的接触电阻有增大的可能。

电缆如何做交流耐压试验

电缆如何做交流耐压试验 1、问题的提出 目前在国际和国内已有越来越多的XLPE交联聚乙烯绝缘的电力电缆替代原有的充油油纸绝缘的电力电缆。但在交联电缆投运前的试验手段上由于被试容量大和试验设备的原因,很长时间以来,仍沿袭使用直流耐压的试验方法。近年来国际、国内的很多研究机构的研究成果表明直流试验对XLPE交联聚乙烯电缆有不同程度的损害。有的研究观点认为XLPE结构具有存储积累单极性残余电荷的能力,当在直流试验后,如不能有效的释放掉直流残余电荷,投运后在直流残余电荷加上交流电压峰值将可能致使电缆发生击穿。国内一些研究机构认为,交联聚乙烯电缆的直流耐压试验中,由于空间电荷效应,绝缘中的实际电场强度可比电缆绝缘的工作电场强度高达11倍。交联聚乙烯绝缘电缆即使通过了直流试验不发生击穿,也会引起绝缘的严重损伤。其次,由于施加的直流电压场强分布与运行的交流电压场强分布不同。直流试验也不能真实模拟运行状态下电缆承受的过电压,并有效的发现电缆及电缆接头本身和施工工艺上的缺陷。因此,使用非直流的方法对交联电缆进行耐压试验就越来越受到人们的重视。目前,在中低压电缆上国外已使用超低频电源(VLF)进行耐压试验。但由于此类VLF的电压等级偏低,尚不能用于110kV及以上的高压电缆试验。在国内,对于低压电缆,这种方法也使用过,但由于试验设备的原因,没能得到大面积的推广。而近些年由于城、农网建设改造的进行, XLPE交联电缆越来越多,仅仅靠直流耐压试验后就将电缆投入运行,而在运行电压下发生电缆或电缆头击穿的事例也时有发生。所以,大家都在探索新的试验方法。 2、试验频率 由于电缆的电容量较大,采用传统的工频试验变压器很笨重,庞大,且大电流的工作电源在现场不易取得。因此一般都采用串联谐振交流耐压试验'>交流耐压试验设备。其输入电源的容量能显著降低,重量减轻,便于使用和运输。初期多采用调感式串联谐振设备(50Hz),但存在自动化程度差、噪音大等缺点。因此现在大都采用调频式(30-300Hz)串联谐振试验设备,可以得到更高的品质数(Q 值),并具有自动调谐、多重保护,以及低噪音、灵活的组合方式(单件重量大

电力线路论文电力电缆论文

电力线路论文电力电缆论文 预防与处理架空电力线路冰冻灾害的对策研究 摘要:分析了冰冻灾害给架空电力线路造成的危害,提出了预防架空电力线路冰冻灾害的措施,对新建的架空电力线路和已有的电力线路的预防和处理手段进行了深入的探讨。就如何做好架空电力线路的抗冰冻灾害设计做了详细的研究,旨在为提高我国架空电力线路的抗冰冻灾害能力,保证我国电力运行的安全等提供理论参考。 关键词:架空电力线路;抗冰冻;灾害 最近几年来,因为电力线路受到冰冻灾害的影响,我国曾多次发生大范围的断线、倒塌等事故。分析冰冻灾害产生的原因,可以大致归纳出两类,一类是从来没有产生过冰冻灾害的地区因为线路的设计中没有考虑冰冻,导致防御效果较低,使得线路的抗冰冻能力较差,遇到严重的冰冻灾害很容易造成损失。另一类是虽然设计了一定的防冰冻害能力,但是由于存在不同程度的薄弱环节而受到冰冻灾害的影响。笔者根据自身经验,认为重冰线路的防护措施要做到预防和治理相结合,使用不同的线路设计进行防冰冻,最大程度上保证电力线路的安全使用。 一、冰冻灾害对架空电力线路造成的危害 架空线路履冰一方面给电力线路的运行和维护带来很大的麻烦,另一方面还可能造成线路短路,绝缘子闪络,导致电线断掉、倒杆等事故的产生。尤其是冰冻灾害产生以后,因为气候条件恶劣,常常会

产生电力中断、冰雪封路、交通严重受阻等情况而影响了维修抢修工作的实施,因此造成了长时间的电力中断情况的产生,带来了严重的后果。概括起来,冰冻灾害造成的架空电力线路的危害主要有以下几种。 首先是杆塔倒塌事故。这种事故的产生一般是因为直线杆塔某一方向的侧导线断裂造成的。由于带履冰的导线在塔杆的一侧方向产生了较大的张力,导致塔杆承受过大的负荷承载,从而产生了杆塔倒塌事故。 其次是相间短路事故。假如导线在杆塔上是按照垂直排列的方式布线的,当导线与避雷线上的履冰产生一定程度的脱落时,因为各个导线的荷载分布不均,导致导线产生跳跃现象,造成了相间短路事故的发生。 安全距离不足也会造成短路事故,因为各档距之内的线路受到冰冻害的影响等原因,使得各档距范围内的线路弧垂度发生了一定程度的变化。假如履冰现象严重,将导致导线下垂情况的出现,此时的安全距离过小将会引起短路等事故的产生。 再次就是因为绝缘子串短路引起的接地事故。绝缘子表面履冰之后,虽然看起来冰层的厚度没有增加太大的重量,但此时会大大减少绝缘子串的绝缘能力,导致绝缘子串短路,从而产生接地事故。 二、加强冰冻灾害的整体观测,进行有针对性的设计和维护 1.针对冰冻灾害高发地区的害情进行资料搜集

