距离保护的振荡闭锁方法综述

距离保护的振荡闭锁方法综述
距离保护的振荡闭锁方法综述

食品工业废水处理常见工艺[文献综述]

文献综述 食品工业废水处理常见工艺 一、前言部分 食品工业是以农、牧、渔、林业产品为主要原料进行加工的工业。食品工业作为中国经济增长中的低投入、高效益产业正在引人注目的发展、扩大;这种扩大对中国的经济发展无疑有促进作用,但从环境保护的角度来讲,食品工业废水对环境的影响也要引起有关方面的高度重视。 食品工业废水主要来源于三个生产工段。一、原料清洗工段:大量沙土杂物、叶、皮、磷、肉、羽、毛等进入废水中,使废水中含大量悬浮物。二、生产工段:原料中很多成分在加工过程中不能全部利用,未利用部分进入废水中,使废水含大量有机物。三、成形工段:为增加食品色香味,延长保存期,使用了各种食品添加剂,一部分流失进入废水,使废水化学成分复杂[1]。 食品工业废水本身无毒性,但含有大量可降解的有机物,废水若不经过处理排入水体会消耗水中大量的溶解氧,造成水体缺氧,使鱼类和水生生物死亡。废水中的悬浮物沉入河底,在厌氧条件下分解,产生臭水恶化水质,污染环境。若将废水引入农田进行灌溉,会影响农业果实的食用,并污染地下水源。废水中夹带的动物排泄物,含有虫卵和致病菌,将导致疾病传播,直接危害人畜健康[2]。 二、食品工业废水处理常见工艺 我国从20世纪80年代开始,各有关部门积极开展食品工业废水治理工作,已开发出多种有关这类废水的高效、低耗的处理工艺。包括好氧生物处理工艺、厌氧生物处理工艺、稳定塘工艺、光合细菌工艺、土地处理工艺以及上述工艺组合而成的各种各样的工艺。除此之外,膜分离技术及膜与生物法相结合的工艺也有研究。 2.1 典型工艺流程 目前国内外,食品工业废水的处理以生物处理[3]为主,较成熟的有厌氧接触法、厌氧污泥床法、酵母菌生物处理法等利用生物技术治理食品工业废水的方法。 2.1.1 废水处理典型工艺流程

输电线路的距离保护习题答案

:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。

(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。(A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。() 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。() 5、阻抗继电器的最小精确工作电压,就是最小精确工作电流与电抗变压器转移阻抗值的乘积。() 6、在距离保护中,“瞬时测定”就是将距离元件的初始动作状态,通过起动元件的动作而固定下来,以防止测量元件因短路点过渡电阻的增大而返回,造成保护装置拒绝动作。()

距离保护地振荡闭锁

§3.5距离保护的振荡闭锁(Power Swing Blocking of Distance Protection ) §3.5.1振荡闭锁的概念(Concept of Power Swing Blocking ) 并联运行的电力系统或发电厂失去同步的现象,称为 电力系统的振荡(Power Swing )。电力系统振荡时,系统两 侧等效电动势间的夹角 在o o 360~0范围内作周期性变化, 从而使系统中各点的电压、线路电流、功率方向以及距离保护的测量阻抗也都呈现周期性变化。这样,以上述这些量为测量对象的各种保护的测量元件,就有可能因系统振荡而动作。 电力系统的振荡是属于严重的不正常运行状态,而不是故障状态,大多数情况下能够通过自动装置的调节自行恢复同步。如果在振荡过程中继电保护动作,切除了重要的联络线,或断开了电源和负荷,不仅不利于振荡的自动恢复,而且还有可能使事故扩大,造成更为严重后果。所以在系统振荡时,要采取必要的措施,防止保护因测量元件动作而误动。这种用来防止系统振荡时保护误动的措施,就称为振荡闭锁。 因电流保护、电压保护和功率方向保护等一般都只应用在电压等级较低的中低压配电系统,这些系统出现振荡的可能性很小,振荡时保护误动产生的后果也不会太严重,所以

一般不需要采取振荡闭锁措施。距离保护一般用在较高电压等级的电力系统,系统出现振荡的可能性大,保护误动造成的损失严重,所以必须考虑振荡闭锁问题。在无特殊说明的情况下,本书所提及的振荡闭锁,都是指距离保护的振荡闭锁。 §3.5.2 电力系统振荡对距离保护测量元件的影响(Effect of Power Swing to Measuring Unit of Distance Protection ) 1.电力系统振荡时电流、电压的变化规律 现以图3-31所示的双侧电源的电力系统为例,分析系 统振荡时电流、电压的变化规律。 设系统两侧等效电动势M E 和N E 的幅值相等,相角差(即功角)为δ,等效电源之间的阻抗为N l M Z Z Z Z ++=∑,其中M Z 为M 侧系统的等值阻抗,N Z 为N 侧系统的等值阻 抗,l Z 为联络线路的阻抗,则线路中的电流和母线M 、N 上的电压分别为: ∑ -∑∑-=?=-=Z e E Z E Z E E I j M N M )1(δ (3-144)

