膨胀螺栓受力计算

膨胀螺栓受力计算

膨胀螺栓由膨胀螺栓套管及螺栓两件组成,适用于在混凝土及砖砌体墙、地基上作锚固体。其受力性能见表48?49。

膨胀螺栓受力性能(一)表48

膨胀螺栓由膨胀螺栓套管及螺栓两件组成,适用于在混凝土及砖砌体墙、地基上作锚固体。其受力性能见表48?49。

注:表列数据系按铺固基体为标号大于150号混凝土。

膨胀螺栓受力性能(二)表49

膨胀螺栓拉拔力计算

膨胀螺栓拉拔试验计算书 苏州承志装饰有限公司 二〇一一年五月

支座处膨胀螺栓拉拔力计算 1.1 干挂石材支座反力计算 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 支座反力图 根据支座受力,现采用4个M12膨胀螺栓。 单个支座的受荷面积为1500mm ×1000mm ,干挂石材自重取0.5 kN/m 2,室内风荷载为0.5 kN/m 2 支座反力为: 风荷载产生的拉力: N =0.5×1.5×1.0=0.75 kN 自重产生的剪力: V=0.5×1.5×1.0=0.75 KN 弯距:m kN 0.0900.120.75Ve M ?=?== 1.2. 镀锌M12膨胀螺栓拉拔力计算: N 拔=2β?(N/2+M/Z)/n 式中:N 拔:单个螺栓承载能力设计值;

N: 拉力设计值(N); M: 弯距设计值(N.mm); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; =2β?[N/8+(M/Z)/n] N 拔 =2×1.25×[(0.75×103/2+(0.090×106/100)/2] =1.594 kN 即单个M12膨胀螺栓抗拉承载能力设计值为1.594kN. 2.1 室内吊顶支座反力计算 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 计算简图(圆表示支座,数字为节点号)

根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为: 自重产生的拉力: N=1.163 kN 1.2. M8膨胀螺栓拉拔力计算: =2β?(N/2+M/Z)/n N 拔 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(N.mm); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; =2β?(M/Z)/n N 拔 =2×1.25×(1.163×103/2)/2 =0.727 kN 即单个M8膨胀螺栓抗拉承载能力设计值为0.727kN.

M 螺栓计算

经计算在8级风力下单位屏所受的风压为: w s =×=m 2 预埋螺栓应力计算 (1)柱脚连接处水平方向的风荷载产生的弯矩值计算 M s =1/2w s h 2l 预埋螺栓拉应力计算 F=M s /c/2 其中:h 为隔音屏障高度; l 为隔音屏障一单元长度; c 为受拉区的螺栓力臂长度。 计算结果 M s =×××=?m F=2= N 1)、抗剪验算:查规范可知,级承压型高强螺栓抗剪承载力设计强度b c f =140MPa ,螺栓承压连接板为厚钢板,钢材为Q235钢,承压强度设计值a 305f b c MP =,则单个螺栓承载力设计值取下列三式中最小值: KN A N 35.49140*5.352f *b v e b v === KN N 524.90053*14*2.21f *t *d b c b c ===; 83 .7163.204*3.0*9.0*3.1*u *9.0*3.1b v ===P N 1.30.9 1.30.90.3681239b v N P KN μ=???=???=; 式中:b v N ------- 承压型高强螺栓剪力设计值; b c N ------- 连接钢板承压强度设计值; t-------- 连接钢板厚度; P -------- 摩擦型高强螺栓预拉力值, KN A P 63.2045.352*860*675.0*f 675.0e y ===; e A ------------ M24螺栓有效面积。 单个螺栓设计最大抗剪承载力 KN F KN N 1735.49v b v =>=,符合要求。 F v ---------受力螺栓设计剪力。 单个螺栓的受拉承载力设计值按下式计算: b b t e t N A f ψ= b t N ------ 高强度螺栓拉力设计值 ψ------- 高强度螺栓直径对承载力的影响系数,当螺栓直径小于30mm 时, 取,当螺栓直径大于30mm 时,取, e A ------ M24螺栓有效面积= mm2,螺栓有效直径= mm b t f ----- 抗拉强度设计值,按倍屈服值取480Mpa ; 单个螺栓受拉承载力设计值: KN F KN A N 7.72.169480*5.352*0.1f t b t e b t =≥===ψ; F t ------ 液压爬模受力螺栓设计拉力。 受力螺栓的荷载点距屏体面为:L=14/2=7mm;弯矩作用在主平面,螺栓承受静力荷载或间接承受动力荷载,按下式计算: b X t X M F f A W γ+≤ 式中,X M ----- 最大弯矩,Mx=Fy*L=34*103 *=·m ; X γ----- 截面塑性发展系数,查表可知:X γ= W------ 按受压确定的抵抗矩,33 3 m m 95.93432 2.21*14.332d ===πW ; 则 MPa MPa W M A F 480973.233133.21284.2195 .934*2.12380005.3527700x x ≤=+=+=+γ ,满足要求。 F V ------液压爬模受力螺栓设计荷载,经计算受力螺栓满足要求。

