NTC温度传感器的选型指导

NTC温度传感器的选型指导
NTC温度传感器的选型指导

NTC温度传感器选型指导

随着智能家居和物联网的不断发展,温度的监测与控制显得至关重要..其中,NTC温度传感器因其可靠性高,反应速度快,样式多样化,性价比高,得到大量的普及推广和应用.

NTC温度传感器应用领域广阔,应用环境也各有不同,因此,在设计选型时要遵循以下几个原则: 一是:根据应用的工作温度范围不同来选材..NTC温度传感器作为测温用的敏感元器件.根据其工作温度范围的不同来选择不同的材质至关重要.传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成.要根据不同的工作环境温度来选择不同的材质.如:工作温度在105度以内的,我们会选用耐温105度PVC线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线.

二是要根据工作场合所要求测温的精度来选型.精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以.决定NTC温度传感器精度的有两个因素:一是热敏电阻本身的误差.热敏电阻的阻值误差,B值误差越小,测量精度越高.二是传感器的感温头与测温对象的接触方式.直接接触的比间接接触的测量精度要高.另因NTC热敏电阻的R-T曲线是非线性的.它不可能保证在很宽的工作温度范围内的精度都是一样的.因此,要想得到较高的测量精度.选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据R-T曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大).如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点.

三是:要根据所使用的工作场合所要求的灵敏度来选型.不同的应用场合要求NTC温度传感器的响应速度快慢不一.而不同的材料有不同的导热系数..影响NTC温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数.热时间常数小的,响应速度快.二是感温头外壳材质的导热系数, .导热系数高的材料热传导性能优良.三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点.四是感温头内部填充的导热胶.感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快.

四是要根据测量对象和测量环境的不同来选型.不同的工作环境,温湿度条件不同.不同的测量对象,也有不同的要求.(如水温的测量,人本体温的测量等),因此,这就需要NTC温度传感器要有良好的绝缘性.在选型时,在考虑工作环境温度范围时,同时要兼顾考虑到工作环境的湿度,有否接触到水或水蒸汽,有否接触到人体,有无耐压要求….不同的材料附着力,密封性及耐温特性都是不一样的.如: NTC 温度传感器最常见的填充材料-----环氧树脂,环氧树脂具有良好的密封性和附着力,,耐温可以高达150度..但它与金属壳的附着力相对塑料材质要弱.相对于与线材的附着力而言,环氧树脂与PVC线的结合致密性最好,辐照线次之,铁氟龙线最差.因此,在选材时,并不是耐温越高的材质越好,只要是满足于工作温度范围的材质,且与填充材料附着力好的材料才是最合适的.

五是NTC温度传感器的稳定性.传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除NTC热敏电阻芯片的稳定性,可靠性,传感器本身和结构,还有传感器的使用环境.要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。稳定性的确认从以下三个方面着手:一是,选用高可靠的热敏电阻芯片作为核心.二是选用合理的结构,要有较强的机械强度.三是针对不同的使用环境,选用不同的填充材质. Exsense 电子生产的NTC热敏电阻芯片采用先进的半导体工艺,在稳定性,可靠性方面采购了重大突破.具体表现在三个方面:一是可耐焊试验后阻值变化率控制在0.3%以内,二是冷热冲击后阻值变化率控制在0.3%以内.三是高温老化1000小时后阻值变化率控制在0.35以内.其传感器在结构选择上,根据客户要求设计.采用双重包封工艺,其绝缘性,灵敏度,精度,可靠性均都达到较高的水平.

以下是Exsense电子主推的几款NTC温度传感器(见下图)