第三章 常用的加工方法综述

第三章常用的加工方法综述 一般情况下,车削的切削过程为什么比刨削、铣削等平稳?对加工有何影响? 答:除了车削断续表面之外,一般情况下车削过程是连续进行的,不像铣削和刨削,在一次走刀过程中刀齿有多次切入和切出,产生冲击。并且当车刀几何形状、背吃刀量和进给量一定时,切屑层公称横截面积是不变的。因此,车削是切削力基本上不发生变化,车削过程要比铣削平稳。又由于车削的主运动为工件回转,避免了惯性力和冲击的影响,所以车削允许采用较大的切削用量进行高速切削或强力切削,有利于提高生产率。 何为周铣和端铣?为什么在大批量生产中常采用端铣而不用周铣? 周铣:是用铣刀圆周表面上的切削刃铣削零件,铣刀的回转轴线平行。 端铣:是用铣刀端面上的切削刃铣削零件,铣刀的回转轴线与加工平面垂直。由于端铣的切削过程比周铣平稳,有利于提过加工质量,并且端铣可达到较小的表面粗糙度,端铣还可以采用高速铣削提高生产效率,也提过已加工表面质量。 【※】镗床镗孔与车床镗孔有何不同?各适合于什么场合? 答。镗床镗孔时,镗刀刀杆随主轴一起旋转,完成主运动,进给运动可由工作台带动零件纵向移动,也可由镗刀刀杆轴向移动实现。车床镗孔主运动和进给运动分别是由零件的回转和车刀的移动。回转体零件上的轴心孔多在车床上加工。箱体类零件上的孔或孔系(相互有平行度或垂直度要求的若干个孔)常用镗床加工。 为什么刨削,铣削只能得到中等精度和较大的表面粗糙度Ra值? 刨削:在龙门刨床上用宽刃细刨刀以很低的切削速度,大进给量和小的切削深度,从零件表面上切去一层极薄的金属,因切削力小,切削热少和变形少。铣削:在铣削过程中铣削力是变化的,切削过程不平稳,容易产生振动,这就限制了铣削加工质量和生产率的进一步提高。 用周铣法铣平面,从理论上分析,顺铣比逆铣有哪些优点?实际生产中,目前多采用哪种铣削方式?为什么? 顺铣比逆铣刀具耐度高,零件表面质量好,零件夹持的稳定性高。多采用逆铣,因为逆铣时,水平分力Fct与进给方向相反,铣削过程中工作台丝杆始终压向螺母,导致因为间隙的存在而引起零件窜动。目前,一般铣床尚没有消除工作台丝杆螺母之间间隙的机构,所以,生产中常采用逆铣法。当铣削带黑皮表面铸件或锻件时,若用顺铣法,因铣齿首先接触黑皮将加剧刀齿的磨损。 镗削的加工特点:可保证平面、各孔、槽的垂直度、平行度。可保证同轴孔的同轴度。可在一次装夹下,加工相互垂直、平行的孔合平面。 砂轮的自悦性:促使砂轮表层磨粒自动脱落,里层新磨粒锋利的切削刃则投入切削,砂轮又恢复了原有的切削性能。 【※】端磨平面时砂轮与零件的接触面积大,磨削力大,磨削热多,散热、冷却和排屑条件差,砂轮端面沿径向各点圆周速度不同,砂轮磨损不均匀,所以端磨精度不如周磨,但是端磨磨头悬伸长度较短,又垂直于工作台面,承受的主要是轴向力,刚度好,加之这种磨床功率较大,故可采用较大的磨削用量,生产效率较高,常用于大批量生产中代替铣削和刨削进行粗加工 内圆磨削的精度和生产率为什么低于外圆磨削表面粗糙度Ra值为什么也略大于外圆磨削 Addition 1、车削:【1】特点:特别适合于有色金属零件的精加工,因为有色金属零件材料的硬度较低,塑性较大,若用砂轮磨削,软的磨屑 易堵塞砂轮,难以得到粗糙度低的表面【2】应用:1.可以加工各种回转表面单件小批量:中小型零件,可选用数控机床加工; 大型圆盘类零件多用立式车床加工成批生产,用车床加工 2、钻孔:【1】没有孔,主进给运动都是钻头完成,粗加工【2】特点:1.钻头易引偏2.排屑困难3.切削温度高,刀具磨损快 3、扩孔:【1】已有孔,半精加工【2】特点:1.刚性较好2.导向作用好3.切削条件较好 4、铰孔:【1】以扩孔或半精镗孔为基础,精加工,公差等级IT8~IT6,用铰刀进行加工【2】铰刀工作部分包括切削部分和修光部分, 5、钻、扩、铰概述:麻花钻,扩孔钻和铰刀都是标准刀具,即定尺寸刀具。对于中等尺寸以下较精密的孔,在单位小批量甚至大批量 生产中,钻、扩、铰都是经常采用的典型工艺;钻、扩、铰只能保证孔本身的精度,而不易保证孔与孔之间的尺寸精度及位置精度。为了解决这一问题,可利用夹具进行加工,也可采用镗孔(※)箱体类:(有平行度或垂直度要求)用镗床加工 6、单刃镗刀镗孔:预加工孔如有轴线歪斜或有不大的位置误差,利用单刃镗孔可予以校正,若用扩孔或铰孔是不易达到的 7、多刃镗刀镗孔:与铰孔类似,不能校正原有孔的轴线歪斜或位置误差 8、镗孔:【1】概念:镗刀对已有孔进行扩大加工的方法【2】对于D>80mm的孔、内呈环形或孔内环槽等,镗削唯一适用【3】公差 等级IT8~IT6,表面粗糙度Ra为1.6~0.8μm;精细镗时尺寸公差等级可达IT7~IT5,表面粗糙度Ra为0.8~0.1μm【4】镗孔可以在镗床上或车床上进行。回转体零件上的轴心孔多在车床上加工,主运动和进给运动分别是零件的回转运动和车刀的移动【5】分类:根据结构和用途不同,镗床分为卧式镗床、坐标镗床、立式镗床、精密镗床,应用最广泛的是卧式镗床【6】镗孔时,镗刀刀杆随主轴一起旋转,完成主运动;进给运动可由工作台带着零件纵向移动,也可由镗刀刀杆轴向移动来实现 9、刨削:主运动:道具的往复直线运动,进给运动:工件随工作台的间歇运动 10、拉削:【1】利用多齿拉刀【2】拉削面积较大的平面时,为减少拉削力,可采用渐进式拉刀进行拉削【3】特点:1.生产率高,在