(完整版)35KV单芯电缆头安装工艺规范及试验规范

35KV单芯电缆头安装工艺规范及试验规范 一、电缆头的处理注意事项: 1、电缆的剥切要小心,严禁伤害主绝缘层。 2、缠绕填充胶、密封胶时要防止局部过粗,防止冷缩管套不下去或不到位。 3、抽拉支撑条时用力要均匀,防止拉脱或错位。 4、半导体层要剥离干净,无残留,半导层末端应平整,并削成锥形。 5、主绝缘层应打磨光滑,无坑洼现象,套装冷缩管前清洁干净,均匀涂抹一层硅脂膏,但不能涂到半导层上,否则无法泄露电荷。硅脂膏必须要涂抹,用来填补绝缘层微小挖坑等以补偿主绝缘。 6、套装终端体套管式必须按照说明书定好位套装,使半导层部分与应力锥可靠搭接。 7、主绝缘长度尺寸应不小说明书的尺寸,否则可能造成泄漏量增大等引发电缆故障。 8、单芯电缆要检测一下恒力弹簧是否有磁性,应该是无磁性的。钢凯与铜屏蔽分别引出接地线,保证在引出位置不能短接。 9、绝缘层端部与接线端子间的绝缘层要削坡角,应平整光滑。 二、21/35-26/35KV电缆头的安装步骤及规范: 1、准备准备: 检查电缆绝缘,详细阅读说明书,准备必须工具。 2、电缆处理及准备: 核对电缆相序,校直电缆并固定 剥离电缆外护套、钢凯和内护套层。 钢凯用恒力弹簧临时固定,用钢锯顺钢凯方相锯一环形深痕,不能锯断第二层钢凯,用一字螺丝刀撬起一个缺口,然后用钳子把钢凯撕开,脱出钢凯带,处理好锯断处的毛刺。外护套与钢凯端部尺寸为30mm。 剥内护套层,用壁纸刀慢慢剥开内护套,保证铜屏蔽与钢凯之间的绝缘。钢凯带

端部距内护套端部20mm。 用PVC带绕包铜屏蔽端口,防止散开。 3、接地处理: 打磨钢凯表面,用恒力弹簧固定接地线,地线在恒力弹簧固定时至少反折一次。 在铜屏蔽根部用恒力弹簧固定另一组接地线,地线在恒力弹簧固定时至少反折一次。 4、密封处理 用J-35或J-20的自粘胶带绕包外护套端部、钢凯端部,内护套,反折铜屏蔽接地线绕包。保证屏蔽层与钢凯之间接地线的绝缘。 用红色的密封胶继续绕包处理,外面再包一层PVC胶带。 5、安装冷缩绝缘直管 按正确的方向套入冷缩管,确保冷缩管与电缆外护套搭接50-60mm,均匀用力拉出支撑条至全部收缩。注意:铜屏蔽接地线与钢凯接地线在引出冷缩直管段之前不能碰到一起,保证两者之间绝缘。 6、剥铜屏蔽和半导体层 首先预留的主绝缘和接线端子的长度,铜屏蔽与冷缩直管段端部距20mm,铜屏蔽与半导体端部20mm,主绝缘的长度即从半导体端部和接线端端子根部应不小于315mm,接线端子长度与主绝缘端部应大约有5mm的余量。 用PVC胶带在铜屏蔽端部绕包两圈,使PVC外侧(电缆端部)边线作为铜屏蔽的断口边线,用壁纸刀在铜屏蔽断口边线上轻轻地划一刀刀痕,用一字螺丝刀撬开一个缺口,然后用钳子慢慢把铜屏蔽沿断口边线撕开,铜屏蔽的断口要整齐、毛刺打磨掉。去掉PVC胶带,用半导体胶带把铜屏蔽端部绕包两圈。 半导体层断口位置(距铜屏蔽端部20mm)用玻璃片或刀片画一个环痕,用玻璃片慢慢把半导体端部刮开,在断口处刮一个斜坡,断口用专用砂纸打磨平整、光滑

电力电缆试验规程完整

11 电力电缆线路 11.1 一般规定 11.1.1 对电缆的主绝缘作直流耐压试验或测量绝缘电阻时,应分别在每一相上进行。对一相进行试验或测量时,其它两相导体、金属屏蔽或金属套和铠装层一起接地。 11.1.2 新敷设的电缆线路投入运行3~12个月,一般应作1次直流耐压试验,以后再按正常周期试验。 11.1.3 试验结果异常,但根据综合判断允许在监视条件下继续运行的电缆线路,其试验周期应缩短,如在不少于6个月时间,经连续3次以上试验,试验结果不变坏,则以后可以按正常周期试验。 11.1.4 对金属屏蔽或金属套一端接地,另一端装有护层过电压保护器的单芯电缆主绝缘作直流耐压试验时,必须将护层过电压保护器短接,使这一端的电缆金属屏蔽或金属套临时接地。 11.1.5 耐压试验后,使导体放电时,必须通过每千伏约80kΩ的限流电阻反复几次放电直至无火花后,才允许直接接地放电。 11.1.6 除自容式充油电缆线路外,其它电缆线路在停电后投运之前,必须确认电缆的绝缘状况良好。凡停电超过一星期但不满一个月的电缆线路,应用兆欧表测量该电缆导体对地绝缘电阻,如有疑问时,必须用低于常规直流耐压试验电压的直流电压进行试验,加压时间1min;停电超过一个月但不满一年的电缆线路,必须作50%规定试验电压值的直流耐压试验,加压时间1min;停电超过一年的电缆线路必须作常规的直流耐压试验。