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

温度传感器主要形式和温度探头类型

温度传感器主要形式和温度探头类型 温度传感器三种主要形式 热电偶由两种不同的金属丝焊接而成,例如:NiCr-Ni(K型),利用热电效应来工作的,两种不同的金属丝,构成一个闭合回路,不同的两种导体存在着温差,两者产生电动热。因而在回路中形成一个大小的电流,此现象称之为热电现象。 铂电阻测量原理不同于热电偶测量方法。铂电阻传感器本质上来讲属于PTC热敏电阻的一种。金属的电阻率会随着温度的升高而增大,因此这种特性被用来测量温度。薄膜式铂电阻,由于结构超薄,因此在电阻不被影响的前提下,配置了一个玻璃套管,用以保护。目前通用的铂电阻的电阻值为100Ohm(0℃时),这是目前国际通用的铂电阻。另外一种PT100传感器采用绕线陶瓷式,此种方法将铂丝攻成螺旋状,再装入陶瓷基体内,此传感器结构十分紧密,在所有铂电阻传感器中,这种结构精度最高,使用时间持久并且无老化现象,但是相较于热电偶的测量原理,反应时间较缓,因此在应用时经常运用于食品科技,特别是实验室研发环节。 NTC热敏电阻使用较为广泛且较经济的一款温度传感器。由于混合的氧化物陶瓷材料构成,具有负的温度系数,这是称之为NTC的原因(negative temperature coefficient缩写)。随着温度的升高,阻值降低,这与PT100传感器的测量特性完全相反。

温度探头三种主要类型 刺入/浸入式探头 用于测量液体及固体的温度,探头的前端设计为针状刺入式。使用时如果测量探头的温度比被测物体低,根据能量守恒原理,热能会从被测物体热导至探头上;如果测量探头的温度比被测物体较高,同理热能则从探头传导至被测物体。这就意味着被测物体被加热升温,所测得的温度是加温之后的物体温度,在此测量情况,探头与介质的比值必须考虑,因为探头与介质的比值越好,越能更精准的测得物体获取的能量,由于能量转移的原因会导致测量时产生误差。我们一定要注意仪器测量的不是介质的温度,而是传感器的温度,此测量误差可以通过以下方式减小:刺入或浸入的深度10或15倍于探头的直径;当测量液体时,尽量何持液体的流动可以有效减少误差。 空气温度探头 用来测量空气温度,例如冷库、冷柜、空调室(调温)、通风场所(通风/排风)等,空气探头的传感器裸露,因此示值很容易受气流所影响,最好的解决方法是在气流为2-3m/s时,顺流轻移探头,使温度达成平衡稳定。 表面探头 用来测量物体的表面温度。空气温度探头和表面探头使用进行表面温度测量时,探头的前端必须垂直于被测物体,与被测物体充分完全的接触。必须注意的是探头与被测物的接触面必须平坦,否则在测量时则会影响测量结果。

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

选择ntc温度传感器的注意事项

ntc温度传感器是温度测量仪表的核心部分,品种繁多。我们在选购ntc温度传感器的时候需要通过多个方面来考虑,如果选购的ntc温度传感器不合适在使用的时候很容易造成一定的损坏。那么我们具体要怎样选用呢?下面就让艾驰商城小编对选择ntc温度传感器的注意事项来一一为大家做介绍吧。 一是要根据应用的工作温度范围不同来选材.ntc温度传感器作为测温用的敏感元器件。根据其工作温度范围的不同来选择不同的材质至关重要。传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成。要根据不同的工作环境温度来选择不同的材质。如:工作温度在105度以内的,我们会选用耐温105度pvc线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线。 二是要根据工作场合所要求测温的精度来选型。精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以。决定ntc温度传感器精度的有两个因素:一是热敏电阻本身的误差。热敏电阻的阻值误差,b值误差越小,测量精度越高。二是传感器的感温头与测温对象的接触方式。直接接触的比间接接触的测量精度要高。另因ntc热敏电阻的r-t曲线是非线性的。它不可能保证在很宽的工作温度范围内的精度都是一样的。因此,要想得到较高的测量精度。选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据r-t曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大)。如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点。 三是要根据所使用的工作场合所要求的灵敏度来选型。不同的应用场合要求ntc温度传感器的响应速度快慢不一。而不同的材料有不同的导热系数。. 影响ntc温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数。热时间常数小的,响应速度快。二是感温头外壳材质的导热系数,。导热系数高的材料热传导性能优良。三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点。四是感温头内部填充的导热胶。感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/868305180.html,/