工业废水处理的十大方法详解

工业废水处理的十大方法详解 中国对废水污染的治理与西方发达国家相比起步较晚,在借鉴国外先进处理技术经验的基础上,以国家科技攻关课题为平台,引进和开发了大量的废水处理新技术,某些项目已达到国际先进水平。这些新技术的投产运行为缓解中国严峻的水污染现状,改善水环境发挥了至关重要的作用。 1膜技术 膜分离法常用的有微滤、纳滤、超滤和反渗透等技术。由于膜技术在处理过程中不引入其他杂质,可以实现大分子和小分子物质的分离,因此常用于各种大分子原料的回收。 如利用超滤技术回收印染废水的聚乙烯醇浆料等。目前限制膜技术工程应用推广的主要难点是膜的造价高、寿命短、易受污染和结垢堵塞等。伴随着膜生产技术的发展,膜技术将在废水处理领域得到越来越多的应用。 2铁碳微电解处理技术 铁碳微电解法是利用Fe/C原电池反应原理对废水进行处理的良好工艺,又称内电解法、铁屑过滤法等。铁炭微电解法是电化学的氧化还原、电化学电对对絮体的电富集作用、以及电化学反应产物的凝聚、新生絮体的吸附和床层过滤等作用的综合效应,其中主要是氧化还原和电附集及凝聚作用。 铁屑浸没在含大量电解质的废水中时,形成无数个微小的原电池,在铁屑中加入焦炭后,铁屑与焦炭粒接触进一步形成大原电池,使铁屑在受到微原电池腐蚀的基础上,又受到大原电池的腐蚀,从而加快了电化学反应的进行。 此法具有适用范围广、处理效果好、使用寿命长、成本低廉及操作维护方便等诸多优点,并使用废铁屑为原料,也不需消耗电力资源,具有“以废治废”的意义。目前铁炭微电解技术已经广泛应用于印染、农药/制药、重金属、石油化工及油分等废水以及垃圾渗滤液处理,取得了良好的效果。 3Fenton及类Fenton氧化法

相间距离保护

实验二 距离保护 (1)实验目的 1. 了解距离保护的原理; 2. 熟悉相间距离保护的圆特性; 3. 掌握距离保护的逻辑组态方法。 (2)实验原理及逻辑框图 1.距离保护的原理及整定方法; 由于电流保护整定值的选择、保护范围以及灵敏系数等方面都直接受电网接线方式及系统运行方式的影响,在35KV 及以上电压的复杂网络中,很难满足选择性、灵敏性以及快速切除故障要求,为此采用距离保护来实现。 距离保护是反应故障点至保护安装地点之间的距离(阻抗),并根据距离的远近而确定动作时间的一种保护装置。 距离保护的Ⅰ段: 它和电流保护的Ⅰ段很类似,都是按躲开下条线路出口处短路,保护装置不误动来整定,可靠系数一般取0.8-0.85。AB K dz Z K Z =?2 ' 距离保护的Ⅱ段: 按以下两点原则来整定: 1)与相邻线路距离保护第Ⅰ段相配合,)'(12 ''??+=dz fz AB K dz Z K Z K Z K K -----一般取0.8;fz K -------应采用当保护1第Ⅰ段末端短路时可能出现的最 小值。如果遇到有助增电流或外汲电流的影响,系数fz K 取小。 2)躲开线路末端变电所变压器低压侧出口处短路时的阻抗值。 K K -----一般取0.7;fz K -------应采用当短路时可能出现的最小值。 计算后,取以上两式中的较小一个,动作时限为下条线路一段配合,一般为0.5S 。 校验:灵敏度一般为≥1.25。 距离保护的Ⅲ段: 一般按躲开最小负荷阻抗来整定。 2.距离保护评价 1)可以在多电源复杂网络中保证动作的选择性。 2)距离Ⅰ段不能保护全长,两端合起来就是30%-40%的线路不能瞬时切除,须经0.5S 的延时才能切除,在220KV 及以上电网中有时候是不满足稳定性要求的,不能作为主保护。 3)由于阻抗继电器同时反应于电压的减低和电流的增加而动作,它较电流、电压保护灵敏。 4)距离Ⅰ段的保护范围不受系统运行方式变化影响,其他两段影响也小,保护范围比较稳定。 5)距离保护接线复杂,可靠性比电流保护低。