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算 干挂石材支座反力计算 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 根据支座受力,现采用4个M12膨胀螺栓。 单个支座的受荷面积为1500mm×1000mm,干挂石材自重取kN/m2,室内风荷载 为kN/m2 支座反力为: 风荷载产生的拉力:N =××= kN 自重产生的剪力:V=××= KN 弯距:M=Ve=*=﹒m . 镀锌M12膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(); 上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取、6个时取、8个时取; N拔=2β?[N/8+(M/Z)/n] =2××[×103/2+×106/100)/2] = kN 即单个M12膨胀螺栓抗拉承载能力设计值为. 室内吊顶支座反力计算 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 计算简图(圆表示支座,数字为节点号) 根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为: 自重产生的拉力:N = kN . M8膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取、6个时取、8个时取; N拔=2β?(M/Z)/n =2×××103/2)/2 = kN

螺栓组受力分析与计算

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 "1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接 合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的 最小距离,应根 据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距to 不得大于下表所推荐的数值 扳手空间尺寸 螺栓间距t o 注:表中d 为螺纹公称直径。 4) 分布在同一圆周上的螺栓数目,应取成 4, 6, 8等偶数,以便在圆周上钻孔时的分度和画 线。同一螺栓 组中螺栓的材料,直径和长度均应相同。 5) 避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保 证被联接件,螺 母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图2)等。 1 ? 6*-4 4* 10 10* 1? 14-20 3W

膨胀螺栓抗拔力计算

膨胀螺栓如何计算 工程 2008-07-24 21:25:08 阅读1185 评论1 字 号:大中小订阅 要对膨胀螺栓进行拉拔试验,可按下列公式 验算: N拔=[(N/2+M/Z)/n]*B≤N拔试/1.5 式中:N拔--单个膨胀螺栓承载能力设计值 N--拉力 M--弯矩 Z--上下两排螺栓中距 n--每排螺栓个数 B--调整系数,每处4个取1.25、6 个取1.30、8个取1.32 N拔试--单个膨胀螺栓拉拔试验结 果一、建筑概况

建筑物总高度约为120米,总宽度为150米,共26层,按8度抗震设计,基本风压w0=0.35KN/M2,每个200×300埋件用4个M12×110膨胀螺栓固定,膨胀螺栓基孔内加注环氧树脂。膨胀螺栓使用时应严 格遵守有关工艺要求。 二、荷载 ⑴作用在幕墙上的风荷载标准值按下式 计算: wk=βZ?μS?μZ?wO 式中:wk-作用在幕墙上的风荷载标 准值(KN/M2); βZ-考虑瞬时风压的阵 风系数,取2.25; μS-风荷载体型系数, 取1.5; μZ-风压高度变化系 数;

wO-基本风压,取 0.35KN/M2。 故wk=βZ?μS?μZ?w O ⑵地震作用按下式计算 QE=βE?αmax?G 式中:QE??作用于幕墙平面外水平地 震作用(KN); G ??幕墙构件的重量 (KN); αmax??水平地震影响系数最大值,8 度抗震设计取0.16; βE??动力放大系数,取 3.0。 ⑶荷载分项系数和组合系数的确定 根据《建筑结构荷载规范》(GBJ9-87)及《玻璃幕墙工程技术规范》之精神,结合

本工程的地区地理环境,建筑特点以及幕墙的受力情况,各分项系数和组合系数选择如下: 分项系 数组 合系数 重力荷载,γg取 1.2 风荷载,γw取 1.4 风荷载,ψw取1.0 地震作用,γE取 1.3 地震作用,ψE取0.6 温度作用,γT取 1.2 温度作用,ψT取0.2 荷载和作用效应按下式进行组 合: S=γgSg+ψwγwSw+ψEγESE +ψTγTST