NTC热敏电阻温度传感器

APPLICATIONS Temperature test in all kinds of air-condition,refrigerator,water boiler,microwave oven. PART NUMBERING FEATURES High precision and high stability Quick temperature response Resistant to heat shock Moisture resistant Excellent quality and high stability Guang Dong Fenghua Advanced Technology (Holding)Co.,LTD.code NTC NTC temperature sensors code 25 Rated zero-power resistance R unit: The first two are significant figure of resistance and the third one expresses number of following zeros 25 FH -CWF XXX X XXXX X X /XXXX X % Tolerance of R % 25 B B value Code B %Tolerance of B value % B B value Temperature Code Length of the sensor unit:mm Termination shape code NTC NTC THERMISTOR TEMPERATURE SENSORS

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

选择温度传感器的注意事项

首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。 在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。 温度传感器的选择主要是根据测量范围。当测量范围预计在总量程之内,可选用铂电阻传感器。较窄的量程通常要求传感器必须具有相当高的基本电阻,以便获得足够大的电阻变化。热敏电阻所提供的足够大的电阻变化使得这些敏感元件非常适用于窄的测量范围。如果测量范围相当大时,热电偶更适用。最好将冰点也包括在此范围内,因为热电偶的分度表是以此温度为基准的。已知范围内的传感器线性也可作为选择传感器的附加条件。 响应时间通常用时间常数表示,它是选择传感器的另一个基本依据。当要监视贮槽中温度时,时间常数不那么重要。然而当使用过程中必须测量振动管中的温度时,时间常数就成为选择传感器的决定因素。珠型热敏电阻和铠装露头型热电偶的时间常数相当小,而浸入式探头,特别是带有保护套管的热电偶,时间常数比较大。 动态温度的测量比较复杂,只有通过反复测试,尽量接近地模拟出传感器使用中经常发生的条件,才能获得传感器动态性能的合理近似。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/868305180.html,。

温度传感器的选用

温度传感器的选用 温度传感器 1、温度传感器的分类 1)接触式温度传感器 特点:传感器直接与被测物体接触进行温度测量,由于被测物体的热量传递给传感器,降低了被测物体温度,特别是被测物体热容量较小时,测量精度较低。因此采用这种方式要测得物体的真实温度的前提条件是被测物体的热容量要足够大。 2)非接触式温度传感器 特点:利用被测物体热辐射而发出红外线,从而测量物体的温度,可进行遥测。其制造成本较高,测量精度却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象的温度场;连续测量不会产生消耗;反应快等。 表2-1 温度传感器的种类及特点 测量方法传感器机理和类型测温范围℃特点 接触式体积热膨胀玻璃水银温度计 双金属片温度计 气体温度计 液体压力温度计 -50~350 -50~300 -250~1000 -200~350 不需要电源,耐用;但感 温部件体积较大 接触热电势钨铼热电偶 铂铑热电偶 其他热电偶 1000~2100 50~1800 -200~1200 自发电型,标准化程度较 高,品种多,可根据需要 选择;须进行冷端温度补 偿 电阻变化铂热电阻 铜热电阻 热敏电阻 -200~850 -50~150 -50~450 标准化程度高;但需要接 入桥路才能得到电压输 出 PN结结电 压 半导体集成温度 传感器 -50~150 体积小,线性好,-2mV /℃;但测量范围小 温度?颜色试温材料 液晶 -50~1300 0~100 面积大,可得到温度图 像;但易衰老,准确度低 非接触式光辐射 热辐射 红外辐射温度计 光学高温温度计 热释电温度计 光子探测器 -80~1500 500~3000 0~1000 0~3500 响应快;但易受环境及被 测体表面状态影响,标定 困难 2、温度传感器的物理原理 1)、随物体的热膨胀相对变化而引起的体积变化

NTC温度传感器及其他温度传感器的测量

NTC温度传感器及其他温度传感器的测量 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 ? 这些数据是对热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。 ? 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: ? 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参

温度传感器选用时的注意事项

温度传感器选用时的注意事项 本文转载于:工控商务网 温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有体。温度传感器是温度测量仪表的核心部分,品种繁多。那么我们该如何选择温度传感器,同时要注意哪些问题呢? 选择温度传感器比选择其它类型的传感器所需要考虑的内容更多。首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题:(1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如保,使用是否方便。 容器中的流体温度一般用热电偶或热电阻探头测量,但当整个系统的使用寿命比探头的预计使用寿命长得多时,或者预计会相当频繁地拆卸出探头以校准或维修却不能在容器上开