第四章距离保护

第四章距离保护 一、GB50062-92《电力装置的继电保护和自动装置设计规范》对距离保护的规定 (一)对110kV线路的下列故障,应装设相应的保护装置 (1)单相接地短路。 (2)相间短路。 (二)110kV线路装设相间短路保护装置的配置原则如下 (1)主保护的配置原则。在下列情况下,应装设全线速动的主保护。 1)系统稳定有要求时。 2)线路发生三相短路,使发电厂厂用电母线或重要用户电压低于额定电压的60%,且其他保护不能无时限和有选择性地切除短路时。 (2)后备保护的配置原则。11OkV线路后备保护配置宜采用远后备方式。 (3)根据上述110kV线路保护的配置原则,对接地短路,应装设相应的保护装置,并应符合下列规定: 1)宜装设带方向或不带方向的阶段式零序电流保护。 2)对某些线路,当零序电流保护不能满足要求时,可装设接地距离保护,并应装设一段或二段零序电流保护作后备保护。 (4)根据上述11OkV 线路保护的配置原则,对相间短路,应装设相应的保护装置,并应符合下列规定: 1)单侧电源线路,应装设三相多段式电流或电流电压保护。 2)双侧电源线路,可装设阶段式距离保护装置。 3)并列运行的平行线,可装设相间横联差动及零序横联差动保护作主保护。后备保护可按和电流方式连接。 4)电缆线路或电缆架空混合线路,应装设过负荷保护。保护装置宜动作于信号。当危及设备安全时,可动作于跳闸。 二、DL 400-91《继电保护和安全自动装置技术规程》规定 (一)ll0~220kV中性点直接接地电力网中的线路保护 (1)对相间短路,应按下列规定装设保护装置: 1)单侧电源单回线路,可装设三相电流电压保护,如不能满足要求,则装设距离保护; 2)双侧电源线路宜装设距离保护。 (2)对接地短路,可采用接地距离保护,并辅之以阶段式或反时限零序电流保护。 (二)330~500kV线路的后备保护 (1)对相间短路,后备保护宜采用阶段式距离保护。 (2)对接地短路,应装设接地距离保护并辅以阶段式或反时限零序电流保护,对中长线路,若零序电流保护能满足要求时,也可只装设阶段式零序电流保护。接地后备保护应保证在接地电阻不大于300Ω时,能可靠地有选择性地切除故障。 第一节距离保护概述 一、距离保护的原理 这种反应故障点到保护安装处之间的距离,并根据这一距离的远近决定动作时限的一种保护,称为距离保护。距离保护实质上是反应阻抗的降低而动作的阻抗保护。 二、距离保护的时限特性 距离保护的动作时限与故障点至保护安装处之间的距离的关系,称为距离保护的时限特性。目前广泛应用的是三段式阶梯时限特性的距离保护。距离保护的Ⅰ、Ⅱ、Ⅲ段与电流保护Ⅰ、Ⅱ、Ⅲ段相似。

继电保护距离保护特性原理说明

三电网距离保护 1距离保护基本原理与构成 1.距离保护的概念 短路时,电压电流同时变化,测量到电压与电流的比值就反映了故障点到保护安装处的距离, 短路时:电流增大、电压变小、 阻抗与电流的关系:故障点与保护安装处越近,阻抗越小,短路电流越大。 阻抗与距离的关系:阻抗与距离成正比,阻抗的单位是欧姆/公里。 距离保护与电流保护的关系:电流保护的范围与距离保护的范围大致相同,电流保护的范围就是用距离来衡量的,电流的保护范围实际反映的是距离的范围。距离与电流是统一的。但是,电流保护只用电流值来判断是否故障,距离保护使用电压、电流2个物理量来判断,因此,距离保护更准确。 2.测量阻抗、负荷阻抗、短路阻抗、整定阻抗、动作阻抗概念辨析? 负荷阻抗:正常运行条件下,额定电压与负荷电流的比值; 短路阻抗:短路发生后,保护安装处的残压与流过保护的短路电流的比值(线路的阻抗值);短路阻抗总小于负荷阻抗。 测量阻抗:继电器测量到的电压除以电流,得到的阻抗值;正常运行时,测量阻抗就是负荷阻抗,短路时,测量阻抗就是短路阻抗。测量阻抗能反应出运行状态。整定阻抗:能使继电器动作的最大阻抗,是一个定值。测量阻抗小于整定阻抗,继电器就动作。阻抗继电器是一个欠量继电器,电流继电器是过量继电器,测量电流大于整定电流时动作。这是一对对偶关系。 动作阻抗:阻抗继电器动作时,测量到的阻抗值。比如:人为设置整定阻抗是20Ω,只要测量到的阻抗值小于20就可以动作,今天动作了一次,一查故障记录,动作阻抗是10Ω,说明动作准确无误。 3.一次阻抗、二次阻抗区别? 这里要对比一次电流和二次电流的概念,道理是一样的。

一次阻抗:一次电压与一次电流的比值, 二次阻抗:二次电压与二次电流的比值, 4.测量阻抗角、负荷阻抗角、短路阻抗角、整定阻抗角、动作阻抗角概念辨析测量阻抗角:测量电压与测量电流的夹角 负荷阻抗角:负荷电压与负荷电流的夹角 短路阻抗角:短路电压与短路电流的夹角 动作阻抗角:继电器动作时,加入继电器的电压与电流的夹角。 整定阻抗角:能够使保护动作的最大灵敏角,这是人为设置的,其余都是测量到的。 5.距离保护的原理 与电流保护一样,需要满足选择性要求,分正方向动作和反方向不动作, 正方向的时候,还判断测量阻抗值,区内动作,区外不动作。 6.测量阻抗怎么表示? 测量阻抗是保护安装处测量的电压与测量电流之比。电压和电流都是向量,带方向的。 阻抗是一个复数,可以用极坐标表示或者用直角坐标表示。 7.测量阻抗在短路前后的差别 短路前:测量到的为负荷阻抗,Z=U/I,负荷电流比短路电流小,额定电压比短路残压高,所以,负荷阻抗值很大,阻抗角较小,功率因数不低于0.9,对应阻抗角不大于25.8度,以电阻性质为主。