膨胀螺栓抗拔力计算

膨胀螺栓如何计算 要对膨胀螺栓进行拉拔试验,可按下列公式验算: N拔=[(N/2+M/Z)/n]*B≤N拔试/1.5 式中:N拔--单个膨胀螺栓承载能力设计值 N--拉力 M--弯矩 Z--上下两排螺栓中距 n--每排螺栓个数 B--调整系数,每处4个取1.25、6个取1.30、 8个取1.32 N拔试--单个膨胀螺栓拉拔试验结果一、建筑 概况 建筑物总高度约为120米,总宽度为150米,共26层,按8度抗震设计,基本风压w0=0.35KN/M2,每个200×300埋件用4个M12×110膨胀螺栓固定,膨胀螺栓基孔内加注环氧树脂。膨胀螺栓使用时应严 格遵守有关工艺要求。

二、荷载 ⑴作用在幕墙上的风荷载标准值按下式计算: wk=βZ?μS?μZ?wO 式中:wk-作用在幕墙上的风荷载标准值(KN /M2); βZ-考虑瞬时风压的阵风系数,取2.25; μS-风荷载体型系数,取1.5; μZ-风压高度变化系数; wO-基本风压,取0.35KN/M2。 故wk=βZ?μS?μZ?wO ⑵地震作用按下式计算 QE=βE?αmax?G 式中:QE??作用于幕墙平面外水平地震作用 (KN); G ??幕墙构件的重量(KN);

αmax??水平地震影响系数最大值,8度抗震设 计取0.16; βE??动力放大系数,取3.0。 ⑶荷载分项系数和组合系数的确定 根据《建筑结构荷载规范》(GBJ9-87)及《玻璃幕墙工程技术规范》之精神,结合本工程的地区地理环境,建筑特点以及幕墙的受力情况,各分项系数和组合系数选择如下: 分项系数组合系数 重力荷载,γg取1.2 风荷载,γw取1.4 风荷载,ψw 取1.0 地震作用,γE取1.3 地震作用,ψE 取0.6 温度作用,γT取1.2 温度作用,ψT 取0.2 荷载和作用效应按下式进行组合:

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算 1.1 干挂石材支座反力计算 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 根据支座受力,现采用4个M12膨胀螺栓。 单个支座的受荷面积为1500mm×1000mm,干挂石材自重取0.5 kN/m2,室内风荷载为0.5 kN/m2 支座反力为: 风荷载产生的拉力: N =0.5×1.5×1.0=0.75 kN 自重产生的剪力: V=0.5×1.5×1.0=0.75 KN 弯距:M=Ve=0.75*0.12=0.09k N﹒m 1.2. 镀锌M12膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(N.mm); 上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; N拔=2β?[N/8+(M/Z)/n] =2×1.25×[(0.75×103/2+(0.090×106/100)/2] =1.594 kN 即单个M12膨胀螺栓抗拉承载能力设计值为1.594kN. 2.1 室内吊顶支座反力计算 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求:

计算简图 (圆表示支座,数字为节点号) 根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为: 自重产生的拉力: N =1.163 kN 1.2. M8膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(N.mm); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; N拔=2β?(M/Z)/n =2×1.25×(1.163×103/2)/2 =0.727 kN 即单个M8膨胀螺栓抗拉承载能力设计值为0.727kN.