口时,可在容器壁上安装永久性的热电偶套管。用热电偶套管会显著地延长测量的时间常数。当温度变化很慢而且热导误差很小时,热电偶套管不会影响测量的精确度,但如果温度变化很迅速,敏感元件跟踪不上温度的迅速变化,而且导热误差又可能增加时,测量精确度就会受到影响。因此要权衡考虑可维修性和测量精度这两个因素。 热电偶或热电阻探头的全部材料都应与可能和它们接触的流体适应。使用裸露元件探头时,必须考虑与所测流体接触的各部件材料(敏感元件、连接引线、支撑物、局部保护罩等)的适应性,使用热电偶套管时,只需要考虑套管的材料。电阻式热敏元件在浸入液体及多数气体时,通常是密封的,至少要有涂层,裸露的电阻元件不能浸入导电或污染的流体中,当需要其快速响应时,可将它们用于干燥的空气和有限的几种气体及某些液体中。电阻元件如用在停滞的或慢速流动的流体中,通常需有某种壳体罩住以进行机械保护。当管子、导管或容器不能开口或禁止开口,因而不能使用探头或热电偶套管时,可通过在外壁钳夹或固定一个表面温度传感器的方法进和测量。为了确保合理的测量精度,传感器必须与环境大气热隔离并与热辐射源隔离,而且必须通过传感器的适当设计与安装使壁对敏感元件的热传导达到到最佳状态。所测的固体材料可以是金属的或非金属的,任何类型的表面温度传感器都会在某种程度上改变被测物表面或表面下层的材料特性。因此,必须对传感器及其安装方法进行适当的选择以便将这种干扰减到最小程度。理想的传感器应该完全用与所测固体相同的材料制造并与材料形成一体,这样测量点或其周围的结构特征就不会以任何方式改变。可用的这类传感器有各种各样,其中包括电阻(薄膜热电阻、热敏电阻)型,也包括薄膜和细导线型的热电偶。用可埋入的小传感器或带螺纹的镶嵌件进行表面玉的温度测量,应使埋入的传感器或镶嵌件的外缘与所测材料的外表面平齐。镶嵌件的材料应与所测的材料相同,至少要非常相似。使用垫圈式传感器时,必须注意确保垫圈所能达到的温度尽可能接近欲测温度。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

温度传感器封装及胶水的选择

浅谈温度传感器封装以及封装胶水的选择应用一温度传感器定义 温度传感器是指能感受规定的被测量的温度并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。温度传感器在实际使用时,一般都需要做防护外壳,比如不锈钢,刚玉,陶瓷等,传感器就装在这些外壳里面,放好传感器后,往这些外壳里灌装环氧树脂密封,一是固定传感器,二是为了延长传感器寿命。 二各种不锈钢封装温度传感器 1.全螺纹温度传感器是指测温探头部分全部采用螺纹结构封装,内部填充绝缘导热材料密封而成。通过调节螺纹部分长度来测量(以螺纹方式固定的)物体表面温度,也可测量轴承和轴瓦表面温度,一般螺纹部分长度较短。如果要求传感器探头较长,则采用螺纹和保护管组合在一起测温。 2.螺纹固定温度传感器可广泛应用于环境温度,管道内气、液体、固体表面温度,具有压力情况的温度以及需要通过螺纹方式固定安装的温度测量。 3.贴片式温度传感器主要用于测量物体表面的温度,贴片式温度传感器通过螺钉或其它固定方式将传感器贴在物体表面,实现较理想的测温效果。 贴片式温度传感器和被测物体接触面积大,接触紧密,所以在一些表面温度测量方面具有比较明显的优势: 测温准确性高、反应速度快,体积小方便固定安装。 4.带接线盒螺纹固定式温度传感器由接线盒、固定螺纹和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。 5.活定法兰式温度传感器由接线盒、活动法兰和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。 6.锥管螺纹固定式温度传感器由接线盒、固定螺纹部分和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。