距离保护的振荡闭锁

§3.5距离保护的振荡闭锁(Power Swing Blocking of Distance Protection) §3.5.1 振荡闭锁的概念 ( Concept of Power Swing Blocking) 并联运行的电力系统或发电厂失去同步的现象,称为电力 系统的振荡(Power Swing)。电力系统振荡时,系统两侧等效电动势间的夹角在0o~360o范围内作周期性变化,从而使系统中各点的电压、线路电流、功率方向以及距离保护的测量阻抗也都呈现周期性变化。这样,以上述这些量为测量对象的各种保护的测量元件,就有可能因系统振荡而动作。 电力系统的振荡是属于严重的不正常运行状态,而不是故障状态,大多数情况下能够通过自动装置的调节自行恢复同步。如果在振荡过程中继电保护动作,切除了重要的联络线,或断开了电源和负荷,不仅不利于振荡的自动恢复,而且还有可能使事故扩大,造成更为严重后果。所以在系统振荡时,要采取必要的措施,防止保护因测量元件动作而误动。这种用来防止系统振荡时保护误动的措施,就称为振荡闭锁。 因电流保护、电压保护和功率方向保护等一般都只应用在 电压等级较低的中低压配电系统,这些系统出现振荡的可能性很小,振荡时保护误动产生的后果也不会太严重,所以

一般不需要采取振荡闭锁措施。距离保护一般用在较高电压等级的电力系统,系统出现振荡的可能性大,保护误动造成的损失严重,所以必须考虑振荡闭锁问题。在无特殊说明的情况下,本书所提及的振荡闭锁,都是指距离保护的振荡闭锁。 §3.5.2电力系统振荡对距离保护测量元件的影响(Effect of Power Swing to Measuring Unit of Distanee Protectio n) 1电力系统振荡时电流、电压的变化规律 现以图3-31所示的双侧电源的电力系统为例,分析系统振荡时电流、电压的变化规律。 E M M KZ I N E N E之——------------------ 1U 图3-31双侧电源的电力系统 设系统两侧等效电动势E M和E N的幅值相等,相角差 (即功角)为,等效电源之间的阻抗为Z Z M乙Z N,其中Z M为M侧系统的等值阻抗,Z N为N侧系统的等值阻抗,乙为联络线路的阻抗,则线路中的电流和母线M、N上 的电压分别为: E M E N_E E M (1 e」) (3-144)

某工业废水处理工程设计(9页)

更多资料请访问(.....) 2006级环境工程课程设计 指导书 题目:某工业废水处理工程设计

系别:环境工程系_ 专业:环境工程 年级: 2 0 0 6级 设计指导书 一、确定废水处理工艺流程 在对工业废水的水质特点,生产过程以及废水的产生情况的调研基础上,参考典型工艺流程,通过方案比较,确定工艺流程。 在选取工艺流程过程中,要考虑污水的水质、水量特点,污水中污染物状况,可生化性,污水处理程度,经处理后污水的排放问题。这是污水处理工艺流程选定的主要依据,根据处理水的排放去向及国家或地方制定的污水各类排放标准,确定应去除的污染物及其处理程度,再选择处理方法。 二、构筑物的设计计算 (一)预处理系统构筑物的设计计算 预处理系统包括格栅、筛网、沉淀池等,预处理系统主要用于去除悬浮物和大的漂浮物等,减轻后续生物处理负担。根据废水特点设计预处理系统。 根据工业废水水质、水量变化大的特点,工业废水处理系统往往需要设置调节池,用于调节水质水量。

(二)、主体构筑物的设计计算 依据废水水质,选择相应的处理工艺。主体构筑物可以是物理处理、化学处理或生物处理,或三者的相互结合,以经济、新颖、处理效果满足出水排放要求为准。 (三)污泥处理构筑物的设计计算 污泥处理的基本问题是通过适当的技术措施,为污泥提供出路。对于预处理和生物处理过程中产生的污泥需要经过适当的处理,达到污泥的减量化。工业废水处理站,由于处理的水量较小,污泥产生量较少,污泥处理一般采用污泥浓缩或机械脱水,风干外运等方法。 机械脱水主要的方法是转筒离心机、板框压滤机、带式压滤机和真空过滤机。 板框压滤机一般为间歇操作,基建设备投资大,过滤能力也较低,但由于其泥饼的含固率高,滤液清澈,固体物质回收率高.调理药品消耗量少。对运输、进一步干燥或焚烧以及卫生填埋的污泥、可以降低运输费用,减少燃料消耗、降低填埋场用地。板框压滤机的选用,主要根据污泥量、过滤机的处理能力来确定所需过滤面积和压滤机的台数! 带式压滤机具有连续生产、机器制造容易、操作管理简单、附属设备较少等特点,从而使投资、劳动力、能源消耗和维护费用都较低,在国内外的污水脱水中得到广泛应用,在国内的发展尤其迅速,新建城市污水处理厂的脱水设备几乎都采用带式压滤机。但由于我国的合成有机聚合物价格昂贵,致使污泥带式压滤机的运行费用很高。带式压滤机是根据生产能力、污泥量来确定所需压滤机的宽度和台数。 转筒离心机具有处理量大、基建费用少、占地少、工作环境卫生、操作简单、自动化程度高等优点,特别重要的是可以不投加或少投加化学调理剂。其动力费用虽然较高,但总运行费用较低。是世界各国较多采用的机种.转筒离心机的选择是根据它的处埋能力,即每台机每小时处理污泥立方数,或每台机每小时处理干污泥千克数和每日需要处理的湿污泥立方数或干污泥千克数来决定。至少选择二至三台(其中一台备用)。 三、污水处理厂布置