拉拔试验计算书

Xxx幕墙工程拉拔试验计算书 计算采用规范及依据 1.《建筑结构荷载规范》 GB50009-2001(2006版) 2.《钢结构设计规范》 GB50017-2002 3.《金属与石材幕墙工程技术规范》 JGJ133-2001 其他资料 一、建筑概况 本工程位于xxx,建筑物高度约为xxx米,按xx度抗震设计,基本风压w0 =0.8KN/M2,主要幕墙形式为玻璃幕墙、石材幕墙及类木幕墙,局部部位3.6米处幕墙框架与建筑物主体用后补埋板形式连接。每个后补埋板用300×200×8用2个M12×120化学螺栓和两个M12×120膨胀螺栓固定,膨胀螺栓使用时应严格遵守有关工艺要求。 二、幕墙埋件计算(后置埋件) 基本参数: 1:计算位置:xxx侧面xxxm转角位置; 2:幕墙立柱跨度:L=xxx mm; 3:立柱计算间距(指立柱左右分格平均宽度):B=xxm; 4:立柱力学模型:单跨梁; 5:埋件位置:侧埋; 6:板块配置:选用40mm厚的石材面板; 7:混凝土强度等级:C25; 三、荷载计算: 1、 (1)、风荷载标准值计算: W K :作用在石材上的风荷载标准值(KN/m2) βgz:瞬时风压的阵风系数,取1.69 μs1:风荷载局部体型系数,(负风压) A:石材龙骨受荷面积,A=1.44 m2 μS1(A):局部风压体型系数(依据《建筑结构荷载规范》GB 50009-2001(2006 版)第7.3.3条)μ S1(A)={μ S1(1) +[μ S1(10) -μ S1(1) ]logA}-0.2 =-1.60-0.2 =-1.8 μz:风荷载高度变化系数,取-1.8 厦门市基本风压,取W =0.8KN/m2(按50年一遇) W K =β gz ×μ s ×μ z ×W =1.69×(-1.8)×1.17×0.8 =-2.85KN/m2 > -1.0 KN/m2取W K =2.85 KN/m2

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接得设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面得工作能力 5.校核螺栓所需得预紧力就是否合适 确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。 1、螺栓组联接得结构设计 螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。为此,设计时应综合考虑以下几方面得问题: 1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。 2)螺栓得布置应使各螺栓得受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓得布置

3)螺栓排列应有合理得间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。扳手空间得尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。同一螺栓组中螺栓得材料,直径与长度均应相同。 5)避免螺栓承受附加得弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等得粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

膨胀螺栓施工及拉拔试验要求

膨胀螺栓施工及拉拔试验要求 一、施工要求: 1、膨胀螺栓的选用:品牌及样品必须经过项目部确认,到场实物与样品一致,并提供产品合格证明资 料,选用规格参照附件《膨胀螺栓安装试验参数》。 2、打孔前最好使用光电测量仪进行吊点的弹线定位,装修吊顶及长距离各类管线必须使用。 3、每次批量安装膨胀螺栓打孔之前,应先做钻头规格适配试验,经适配试验合格后方可批量打孔。在 更换钻头和使用不同批次材料时,应重新做适配试验。 4、根据膨胀螺栓长度需要的钻孔深度,在电锤上设置限位。 5、打孔时电锤应垂直用力,不要摆动,防止孔洞直径偏大,而造成膨胀螺丝锚固不牢。 6、作业人员手持电锤打孔,禁止将电锤绑在长杆上打孔。 7、除特殊位置不具备条件外,膨胀螺栓锚固位置与混凝土结构边缘的间距要大于倍孔深,膨胀螺栓之 间的间距也要尽量满足同样要求。 8、安装后套管不外露、加垫片并将螺母紧固牢固,紧固螺母时禁止采用手持长杆套筒紧固的作法。 二、拉拔试验要求 1、拉拔试验仪器首选可显示试验拉力数据的电子测量仪,如条件不具备,可选用能直观看出重量的重 物作为测试块,试验承重支架离开地面高度不超过200mm。 2、试验荷载应考虑施工人员在吊载物体上面作业的动荷载以及系统运行中的震动疲劳载荷,以专业工 程师计算实际承载重量的2倍为基准,但不得超过其极限抗拉力。 3、禁止采用吊篮上站人方法进行试验。 4、试验完成后填写部门提供的《膨胀螺栓拉拔试验报告》,并由相关人员签字确认。 三、拉拔试验步骤:

a) 试验前检查螺母安装是否紧固,用记号笔做好标记 b) 试验时对电子测试仪的读数进行拍照,作为依据 C)试验后检查紧固螺母位置是否有松动和旋转,膨胀螺栓是否有拉出现象 附件