高精度温度传感器芯片调研及选型指导

型号ADT7410ADT7411输出类型:Digital Digital 精度:±0.5°C(?40°C 至+105°C,2.7 V 至3.6 V)Typ=±0.5 Max =±3 °C from 0°C to 85°C. Typ=±2 Max=±5 °C from ?40°C to +120°C (@VDD=3.3V±10%) 数字输出 - 总线接口:2-Wire, I2C, SMBus3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V 电源电压-最小: 2.7 V 2.7 V 最大工作温度:+ 150 C+ 120 C 最小工作温度:- 55 C- 40 C 安装风格:SMD/SMT SMD/SMT 封装 :SOIC-8QSOP-16 设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI 数字输出 - 位数:16 bit10 bit 电源电流:230 uA 3 mA 温度分辨率:0.0078°C0.25°C 温漂: 温度迟滞:0.02°C(温度循环= 25°C至125°C 并返回至25°C) 可重复性:0.01°C(25°C)

型号AD592ADT6501 输出类型:Analog Digital 精度:0.5°C MAX @ 25°C Typ=±0.5 Max= ±6 °C from ?45°C to ?25° C Typ=±0.5 Max=±4 °C from ?15°C to +15° Typ=±0.5 Max=±4 °C from +35°C to +65 °C 数字输出 - 总线接口:2-Wire, I2C, SMBus- 电源电压-最大:30 V 5.5 V 电源电压-最小: 4 V 2.7 V 最大工作温度:+ 105 C+ 125 C 最小工作温度:- 25 C- 55 C 安装风格:Through Hole SMD/SMT 封装 :TO-92-3SOT-23-5 设备功能:Temperature Transducer Temperature Switch 商标:ADI ADI 数字输出 - 位数:11 bit 电源电流:50 uA 温度分辨率: 温漂:0.08°C (Drift over 10 years, if part is operated at 55°C) 温度迟滞:可重复性:

线性ntc温度传感器的工作原理及应用

线性ntc温度传感器的工作原理及应用 线性温度传感器是线性化输出负温度系数(简称ntc)热敏元件,它实际上是一种线性温度-电压转换元件,就是说通以工作电流(100ua)条件下,元件电压值随温度呈线性变化,实现了非电量到电量线性转换。 线性ntc温度传感器的主要特点就是工作温度范围内温度-电压关系为一直线,这二次开发测温、控温电路设计,将无须线性化处理,就可以完成测温或控温电路设计,简化仪表设计和调试。 延长线选用应遵循的原则: 一般-200~+20℃、-50~+100℃宜选用普通双胶线;100~200℃范围内应选用高温线。基准电压的含义: 基准电压是指传感器置于0℃温场(冰水混合物),通以工作电流(100μa)条件下,传感器上电压值。实际上就是0点电压。其表示符号为v(0),该值出厂时标定,传感器温度系数s相同,则知道基准电压值v(0),即可求知任何温度点上传感器电压值,而不必对传感器进行分度。其计算公式为: v(t)=v(0)+s×t 示例:如基准电压v(0)=700mv;温度系数s=-2mv/℃,则50℃时,传感器输出电压v (50)=700—2×50=600(mv)。这一点正是线性温度传感器优于其它温度传感器可贵之处。 线性ntc温度传感器测温范围规定: 就总而言,测温范围可-200~+200℃之间,但考虑实际需要,一般无须如此宽温度范围,规定三个不同区段,以适应不同封装设计,同时延长线选用上亦有所不同。而温度补偿专用线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路温度补偿之用。 温度系数s的含义: 温度系数s是指规定工作条件下,传感器输出电压值变化与温度变化比值,即温度每变化