11.1.7 对额定电压为0.6/1kV的电缆线路可用1000V或2500V兆欧表测量导体对地绝缘电阻代替直流耐压试验。 11.1.8 直流耐压试验时,应在试验电压升至规定值后1min以及加压时间达到规定时测量泄漏电流。泄漏电流值和不平衡系数(最大值与最小值之比)只作为判断绝缘状况的参考,不作为是否能投入运行的判据。但如发现泄漏电流与上次试验值相比有很大变化,或泄漏电流不稳定,随试验电压的升高或加压时间的增加而急剧上升时,应查明原因。如系终端头表面泄漏电流或对地杂散电流等因素的影响,则应加以消除;如怀疑电缆线路绝缘不良,则可提高试验电压(以不超过产品标准规定的出厂试验直流电压为宜)或延长试验时间,确定能否继续运行。 11.1.9 运行部门根据电缆线路的运行情况、以往的经验和试验成绩,可以适当延长试验周期。 11.2 纸绝缘电力电缆线路 本条规定适用于粘性油纸绝缘电力电缆和不滴流油纸绝缘电力电缆线路。纸绝缘电力电缆线路的试验项目、周期和要求见表22。 表22 纸绝缘电力电缆线路的试验项目、周期和要求

电缆厂实习论文

非教育专业本科生实习手册 专业:自动化 班级:12 级 学号:201205070081 姓名:顾朝阳 指导教师:郭艳花 实习单位:河南省科信电缆有限公司 机械与电气工程学院

实习报告 又是一年毕业实习,2015年9月15日,周口师范学院自动化专业五十多个人怀着一份憧憬和激动的心情走进了河南科信电缆有限公司的大门,开启了我们专业实习的序幕。实习过程中,主要是参观企业生产环节的流程,其次是了解并实际参与到生产流程当中去,跟随实习指导进行专业的生产过程的培训,科信电缆是一家专注生产架电导线的企业,是同行业中的佼佼者,并拥有很多专利,很荣幸能参与到科信的实际生产中。 1.实习单位简介 河南科信电缆有限公司是一家集架空导线、电力电缆、电器装备用电缆、通信电缆、通信器材研发、生产、销售与出口贸易为一体的股份制高新技术企业。公司成立于2005年,注册资金3000万元。工厂坐落于河南省周口市经济技术开发区内的科信工业园区,厂区占地面积305亩,建筑面积60000多平方米,公司现有员工500多人,其中专业技术人员100多人,从事研究开发设计的有30余人。 公司的发展战略以架空导线、电力电缆、数字通讯电缆为主,以碳纤维、铝包钢、电力光缆、智能光缆为产品产业发展新目标,有效调整产品结构,推动产业升级,提高企业的核心竞争力,现已经形成年产5万吨的高电压、大截面的架空导线产品、碳纤维复合芯铝绞线系列产品、电力光缆OPGW、OPPC等产品的新型生产线。公司产品在市场上有着良好的声誉,受到用户的一致好评。我相信,在这里我们可以学到更多课本里所没有的知识。 2.实习内容及过程 本次实习的时间一共四周,公司实行每周五天,每天八小时工作制,部门安排我们主要以参观学习为主,培训为辅的学习方式来进行实习。主要目的是熟悉公司工作环境与部门制度。 本次实习的主要内容分为公司制度类培训,生产过程基础知识培训,产品基础知识培训及车间学习。 第一部分:企业文化及公司入职培训 首先是对员工考勤、请休假、就餐住宿纪律等相关制度的培训学习来掌握公司各项管理制度,主要以科信电缆厂员工手册《员工手册》、《企业文化手册》、《安全手册》为学习内容。 再者就是学习各工序设备的操作规程,操控方法及安全注意事项来初步了解设备情况及生产情况。 第二部分:生产过程基础知识培训与车间学习相结合 这是实习的主要内容,全面学习各工序工艺知识。 公司生产车间采用流水线作业,电缆的生产一共分为四道工序:拉线,绞线,成缆,护套。各项生产指标都满足国家或者企业相关电缆标准。 公司主要有三个车间导体车间、成缆车间、绝缘车间。 导体车间包括拉线、绞线; 拉线工序的主要功能是将直径是8mm的铜杆经过拉丝机、退火、装盘后成为电缆的最基本元件-----单线。 绞线是通过绞线机将多根单线绞合在一起。 2.1绞线的目的

电力电缆线路交接试验标准

电力电缆线路交接试验标准 一、电力电缆的试验项目,包括下列内容: 1.测量绝缘电阻; 2.直流耐压试验及泄漏电流测量; 3.交流耐压试验; 4.测量金属屏蔽层电阻和导体电阻比; 5.检查电缆线路两端的相位; 6.充油电缆的绝缘油试验; 7.交叉互联系统试验。 注:①橡塑绝缘电力电缆试验项目应按本条第1、3、4、5和7条进行。当不具备条件时,额定电压U0/U为18/30kV及以下电缆,允许用直流耐压试验及泄漏电流测量代替交流耐压试验; ②纸绝缘电缆试验项目应按本条第1、2和5条进行; ③自容式充油电缆试验项目应按本条第1、2、5、6和7条进行; 二、电力电缆线路的试验,应符合下列规定: 1.对电缆的主绝缘作耐压试验或测量绝缘电阻时,应分别在每一相上进行。对一相进行试验或测量时,其它两相导体、金属屏蔽或金属套和铠装层一起接地; 2.对金属屏蔽或金属套一端接地,另一端装有护层过电压保护器的单芯电缆主绝缘作耐压试验时,必须将护层过电压保护器短接,使这一端的电缆金属屏蔽或金属套临时接地; 3.对额定电压为0.6/1kV的电缆线路应用2500V绝缘电阻测试仪测量导体对地绝缘电阻代替耐压试验,试验时间1min。 三、测量各电缆导体对地或对金属屏蔽层间和各导体间的绝缘电阻,应符合下列规定: 1.耐压试验前后,绝缘电阻测量应无明显变化; 2.橡塑电缆外护套、内衬套的绝缘电阻不低于0.5MΩ/km; 3.测量绝缘用绝缘电阻测试仪的额定电压,宜采用如下等级: (1)0.6/1kV电缆:用1000V绝缘电阻测试仪。 (2)0.6/1kV以上电缆:用2500V绝缘电阻测试仪;6/6kV及以上电缆也可用5000V 绝缘电阻测试仪。 (3)橡塑电缆外护套、内衬套的测量:用500V绝缘电阻测试仪。 四、直流耐压试验及泄漏电流测量,应符合下列规定: 1.直流耐压试验电压标准:

电气自动化毕业论文范文

现代职业技术学院 专科毕业论文 题目:变流技术在电力系统中的应用 姓名:博 学号:4 专业:电气自动化 指导老师: 年月日

声明 本人重声明:所呈交的毕业论文,是本人在导师指导下,独立进研究工作所取得的成果。尽我所知,除文中已经注明引用的容外,本毕业论文的研究成果不包含任何他人享有著作权的容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明。 签名: 博日期: 2015年5月25日

目录 引言 (1) 一、变流技术的概况 (1) (一)电力电子变流技术是电力电子技术的一个研究方向 (1) (二)目前我国在电力电子变流技术研究和应用上仍待解决的问题 (2) 二、电力电子技术的应用 (2) (一)整流电路(AC-DC) (2) (二)逆变电路(DC-AC) (3) 1.水力发电的有效功率 (3) 2 . 发电厂风机水泵的变频调速 (3) 3 . 太阳能发电控制系统 (4) 三、电力电子技术在电力系统中的应用 (5) (一)发电环节中的应用 (5) (二)输电环节中的应用 (5) (三)配电环节中的应用 (6) 结束语 (6) 致 (7) 【参考文献】 (7)

题目:变流技术在电力系统中的应用 摘要:电力电子变流技术在电力系统中的应用非常广泛,发达在用户最终实用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 关键词: 电力电子变流技术电力系统应用 引言 电力电子技术理论是建立在电子学、电力学和控制学三个学科基础之上的一门新型学科,随着该技术的不断发展,它已广泛的用于交通运输、电力系统、通信系统、计算机系统、新能源系统等,在照明、空调等家用电器及其他领域中也有着广泛的应用。本文主要介绍了电力电子技术在电力系统中的运用 一、变流技术的概况 电力电子技术,又称功率电子技术,服务于以电力半导体器件及“变频技术”为核心的电力电子行业,是20世纪后期诞生和发展起来的一门崭新的技术,主要研究各种电力电子器件,以及这些电力电子器件所构成的各种各样能高效地完成对电能的变换和控制的电路或装置。作为一门新兴学科,电力电子技术是以电力为研究对象的电子技术,它利用各种电力电子器件和控制技术对电能(包括电压、电流、频率和波形等)控制和变换。 (一)电力电子变流技术是电力电子技术的一个研究方向 其在可再生能源发电方面应用广泛。可再生能源主要包括风能、太阳能、生

10kV电力电缆泄漏电流及直流耐压试验评分参考标准

10kV电力电缆泄漏电流及直流耐压试验评分参考标准 行业:电力工程工种:配电线路等级:三编号行为领域 e 鉴定范围配电 考核时间60min 题型 B 鉴定题分100 试题名称10kV电力电缆泄漏电流及直流耐压试验 考核要点及其要求1、给定条件:现场对交联聚氯乙烯电力电缆进行绝缘电阻测量;2、电缆运输到现场,测量环境条件满足要求; 3、选择正确的测量仪器、仪表; 4、选择正确的测量方法; 5、试验完成后对试验线芯电荷进行处理; 6、需他人协助完成测量接线和试验; 7、注意安全,操作过程符合《电业安全工作规程》 现场设备、工具、材料1、仪表:直流电压发生器、微安表1只 2、材料:10kV交联聚氯乙烯电力电缆1根 3、工具:测试线1包、短路接地线1组、放电棒1支、绝缘手套1双、遮栏2套、安全警示牌8块、安全指示牌1块、笔1支、纸1张、棉布若干 备注考生自备工作服,安全帽、电工常用工具 评分标准 序号作业名称质量要求 分 值 扣分标准扣分原因 扣 分 得 分 1 着装正确佩戴安全帽,穿工作服,穿绝缘鞋,戴手 套 5 1)未按要求着装扣5分 2)着装不规范扣3分 2 设备选型 和试验电 压确定 正确选择试验设备 正确确定相应电缆试验电压 5 试验设备选择不正确不得分 试验电压选择不正确不得分 3 遮栏设置在电缆两端设置遮拦,在遮拦四周向外设置 “高压危险,严禁靠近”警示牌,在试验段遮 拦入口处设置“从此出入”指示牌 5 1)未设遮拦、或缺少遮拦不得分 2)缺少警示牌扣1分/块 3)缺少指示牌扣2分 4 试验前放 电并接地 将电缆导体及电缆金属护套接地10 未进行放电或放电方法错误扣10 分 5 接线前 准备 检查电缆外护套、绝缘层无破损、无折痕;钢 铠与导体明显分开;将被测电缆擦拭干净 5 1)未进行外观检查扣2分 2)钢铠与导体未分开扣2分 3)未擦拭电缆扣2分 6 试验接线试验接线正确,试验回路各点对地及各点相互 间有足够电气绝缘和距离 接入的微安表应将电缆表面和空间杂散电流 屏蔽 10 接线错误扣3分/项 7 试验时间正确确定耐压时间:交接10min,运行5min 5 耐压时间不正确不得分 8 试验电压 过程 试验电压以0.25、0.5、0.75、1.0倍分段上升, 每点停留1min读取泄漏电流值,最后直升至试 验电压 升压过程中,每次试验电压值应大声唱压 25 1)未按加压过程操作扣15分 2)未正确唱压扣5分/次 9 测试完毕 后应放电 在试验过程中和试验完毕后应对被试电缆充 分放电,直至电缆无残留电荷 10 1)未放电不得分; 2)放电方法不对扣5分 3)放电不充分扣5分 10 测量记录记录测量结果时的温度 正确记录测量结果 10 1)没记录温度不得分 2)测量结果记录不正确扣5分 11 整理现场试验结束后应清理现场,将工器具摆放整齐10 1)未清理现场扣10分;2)现场整理不彻底扣5分 考试开始时间考试结束时间合计考生栏编号:姓名:所在岗位:单位: 考评员栏成绩:考评员:考评组长:日期:

电力电缆耐压试验

100KV/3Km/400m㎡电力电缆耐压试验 基础计算及技术方案 一.试验电压值选用 根据有关省份对电力电缆试验经验及国际IEC电工委员会推荐,系统运行电压U N作为试验电压,所以我们确定用运行电压U N=110kV作为没相对地试验电压,故试验电压U N=110kV。 二.被试电缆技术参数(由用户提供) 电压等级为110kV,线路长度3km,截面积400m㎡,电缆每公里电容量为0.156uF。 被试电缆电容量Cx=0.156×3=0.468μF 三.计算被试品在工频50Hz电源试验容量 U试=U N=110Kv 1 1 容抗Xc= = =6.80kΩ2πfc 2×3.14×50×0.468×10ˉ6 试验电流I试=U试/Xc=110kV/6.8 kΩ=16.2A 试验电源容量P试=U试×I试=110kV×16.2A=1782Kva 四.试验方案确定 如果让系统工作于工频50Hz状态下,采用调感式串联谐振试验设备,其电抗器容量必须达到1782kV A。如直接用工频耐压试验装置,其电源容量达到1782kV A。前者电抗器容量大,体积大,重量重,后者对试验电源容量提出较高要求,为了减小试验电源容量,减小电抗器体积及重量,我们采用调频串联谐振成套试验系统,根据IEC电工委员会推荐之频率范围(20Hz-300Hz)也就是说在该频率范围内,在相同的试验电压下,对电缆耐压试验其结果是等效的。通过下面计算,可以看到调频电源带来的好处,根据被试品的基础技术参数,我们把谐振频率设计于25Hz,计算过程如下: 1 1 Xc2H= = =13.6 kΩ 2πfc 2×π×25×0.468×10ˉ6

35kv300mm2电缆交流耐压试验的变频串联谐振试验技术方案

BPXZ-HT-132kV A/22kV/66k变频串联谐振试验装置 一、被试品对象及试验要求 1.35kV/300mm2电缆交流耐压试验,长度1000m,电容量≤0.19μF,试验频率为30-300Hz,试验电压52kV。 2.10kV/300mm2电缆交流耐压试验,长度3000m,电容量≤1.11μF,试验频率为30-300Hz,试验电压22kV。 二、工作环境 1.环境温度:-150C–45 0C; 2.相对湿度:≤90%RH; 3.海拔高度: ≤2500米; 三、装置主要技术参数及功能 1.额定容量:132kV A; 2.输入电源:220V/380V电压,频率为50Hz; 3.额定电压:22kV;66kV 4.额定电流:6A;2A 5.工作频率:30-300Hz; 6.波形畸变率:输出电压波形畸变率≤1%; 7.工作时间:额定负载下允许连续60min;过压1.1倍1分钟; 8.温升:额定负载下连续运行60min后温升≤65K; 9.品质因素:装置自身Q≥30(f=45Hz); 10.保护功能:对被试品具有过流,过压及试品闪络保护(详见变频电源部分); 11.测量精度:系统有效值1.5级; 四、设备遵循标准 GB10229-88 《电抗器》 GB1094《电力变压器》 GB50150-2006《电气装置安装工程电气设备交接试验标准》DL/T 596-1996 《电力设备预防性试验规程》 GB1094.1-GB1094.6-96 《外壳防护等级》 GB2900《电工名词术语》

GB/T16927.1~2-1997《高电压试验技术》 五、装置容量确定 10kV/300mm2电缆,长度3000m,电容量≤1.11μF,试验频率为30-300Hz,试验电压22kV。 频率取37HZ =2π×37×1.11×10-6×22×103=5.7A 试验电流 I=2πfCU 试 对应电抗器电感量 L=1/ω2C=16H, 设计三节电抗器,单节电抗器为44kVA/22kV/48H 验证:35kV/300mm2电缆交流耐压试验,长度1000m,电容量≤0.19μF,试验频率为30-300Hz,试验电压52kV。 使用电抗器三串联,此时电感量为L=48*3=144H 试验频率f=1/2π√LC=1/(2×3.14×√1445×0.19×10-6)=30Hz。 试验电流 I=2πfCU =2π×30×0.19×10-6×52×103=1.86A 试 结论:装置容量定为132kVA/22kV/66kV,分三节电抗器,电抗器单节为44kVA/22kV/2A/48H通过组合使用能满足上述被试品的试验要求。 六、系统配置及其参数 1.激励变压器JLB-6kV A/1/3kV/0.4kV 1台 a)额定容量:6kV A; b)输入电压:380V,单相; c)输出电压:1kV;3kV ; d)结构:干式;

电缆耐压缺点

高电压试验技术的一个通用原则:试品上所施加的试验电压场强必须模拟高压电器的运行工况,高电压试验得出的通过或不通过的结论要代表高压电器中的薄弱点是否对今后的运行带来危害,这就意味着试验中的故障机理与电器运行中的机理相同的物理过程,按照此原则,交联电缆进行直流耐压试验的问题主要表现在以下几个方面: 1、直流电压下,电场度是按照电阻率分布的,而交联聚乙烯电缆绝缘层中的材料含有很多成分,其电阻率的分布是不均匀的,同时电阻率受温度等因素影响比较大,所以在直流电压下,交联聚乙烯电缆绝缘层中的分布电场是不均匀的,这就可能在直流试验过程中出现绝缘层有的地方电场很强,有点地方电场比较弱的情况,导致局部绝缘击穿,在运行中引起事故。 2、电缆在直流电压下会产生“记忆”效应,存储积累单极性残余电荷,一旦有了由于直流耐压试验引起的“记忆性”,需要很长的时间才能将这种直流电压释放,电缆如果在直流残余电荷未完全释放之前投入运行,直流电压便会叠加在工频电压峰值上,使得电缆上的电压值远远高于其额定电压,从而导致电缆绝缘击穿。 3、交联聚乙烯电缆的直流耐压试验,由于空间电荷效应,绝缘中的实际电场强度最高可达到电缆绝缘工作电场强度的十几倍,所以即使电缆在通过了直流耐压试验不发生击穿,也会引起绝缘的严重损伤 4、直流耐压试验所施加的电压电场强度分布状况与运行中的交流电压电场强度分布状况不同,直流耐压试验并不能模仿运行状态下