M螺栓计算

经计算在8级风力下单位屏所受的风压 为 : w s =1.4×0.91=1.274kN/m 2 预埋螺栓应力计算 (1)柱脚连接处水平方向的风荷载产生的弯矩值计算 M s =1/2w s h 2 l 预埋螺栓拉应力计算 F=M s /c/2 其中:h 为隔音屏障高 度; l 为隔音屏障一 单元长度; c 为受拉区的 螺栓力臂长度。 计算结果 M s =0.5×1.274×3.62 ×2.5=20.639kN?m F=20.639/0.6/2=17.199K N 1)、抗剪验算:查规范可知,6.8级承压型高强螺栓抗剪承载力设计强度 b c f =140MPa , 螺栓承压连接板为 1.4cm 厚钢板,钢材为Q235钢,承压强度设计值a 305f b c MP =,则单个螺栓承载力设计值取下列三式中最小值: KN N 524.90053*14*2.21f *t *d b c b c ===; 83 .7163.204*3.0*9.0*3.1*u *9.0*3.1b v ===P N 1.30.9 1.30.90.3681239b v N P KN μ=???=???=; 式中:b v N ------- 承压型高强螺栓剪力 设计值; b c N ------- 连接钢板承压强度设计值; t-------- 连接钢板厚度; P -------- 摩擦型高强螺栓预 拉力值, KN A P 63.2045.352*860*675.0*f 675.0e y ===; e A ------------ M24螺栓有效面 积。 单个螺栓设计最大抗剪承载力 KN F KN N 1735.49v b v =>=,符合要求。 F v ---------受力螺栓设计剪力。 单个螺栓的受拉承载力设计值按下式计算: b t N ------ 高强度螺栓拉力设计值 ψ------- 高强度螺栓直径对承载力 的影响系数,当螺栓直径小于30mm 时,取1.0,当螺栓直径大于30mm 时,取0.93, e A ------ M24 螺栓有效面积=352.5 mm2,螺栓有效直径=21.19 mm b t f ----- 抗拉强度设计值,按 0.8 倍屈服值取480Mpa ; 单个螺栓受拉承载力设计值: KN F KN A N 7.72.169480*5.352*0.1f t b t e b t =≥===ψ; F t ------ 液压爬模受力螺栓设计拉力。 受力螺栓的荷载点距屏体面为:L=14/2=7mm; 弯矩作用在主平面,螺栓承受静力荷载或间接承受动力荷载,按下式计算: 式中,X M ----- 最大弯矩, Mx=Fy*L=34*103 *0.007=0.238KN ·m ; X γ----- 截面塑性发展系数,查表可知:X γ=1.2 W------ 按受压确定的抵抗矩,

膨胀螺栓抗拔力计算

创作编号:BG7531400019813488897SX 创作者:别如克* 膨胀螺栓如何计算 工程2008-07-24 21:25:08 阅读1185 评论 1 字号:大中小订阅 要对膨胀螺栓进行拉拔试验,可按下列公式 验算: N拔=[(N/2+M/Z)/n]*B≤N拔试/1.5 式中:N拔--单个膨胀螺栓承载能力设计值 N--拉力 M--弯矩 Z--上下两排螺栓中距 n--每排螺栓个数 B--调整系数,每处4个取1.25、6个取 1.30、8个取1.32

N拔试--单个膨胀螺栓拉拔试验结果一、建 筑概况 建筑物总高度约为120米,总宽度为150米,共26层,按8度抗震设计,基本风压w 0=0.35KN/M2,每个200×300埋件用4个 M12×110膨胀螺栓固定,膨胀螺栓基孔内加注环氧树脂。膨胀螺栓使用时应严格遵守有关工艺要 求。 二、荷载 ⑴作用在幕墙上的风荷载标准值按下式计 算: wk=βZ?μS?μZ?wO 式中:wk-作用在幕墙上的风荷载标准值 (KN/M2); βZ-考虑瞬时风压的阵风系数,取 2.25; μS-风荷载体型系数,取1.5; μZ-风压高度变化系数;

wO-基本风压,取0.35KN/M2。 故wk=βZ?μS?μZ?wO ⑵地震作用按下式计算 QE=βE?αmax?G 式中:QE??作用于幕墙平面外水平地震作 用(KN); G ??幕墙构件的重量(KN); αmax??水平地震影响系数最大值,8度抗 震设计取0.16; βE??动力放大系数,取3.0。 ⑶荷载分项系数和组合系数的确定 根据《建筑结构荷载规范》(GBJ9-87)及《玻璃幕墙工程技术规范》之精神,结合本工程的地区地理环境,建筑特点以及幕墙的受力情况,各分项系数和组合系数选择如下: 分项系数组合系数 重力荷载,γg取1.2