线路保护介绍

保护配置 基本配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。 比相式距离继电器的通用动作方程为:0 09090<<-P OP U U Arg 式中:工作电压 OP set U U I Z =-?,极化电压1P U U =-。 对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03 对相间距离继电器,工作电压为: set OP Z I U U ?-=ΦΦΦΦΦΦ 装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。 采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03 极化电压: D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。 比相方程为 ()0 00090390

第四节-影响距离保护正确工作的因素及采取的防止措施

第四节 影响距离保护正确工作的因素及采取的防止措施 一、短路点过渡电阻对距离保护的影响 保护1的测量阻抗为g R ,保护2的测量阻抗为g AB R Z +。由图(b)可见,当g R 较大时,可能出现1.J Z 已超出保护1第Ⅰ段整定的特性圆范围,而2.J Z 仍位于保护2第Ⅱ段整定的特性圆范围以内。此时保护1和保护2将同时以第Ⅱ段的时限动作,因而失去了选择性。 结论:保护装置距短路点越近时,受过渡电阻的影响越大,同时保护装置的整定值越小,则相对地受过渡电阻的影响也越大。 对图3—36(a ) 所示的双侧电源的网络,短路点的过渡电阻可能使量阻抗 增大,也可能使测量阻抗减小。 保护1和保护2的测量阻抗分别为 式中 α—d I 超前1d I 的角度。 当α为正时,测量阻抗增大,当α为负时,测量阻抗的电抗部分将减小。在后一种情况下,可能导致保护无选择性的动作。过渡电阻主要是纯电阻性的电弧电阻R g ,且电弧的长度和电流的大小都随时间而变化,在短路开始瞬间电弧电流很大,电弧的长度很短,R g 很小。随着电弧电流的衰减和电弧长度的增长,R g 随着增大,大约经0.1~0.15秒后,R g 剧烈增大。 减小过渡电阻对距离保护影响的措施 (1)采用瞬时测定装置 它通常应用于距离保护第Ⅱ段。原理接线如图3—37所示。 (2)采用带偏移特性的阻抗继电器 保护2的测量阻抗Zcl2=Zd+Rg 当过渡电阻达Rg1时,具有椭圆特性的阻抗继电器开始拒动。 当过渡电阻达Rg2时,方向阻抗继电器开始拒动。 当过渡电阻达Rg3时,全阻抗继电器开始拒动。 结论:阻抗继电器的动作特性在+R 轴方向所占的面积越大则受过渡电阻的影响越小。 采用能容许较大的过渡电阻而不致拒动的阻抗继电器,如偏移特性阻抗继电器等。 二、电力系统振荡对距离保护的影响及振荡闭锁回路 (一)电力系统振荡时电流、电压的分布 图3-38为简化系统等值电路图, 当系统发生振荡时,设M E 超前于N E 的相位角为δ,E E E N M == ,且 系统中各元件的阻抗角相等,则振荡电流为 ∑-=++-=Z E E Z Z Z E E I N M N L M N M zh =∑δ--Z )e 1(E j 振荡电流滞后于电势差N M E E -的角度为系统振荡阻抗角为 N M Z M E 图3-38 系统振荡的等值图

1、距离保护的第Ⅲ段不受振荡闭锁控制,主要是第Ⅲ段的延时来躲(精)

1、距离保护的第Ⅲ段不受振荡闭锁控制,主要是*第Ⅲ段的延时来躲过振荡。(√) 2、对联系较弱的,易发生振荡的环形线路,应加装三相重合闸,对联系较强的线路应加装单相重合闸。(×) 3、断路器的失灵保护主要是由启动回路、时间元件、电压闭锁、跳闸出口回路四部分组成。(√) 4、同期并列时,两侧断路器电压相差小于25%,频率相差1Hz范围内,即可准同期并列。(×) 5、变压器差动保护在新投运前应带负荷测量向量和差电压。(√) 6、新安装的电流互感器极性错误会引起保护装置误动作。(√) 7、新投运的变压器做冲击试验为两次,其他情况为一次。(×) 8、零序电流保护接线简单可*,配以零序方向继电器,一般在中长线路中,灵敏度可满足要求。(√) 9、真空断路器是指触头在空气中开断电路的断路器。(×) 10、变压器油枕中的胶囊起使油与空气隔离和调节内部油压的作用。(√) 11、当变压器三相负载不对称时,将出现负序电流。(√) 12、变压器铭牌上的阻抗电压就是短路电压。(√) 13、在非直接接地系统正常运行时,电压互感器二次侧辅助绕阻的开口三角处有100V 电压。(×) 14、电压互感器的二次侧和电流互感器的二次侧可以互相连接。(×) 15、电流互感器的二次负载根据10%误差曲线来确定。当误差不能满足要求时,该电流互感器不能使用。(√) 16、电流互感器二次绕组串联后变比不变,容量增加一倍。(√) 17、电抗器的作用是抑制高次谐波,降低母线残压。(×) 18、在SF6断路器中,密度继电器指示的是SF6气体的压力值。(√) 19、系统中发生接地故障时,应将消弧线圈退出运行。(×) 20、电容器组跳闸后不能立即合闸,应间隔1min再合闸。(×)