电缆成受到过电压,而且也不能有效的发现电缆本身及电缆接头和施工工艺上的缺陷。 5、直流耐压试验有一定的积累效应,能加速绝缘老化,且试验时易发生闪落或击穿。 实践也表明,直流耐压试验不能有效发现交流电压作用下的某些缺陷,如果电缆附件内,绝缘若有机械损伤等缺陷,在交流电压下绝缘最易发现击穿的地点,在直流耐压下往往不能击穿,直流电压下绝缘击穿处往往发生在交流工作条件下绝缘平时不能发生击穿的地点。

35kV-300mm2电缆交流耐压试验的解决方案

BPXZ-HT-120kVA/60kV 调频式串联谐振试验装置 一、被试品对象及试验要求 1.35kV/300mm2电缆交流耐压试验,长度1000m,电容量≤0.19μF,试验频率为30-300Hz,试验电压52kV。 二、工作环境 1.环境温度:-150C–45 0C; 2.相对湿度:≤90%RH; 3.海拔高度: ≤2500米; 三、装置主要技术参数及功能 1.额定容量:120kV A; 2.输入电源:单相380V电压,频率为50Hz; 3.额定电压:20kV;60kV 4.额定电流:6A;2A 5.工作频率:30-300Hz; 6.波形畸变率:输出电压波形畸变率≤1%; 7.工作时间:额定负载下允许连续60min;过压1.1倍1分钟; 8.温升:额定负载下连续运行60min后温升≤65K; 9.品质因素:装置自身Q≥30(f=45Hz); 10.保护功能:对被试品具有过流、过压及试品闪络保护(详见变频电源部 分); 11.测量精度:系统有效值1.5级;

四、设备遵循标准 GB10229-88 《电抗器》 GB1094《电力变压器》 GB50150-2006《电气装置安装工程电气设备交接试验标准》DL/T 596-1996 《电力设备预防性试验规程》 GB1094.1-GB1094.6-96 《外壳防护等级》 GB2900《电工名词术语》 GB/T16927.1~2-1997《高电压试验技术》 五、装置容量确定 35kV/300mm2电缆交流耐压试验,长度1000m,电容量≤0.19μF,试验频率为30-300Hz,试验电压52kV。 频率取30HZ 试验电流 I=2πfCU试 =2π×30×0.19×10-6×52×103=1.86A 对应电抗器电感量 L=1/ω2C=150H, 设计三节电抗器,使用电抗器三节串联可满足35kV电缆的耐压试验,则单节电抗器为40kVA/20kV/50H 结论:装置容量定为120kVA/20kV/60kV,分三节电抗器,电抗器单节为40kVA/20kV/2A/50H通过组合使用能满足上述被试品的试验要求。 试验时设备使用关系列表 设备组合被试品对象 电抗器 40kV A/20kV三节 激励变压器 输出端选择

电缆故障及定位论文

本科毕业设计(论文) 题目:高压电缆故障分析及定位 专业: 年级: 学生姓名: 学号: 指导教师: 2013年9月

高压电缆故障分析及定位 摘要:本文简单介绍了日常电力运行过程中电力电缆所发生的一些故障类型以及造成这些故障的相关原因,并针对这些运行过程中的所遇到的故障类型提出必须的预防性试验规程(包括常规的绝缘电阻试验以及必要时候要做的交流耐压试验),同时本文针对我国现在所能够侦测电缆故障位置的现状与技术条件,着重探讨分析故障定位中电缆的相关参数水平,总结日常电力电缆运行工况中容易出现的相关电缆故障状况,并以此可以更加精确的进行电缆故障的定位(包括预定位和精准定位),从而试总结最为直接可靠的故障定位方式,同时在最后介绍了电缆故障定位仪的相关选型依据(包含平行定位方式、工作频率、探测深度和距离等),供大家参考选型以便在自己日常的电缆维护和诊断故障工作中,能够有所启发。 关键词:电缆故障绝缘检测常规试验脉冲反射电弧反射精定点电缆路径定位测深

目录 1.引言 (1) 2.电缆基本信息与常见故障分析 (2) 2.1电缆的分类 (2) 2.2电缆的型号 (2) 2.3交联电缆的结构 (3) 2.4交联电缆的型号及意义 (4) 2.5交联电缆的优点 (5) 2.6电力电缆故障及分析 (6) 2.6.1接地故障 (6) 2.6.2短路故障 (6) 2.6.3断线故障 (6) 2.6.4闪络故障 (6) 2.6.5综合故障 (7) 2.7电缆常规试验及标准介绍 (7) 2.7.1绝缘电阻测试 (7) 2.7.2交流耐压试验 (7) 2.8交联电缆试验标准的介绍 (7) 3.电缆故障的定位技术及路径仪信息 (9) 3.1识别故障并确定故障性质 (9) 3.2电缆故障预定位 (9) 3.3电缆故障精定位 (9) 3.4电缆故障预定位方法 (9) 3.4.1低压脉冲法 (9) 3.4.2高压弧反射法 (10) 3.5电力电缆故障精定点方法 (11) 3.5.1声测定点法 (11) 3.5.2声磁同步定点法 (12) 3.5.3音频感应法 (13) 3.6电缆路径仪的探测技术和性能分析 (14) 3.6.1电磁法探测的原理 (14) 3.6.2信号连接方式 (15) 3.6.3电缆定位、定深的方法 (17) 3.7电缆路径仪选型 (21) 3.7.1平面定位方式 (21) 3.7.2工作频率 (21) 3.7.3探测深度和距离 (21) 3.7.4测深精度 (21) 3.7.5区分平行电缆 (22) 4.电缆故障举例及分析 (23) 5.结束语 (25) 参考文献 (26)