温度传感器选型

NTC 温度传感器选型 选择温度传感器比选择其它类型的传感器所需要考虑的内容更多。首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。 在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。 容器中的流体温度一般用热电偶或热电阻探头测量,但当整个系统的使用寿命比探头的预计使用寿命得多时,或者预计会相当频繁地拆卸出探头以校准或维修却不能在容器上开口时,可在容器壁上安装永久性的热电偶套管。用热电偶套管会显著地延长测量的时间常数。当温度变化很慢而且热导误差很小时,热电偶套管不会影响测量的精确度,但如果温度变化很迅速,敏感元件跟踪不上温度的迅速变化,而且导热误差又可能增加时,测量精确度就会受到影响。因此要权衡考虑可维修性和测量精度两个因素。 热电偶或热电阻探头的全部材料都应与可能和它们接触的流体适应。使用裸露元件探头时,必须考虑与所测流体接触的各部件材料(敏感元件、连接引线、支撑物、局部保护罩等)的适应性,使用热电偶套管时,只需要考虑套管的材料。 电阻式热敏元件在浸入液体及多数气体时,通常是密封的,至少要有涂层,裸露的电阻元件不能浸入导电或污染的流体中,当需要其快速响应时,可将它们用于干燥的空气和有限的几种气体及某些液体中。电阻元件如用在停滞的或慢速流动的流体中,通常需有某种壳体罩住以进行机械保护。 当管子、导管或容器不能开口或禁止开口,因而不能使用探头或热电偶套管时,可通过在外壁钳夹或固定一个表面温度传感器的方法进和测量。为了确保合理的测量精度,传感器必须与环境大气热隔离并与热辐射源隔离,而且必须通过传感器的适当设计与安装使壁对敏感元件的热传导达到到最佳状态。 所测的固体材料可以是金属的或非金属的,任何类型的表面温度传感器都会在某种程度上改变被测物表面或表面下层的材料特性。因此,必须对传感器及其安装方法进行适当的选择以便将这种干扰减到最小程度。理想的传感器应该完全用与所测固体相同的材料制造并与材料形成一体,这样测量点或其周围的结构特征就不会以任何方式改变。可用的这类传感器有各种各样,其中包括电阻(薄膜热电阻、温度传感器)型,也包括薄膜和细导线型的热电偶。用可埋入的小传感器或带螺纹的镶嵌件进行表面玉的温度测量,应使埋入的传咸器或镶嵌件的外缘与所测材料的外表面平齐。镶嵌件的材料应与所测的材料相同,至少要非常相似。使用垫圈式传感器时,必须注意确保垫圈所能达到的温度尽可能接近欲测温度。 温度传感器的选择主要是根据测量范围。当测量范围预计在总量程之内,可选用铂电阻传感器。较窄的量程通常要求传感器必须具有相当高的基本电阻,以便获得足够大的电阻变化。温度传感器所提供的足够大的电阻变化使得这些敏感元件非常适用于窄的测量范围。如果测量范围相当大时,热电偶更适用。最好将冰点也包括在此范围内,因为热电偶的分度表是以此温度为基准的。已知范围内的传感器线性也可作为选择传感器的附加条件。 响应时间通常用时间常数表示,它是选择传感器的另一个基本依据。当要监视贮槽中温度时,时间常

温度传感器原理温度传感器有几种分类怎么选择温度传感器

温度传感器原理温度传感器有几种分类怎么选择温度传感器 随着现在环境污染越来越严重,全球温度变化越来越不稳定,现在很多企业工厂单位研究所为了更好的控制温度的变化都采用温度传感器来收集温度参数数据,从而更好的做出对温度的控制,我们广州骏凯电子科技有限公司通过很多客户对温度传感器的使用还是有误解和疑惑,所以我们现在具体来说以下温度传感器的原理和使用方式。 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照接触方式来分通常分为接触式和非接触式两类。 一、接触式 由热平衡原理可知,两个物体接触后,经过足够长的时间达到热平衡,则他们的温度必然相等。如果其中之一是温度计(热电偶或热电阻),就可以用他对另外一个物体进行温度测量,这种测温方式就叫接触式测温。他的特点是,温度计要与被测物体有良好的热接触,使两者达到平衡。应此,测稳精确度非常高。用接触式测温时,感温元件要与被测物体有良好的接触,往往会破坏被测物体的热平衡状态,并受被测物体同化,使其温度一样。应此,对感温元件的结构、性能要求比较高。 二、非接触式 利用物体的热辐射能随温度变化的原理测定物体温度。这样的测温方式叫做非接触式册温。他的特点是:不与被测物体接触,也不改变被测物体的温度分布,热惯性小。从原理上看,用这样的方式测温没有上限。通常用来测量1000度以上的移动、旋转或反映迅速的高温物体的温度或表面温度。 所以购买温度传感器首先必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1) 被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2) 测温范围的大小和精度要求。 (3) 在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (4) 被测对象的环境条件对测温元件是否有损害。 (5) 使用是否方便,质量是否保证!

相关文档
最新文档