常用机械加工英语

第1章切削加工基础知识 1.1切削加工概述 切削cutting; 加工 machining; 金属切削 metal cutting (metal removal); 金属切削工艺 metal-removal process; 金属工艺学 technology of metals; 机器制造machine-building; 机械加工 machining; 冷加工 cold machining; 热加工 hot working; 工件 workpiece; 切屑chip; 常见的加工方法universal machining method; 钻削drilling; 镗削 boring; 车削 turning; 磨削 grinding; 铣削 milling; 刨削 planning; 插削slotting ; 锉filing ; 划线lineation; 錾切carving; 锯sawing; 刮削facing; 钻孔boring; 攻丝 tap; 1.2零件表面构成及成形方法 变形力 deforming force; 变形 deformation; 几何形状 geometrical; 尺寸dimension ; 精度 precision; 表面光洁度surface finish; 共轭曲线 conjugate curve; 范成法 generation method; 轴 shaft; 1.3机床的切削运动及切削要素 主运动 main movement; 主运动方向direction of main movement; 进给方向 direction of feed; 进给运动feed movement; 合成进给运动resultant movement of feed; 合成切削运动resultant movement of cutting; 合成切削运动方向direction of resultant movement of cutting ; 切削速度 cutting speed; 传动drive/transmission; 切削用量 cutting parameters; 切削速度 cutting speed; 切削深度 depth of cut; 进给速度 feed force; 切削功率 cutting power; 1.4金属切削刀具 合金工具钢alloy tool steel; 高速钢 high-speed steel; 硬质合金 hard alloy; 易加工 ease of manufacturing ; 切削刀具 cutting tool;

工业废水处理概述

第四章工业废水处理概论 第一节概述 一、工业废水的分类 工业企业各行业生产过程中排出的废水,统称工业废水,其中包括生产污水、冷却水和生活污水3种。 为了区分工业废水的种类,了解其性质,认识其危害,研究其处理措施,通常进行废水的分类,一般有3种分类方法。 1、按行业的产品加工对象分类。如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、纺织印染废水、制革废水、农药废水、化学肥料废水等。 2、按工业废水中所含主要污染物的性质分类。含无机污染物为主的称为无机废水,含有机污染物为主的称为有机废水。例如,电镀和矿物加工过程的废水是无机废水,食品或石油加工过程的废水是有机废水。这种分类方法比较简单,对考虑处理方法有利。如对易生物降解的有机废水一般采用生物处理法,对无机废水一般采用物理、化学和物理化学法处理。不过,在工业生产过程中,一种废水往往既含无机物,也含有机物。 3、按废水中所含污染物的主要成分分类。如酸性废水、碱性废水、含酚废水、含镉废水、含铬废水、含锌废水、含汞废水、含氟废水、含有机磷废水、含放射性废水等。这种分类方法的优点是突出了废水的主要污染成分,可有针对性地考虑处理方法或进行回收利用。 除上述分类方法外,还可以根据工业废水处理的难易程度和废水的危害性,将废水中的主要污染物分为3类。 1、易处理危害小的废水。如生产过程中产生的热排水或冷却水,对其稍加处理,即可排放或回用。 2、易生物降解无明显毒性的废水。可采用生物处理法。 3、难生物降解又有毒性的废水。如含重金属废水,含多氯联苯和有机氯农药废水等。 上述废水的分类方法只能作为了解污染源时的参考。实际上,一种工业可以排出几种不同性质的废水,而一种废水又可能含有多种不同的污染物。例如染料工业,既排出酸性废水,又排出碱性废水。纺织印染废水由于织物和染料的不同,其中的污染物和浓度往往有很大差别。 二、工业废水对环境的污染 水污染是我国面临的主要环境问题之一。随着我国工业的发展,工业废水的排放量日益增加,达不到排放标准的工业废水排入水体后,会污染地表水和地下水。水体一旦受到污染,要想在短时间内恢复到原来的状态是不容易的。水体受到污染后,不仅会使其水质不符合饮用水、渔业用水的标准,还会使地下水中的化学有害物质和硬度增加,影响地下水的利用。我国的水资源并不丰富,若按人口平均占有径流量计算,只相当于世界人均值的四分之一。

影响距离保护正确工作的因素及防止方法

影响距离保护正确工作的因素及防止方法 影响距离保护正确工作的因素: 一,短路点过度电阻的影响 二,电力系统震荡的影响 三,电压回路断线的影响 四,串联电容补偿的影响 五,其他因素的影响 一,短路点过度电阻的影响 过度电阻的存在,使得距离保护的测量阻抗发生变化,一般情况下,会使保护范围缩短,有时也会引起保护的超范围动作,或反方向误动作。 例如:①下图中,BC始端经过度电阻Rt短路 (图5-48、图5-49) 若Rt较大,Zk1会超出保护1的Ⅰ段整定范围,而Zk2仍位于保护2的Ⅱ端段,这时,保护1、保护2的Ⅱ段将同时动作,将B母线切除,扩大了停电范围。 因此,我们可以得出:保护装置离保护点越近,受过度电阻影响就越大;保护装置整定值越小,受过度电阻影响就越大。(所谓手过