110kV电力电缆交流耐压试验介绍

随着我国的电力事业的迅速发展,尤其是在城网改造中,用交联聚乙烯电缆(以下简称:“交联电缆”)代替架空线路已成为一种趋势,高电压的电力交联电缆使用的数量越来越多。为了检验和保证交联电缆的安装质量,在送电投运前,对交联电缆进行现场交流耐压试验十分必要。过去由于受试验设备的限制,在现场对交联电缆进行交流耐压试验比较困难,一般采用直流耐压试验来代替。存在两个缺点: 1)直流电压对交联聚乙烯绝缘,有积累效应,即“记忆性”。一旦电缆有了由于直流试验而引起的“记忆性”,它就需要很长时间来释放尽残留在电缆中直流电荷。而当该电缆投入运行时,直流电荷便会叠加在交流电压峰值上,产生“和电压”,远超过电缆的额定电压,使绝缘加速老化,缩短使用寿命。 2)直流电压分布与实际运行的交流电压不同,直流电场分布受电阻率影响,而交流下电场分布与电阻率和介电系数都有关。因此直流耐压试验并不能象交流耐压一样可以准确地反映电缆的机械损伤等明显缺陷,直流试验合格的电缆,投入运行后,在正常工作电压作用下,也会发生绝缘故障。由此可见,对于交联电缆采用传统的直流耐压试验是不可取的,应予淘汰。近年来,国内外许多专家都建议现场对交联电缆进行交流耐压试验来代替直流电压试验。由于电力电缆对地电容量很大,在现场采用50Hz工频进行交流耐压试验条件难以具备,但采用调频电源进行交流耐压试验,条件是基本具备的。根据GB11017-89 [1]及IEC840,现场绝缘耐压试验中使用的交流电压频率,可采用30—300Hz。 2交流耐压的几种试验方法 2·1串联谐振 如果被试品的试验电压较高,而电容量较小, 一般可采用串联谐振方法,见图1所示。 当试验回路中ω0L =1ω0C(C包括CX、C1、C2)时,试验回路产生串联谐振,此时能在试品上产生较高的试验电压(试验电压高低与回路品质因数有关),如果电容C较大,试验回路电流也较大,通过电抗器的电流也较大,这时试验设备一般难以满足现场试验需要;通常该试验接线仅适用于被试品电容量较小而试验电压较高,试验变压器能满足试验容量要求而不能满足试验电压要求的情况。 对于电力电缆来说,被试设备的电容量C是固定的,要使试验回路产生谐振就要改变试验回路的电感L或频率ω,即:ω0=1 LC或L =1ω02C;

电气毕业论文范文

电气毕业论文范文 一:教育机电工程施工质量控制分析 【摘要】在我国高速公路工程的建设过程中,如何有效的保障公路质量是现阶段的重 点问题。交通机电工程是高速公路的基础配套设施,可以有效的保障公路运行的安全性。 本文主要分析了交通机电工程的主要特点,提出了几点保障公路质量控制的措施。 【关键词】交通机电工程;施工质量;控制与解析 交通机电工程是高速公路建设过程中的基本内容,对公路工程等的基础设施保障有着 中要的意义。我国交通机电工程起步较晚,在其施工过程中还是存在一定的问题与弊端的,因此要加强对施工质量的控制。 1交通机电工程的技术特点与发展 交通机电工程主要包含了通信、监控、照明以及收费等方面,这是一种高新技术。交 通机电在实际的应用中有着强大的渗透、管理作用,是未来交通发展的趋势。其主要特点 如下:①技术设计广泛。交通机电工程主要包含了现代电子信息技术、自动监控技术、通 讯技术以及多媒体光纤传输等高新技术。②高新性。交通机电工程的应用技术是科学技术 发展的最前沿。在其传输系统中涉及了多种传输方式。将多种技术有效的融合了起来。③ 技术更新迅速。我国的交通机电工程发展历史较为迅速,应用了多种科学技术,如在电子 计算机自动收费应用中,从最初的手工收费已经发展到现在的全自动收费方式。这些特点 在一定程度上给施工带来了一定的挑战。 2交通机电工程施工环节的质量控制重点 2.1通信系统安装技术 ①明确施工图纸。在机房布置、划线定位以及机架安装等方面对施工工艺进行严格控制,要加强对管线以及电缆内在的连续性的重视,通过严格的测试,保障施工质量。②在 开展管线以及光缆施工作业时候,要合理的进行孔点的布控,在进行管线的安装,应从中 间开始逐步向两边拓展。在进行光缆敷设作业过程中,要先对管道进行清理,保障管道通畅;审核合格之后,在进行电缆铺设,要避免电缆铺设过程中出现损坏、扭绞等问题;在施 工完成之后,要保留一小段光缆,并进行密封处理。 2.2收费系统安装技术 收费系统是高速公路施工建设中的重要组成部分。①模板以及预埋件安装。要以施工 图纸的具体要求为基础,进行模板固定预埋件以及钢筋的安装;同时要通过夹具、斜撑等 器具支牢侧模及支撑。②收费广场线缆敷设。要综合施工现场的地形、地质、管道制定以 及桥架的具体状况,制定合理的施工图纸与计划,要做好前期的准备工作,要对施工过程 中使用的工具清单、审核内容以及电压等进行明确;同时,在实际的敷设过程中,要严格

110kV电缆耐压试验

电缆试验手法的革新 1概述 随着我公司的发展,尤其是在城网改造和城市美化的要求,用交联聚乙烯电缆(以下简称:“交联电缆”)代替架空线路已成为一种趋势,高电压的电力交联电缆使用的数量越来越多。为了检验和保证交联电缆的安装质量,在送电投运前,对交联电缆进行现场交流耐压试验十分必要。过去由于使用交联电缆一般长度都比较长,因此容量较高,受试验设备的限制,在现场对交联电缆进行交流耐压试验比较困难,一般采用直流耐压试验来代替。存在两个缺点: 1)直流电压对交联聚乙烯绝缘,有积累效应,即“记忆性”。一旦电缆有了由于直流试验而引起的“记忆性”,它就需要很长时间来释放尽残留在电缆中直流电荷。而当该电缆投入运行时,直流电荷便会叠加在交流电压峰值上,产生“和电压”,远超过电缆的额定电压,使绝缘加速老化,缩短使用寿命。 2)直流电压分布与实际运行的交流电压不同,直流电场分布受电阻率影响,而交流下电场分布与电阻率和介电系数都有关。因此直流耐压试验并不能象交流耐压一样可以准确地反映电缆的机械损伤等明显缺陷,直流试验合格的电缆,投入运行后,在正常工作电压作用下,也会发生绝缘故障。由此可见,对于交联电缆采用传统的直流耐压试验是不可取的,应予淘汰。近年来,国内外

许多专家都建议现场对交联电缆进行交流耐压试验来代替直流电压试验。由于电力电缆对地电容量很大,在现场采用50Hz工频进行交流耐压试验条件难以具备,但采用调频电源进行交流耐压试验,条件是基本具备的。根据规范现场绝缘耐压试验中使用的交流电压频率,可采用30—300Hz。 2交流耐压的几种试验方法 2·1串联谐振 如果被试品的试验电压较高,而电容量较小, 一般可采用串联谐振方法,见图1所示。 串联谐振的等效电路 当试验回路中ω0L=1ω0C(C包括CX、C1、C2)时,试验回路产生串联谐振,此时能在试品上产生较高的试验电压(试验电压高低与回路品质因数有关),如果电容C较大,试验回路电流也较大,通过电抗器的电流也较大,这时试验设备一般难以满足现场试验需要;通常该试验接线仅适用于被试品电容量较小而试验电压较高,试验变压器能满足试验容量要求而不能满足试验电压要求的情况。

kV电缆试验方案

10kV电力电缆交流耐压试验 编写: 审核: 批准: 配电************* 年月日

1试验目的: 为了检查10kV线电缆的绝缘性能和运行状况是否良好,保证电网的安全运行,参照Q/GXD126.01-2006 《电力设备交接和预防性试验规程》,对其进行试验。 2电缆规范: 电缆型号:YJV22 —3X 240 电缆规格:3X 240mm2 电缆电压:8.7/15kV 电缆电容量:0.37uF/km 电缆长度:km 生产厂家: 出厂日期:年月曰 3试验依据: 。依该标准确定试验电压为21.75kV ( 2.5U Q),试验时间为5min( 2.5U。时)。 4试验仪器: HDSR-F162/162串联谐振试验设备一套; 干湿温度计一块; 10000V兆欧表一块; 工具箱一套; 三相电源线若干。 5试验项目: ①耐压前电缆主绝缘电阻测量; ②串联谐振法交流耐压试验; ③耐压后电缆主绝缘电阻测量; 6试验步骤及技术措施: 6.1电缆主绝缘电阻测量 用10000V兆欧表,依次测量各相线芯对其他两相及金属套的绝缘电阻,金属套及非被试相线芯接地。测量前将被测线芯接地,使其充分放电,放电时间一般为2—5分钟。由于存在吸收现象,兆欧表的读数随时间逐步增大,测量时应读取绝缘电阻的稳定值,作为电缆的绝缘电阻值。 1)测量并记录环境温度、相对湿度、电缆铭牌、仪器名称及编号;

2)将所有被试部分充分放电,非被试相电缆线芯及金属套接地; 3)将兆欧表地线端子(E)用接地线与接地导体连接好,兆欧表火线端子(L) 接至被测部位的引出端头上,兆欧表读数稳定后记录绝缘电阻值。拆除兆欧表相线; 4)将被试电缆对地放电并接地; 5)依照此步骤测试其他两相。 在试验中读取绝缘电阻后,应先断开接至被试品的火线端子,然后再将兆欧表停止运转;由于电缆的吸收现象比较严重,特别是对于大电容电缆,兆欧表开始读数可能非常的低,这一现象是正常的。 1)电缆绝缘电阻不小于10MQ ? km 2)耐压试验前后,绝缘电阻测量应无明显变化。 6.2电缆主绝缘交流耐压试验 图1试验接线图 图中:谐振电抗器额定电压为27kV,每台额定电感量为85H,额定最大工作电流为1.0A ;分压器额定电压为200kV,变比为12000 : 1,电容量为500PF ± 5%。 1.谐振频率计算 a) 10kV3 x 300mm2交联聚乙烯电缆每公里电容量按0.37(卩F/km),电缆长度按1.1km 计算,贝U Cx=0.37 x 1.仁0.407 卩F。 b)补偿电抗器电感采用三节电抗器并联使用,L=85/3=28.33H 。 1 c)------------------ 谐振频率按f = 计算,则f=46.88Hz 。 2 兀JCxL 2.电缆(Cx)电容电流估算 当试验电源频率为46.88Hz、被试品电压为21.75kV 时,通过试品的电容电流约为: 3 l x = 3 C x U=6.28 x 46.88 x 0.407 x 21.75 x 10- =2.61A 3.串联补偿电抗器(L)电流及电压估算 当试验电源频率为46.88Hz、被试品电压为21.75kV 时,通过串联补偿电抗器

相关文档
最新文档