度电阻影响大是指,一个较小的过度电阻就有可能使测量阻抗超出整定范围。) ②对于不同动作特性的阻抗继电器,过度电阻对其影响也是不同的,如图: (图5-51) 当Rt逐渐增大时,测量阻抗依次超出透镜型阻抗继电器、方向性阻抗继电器、全阻抗继电器的整定范围。 因此,我们可以得出:在R轴正方向上动作特性所占面积越大,受过度电阻的影响就越小。 针对以上讨论结果,我们可以采取一些方法和手段来防止过度电阻的影响: ⑴采用合适的阻抗继电器 过度电阻大多是纯电阻,因此我们可以采用(图5-13c)所示的阻抗继电器,只要电抗值不超出整定范围,阻抗继电器不会拒动。 利用多边形阻抗继电器可以灵活整定的特点,我们可以使继电器不发生拒动(图5-14) (图5-52)a所示动作特性既容许在接近保护范围末端发生短路时有较大的过度电阻,又能防止在正常运行情况下,负荷阻抗较小时阻抗继电器误动作;b所示动作特性既可以满足相间短路时过度电阻较小的情况,又能满足接地短路时过度电阻较大的情况。 ⑵利用瞬时测量回路固定阻抗继电器动作 所谓固定阻抗继电器动作,即使其动作只反映短路瞬时的过度

距离保护基本原理

距离保护的基本原理线路正常运行时:Z=U/I= Z1L+Z L d≈Z L d Z=U/I=Z1L+Z L d≈Z L d为负荷阻抗值大角度在30°左右 线路故障时:Z=U/I=Z1L k=Z k 为故障点到保护安装处的线路阻抗即短路阻抗值小角度在60°~90°左右 利用线路故障时阻抗下降的特点构成 低阻抗保护习惯称距离保护 ?特点: 保护区基本不受系统运行方式的影响 能够区分短路与负荷状态?应用: 110K V及以上线路 基本原理?概念 距离保护-反应故障点至保护安装处的阻抗(距离)并根据阻抗的大小(距离的远近) 确定动作时限的保护。用符号表示。 测量阻抗-保护安装处母线电压与流过保护的电流的比值。又称为感受阻抗。Z M=U/I 整定阻抗-当Φs e t=Φz L 时保护区末端至保护安 装处的线路阻抗。用符号Z s e t表示?基本原理①线路正常运行时:Z M=Z L d>Z s e t保护不启动 ②线路故障时:Z M=Z1L k =Z k>Z s e t保护不启动Z M=Z1L k=Z k≤Z s e t 保护启动 ③启动后的保护动作时限与距离有关保护1:Z M1=Z A B+Z1L k=Z1(L A B+L k) 保护2:Z M2=Z1L k 距离长时限长,距离短时限短,从而保证选 择性 ?基本原理 ①线路正常运行时:Z M=Z L d>Z s e t保护不启动 ②线路故障时:Z M=Z1L k =Z k>Z s e t保护不启动 Z M=Z1L k=Z k≤Z s e t保护启动③启动后的保护动作时限 与距离有关保护1:Z M1 =Z A B+Z1L k= Z1(L A B+L k) 保护2:Z M2=Z1L k 距离长时限长,距离 短时限短,从而保证选 择性三段式距离保 护?组成 距离Ⅰ段:ZⅠs e t.1= K r e l×Z A B K r e l-可靠 系数取0.8~0.85 可保护线路全长的 (80~85)%瞬时动作 距离Ⅱ段:Z Ⅱ s e t.1= K r e l×(Z A B+Z Ⅰ s e t.2) t Ⅱ 1=t Ⅰ 2+ Δt=0.5s 可保护线路全长及下 级线路始端的一部分 距离Ⅲ段:整定阻抗按躲 过线路的最小负荷阻抗整 定 动作时 限按阶梯时限原则确定 保护区较广包括 本级、下级甚至更远 一般Ⅰ、Ⅱ段作为主保 护,Ⅲ段作为后备保护 ?主要元件及其作用 1.电压二次回路断线闭锁 元件:TV二次断线时将 保护闭锁 2. 起动元件:被保护线路 发生短路时立即起动保 护,判断是否是保护范围 内的故障。 3.测量元件:测量短路点 到保护安装处的阻抗,决 定保护是否动作。 4. 振荡闭锁元件:也可以 理解为故障开放元件。在 系统振荡时将保护闭锁。 5.时间元件:设置必要的 延时以满足选择性。?工作 情况 ①正常运行时 起动元件及测 量元件ZⅠ、ZⅡ、ZⅢ均 不动作,距离保护可靠不 动作。 ②线路故障时 起动元件动 作,振荡闭锁元件开放, 测量元件ZⅠ、ZⅡ、ZⅢ 测量至保护安装处的阻 抗,在其保护范围内时动 作,保护出口跳闸。 ③T V二次断线 闭锁保护并发 出断线信号 ④系统振荡 起动元件不动 作,振荡闭锁元件不开放, 将保护闭锁

相关文档
最新文档