膨胀螺栓规格及性能

膨胀螺栓(胀锚螺栓) 1.普通膨胀螺栓 (1)性能、用途:膨胀螺栓由膨胀螺栓套管及螺栓两件组成,适用于在混凝土及砖砌体墙、地基上作锚固体。其受力性能见表48~49。 膨胀螺栓受力性能(一)表48 螺栓规格(毫米) 钻孔尺寸(毫米)受力性能(公斤) 直径深度允许拉力允许剪力 M6 M8 M10 M12 M1610.5 12.5 14.5 19 23 40 50 60 75 100 240 440 700 1030 1940 180 330 520 740 1440 注:表列数据系按铺固基体为标号大于150号混凝土。膨胀螺栓受力性能(二)表49 螺栓规格(毫米) 埋深 (毫米) 不同基(砌)体时的受力性能(公斤) 锚固在75#砖砌体上锚固在150#混凝土上 拉力剪力拉力剪力允许 值 极限 值 允许 值 极限 值 允许 值 极限 值 允许 值 极限 值 M6×55 M8×70 M10×85 M12×105 M16×14035 45 55 65 90 100 225 390 440 500 305 675 1175 1325 1500 70 105 165 245 460 200 319 500 734 1380 245 540 940 1060 1250 610 1350 2350 2650 3100 80 150 235 345 650 200 375 588 863 1625 (2)规格见图26、表50~51。 膨胀螺栓规格(一)表50 型号 规格 (毫米) 各部尺寸尺寸(毫米) 安装后尺寸 (毫米) L L1φH a b 重量 (公斤/100件) Ⅰ型M6×65 M6×75 M6×85 M8×80 65 75 85 80 35 35 35 45 10 10 10 12 3 3 3 3 8 8 8 9 2.77 2.93 3.15 6.14

螺栓组受力分析与计算..

螺栓组受力分析与计算 1.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性

要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。 图1 凸台与沉头座的应用 图2 斜面垫圈的应 用

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算 ?干挂石材支座反力计算? 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: ? 根据支座受力,现采用4个M12膨胀螺栓。? 单个支座的受荷面积为1500mm×1000mm,干挂石材自重取?kN/m2,室内风荷载 为?kN/m2? 支座反力为:? 风荷载产生的拉力:?N?=××=?kN?? 自重产生的剪力:???V=××=?KN? 弯距:M=Ve=*=﹒m? .?镀锌M12膨胀螺栓拉拔力计算:? N拔=2β?(N/2+M/Z)/n?? 式中:N拔:单个螺栓承载能力设计值;???? N:?拉力设计值(N);?????? ?M:?弯距设计值(); 上下两排螺栓中距(mm);? ??n:?每排螺栓个数;? β:承载能力调整系数,每处4个时取、6个时取、8个时取;? ?N拔=2β?[N/8+(M/Z)/n]???????? =2××[×103/2+×106/100)/2]?? =?kN? 即单个M12膨胀螺栓抗拉承载能力设计值为. ?室内吊顶支座反力计算? 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求:

计算简图??(圆表示支座,数字为节点号) 根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为:? 自重产生的拉力:?N?=?kN?? .?M8膨胀螺栓拉拔力计算:? N拔=2β?(N/2+M/Z)/n?? 式中:N拔:单个螺栓承载能力设计值;???? N:?拉力设计值(N);??????? M:?弯距设计值();??????? Z:上下两排螺栓中距(mm);? n:?每排螺栓个数;? β:承载能力调整系数,每处4个时取、6个时取、8个时取;?? N拔=2β?(M/Z)/n???????? =2×××103/2)/2?? =?kN? 即单个M8膨胀螺栓抗拉承载能力设计值为.

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。

2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸

附墙架螺栓的拉力计算(4.5米)精编版

SC200/200W 施工升降机附墙螺栓计算 一、附墙架作用于建筑物上力F 的计算 附墙架设计:附墙架采用Ⅱ型,两联接点间距1500mm ,架体中心到加固墙面最大距离4500mm,附墙架用4条M20穿墙螺栓与建筑物相连,垂直距离7.5米。 如图: 一、附墙架作用于建筑物上力F 计算: 附墙架作用于建筑物上的力F =05 .2B 60L ×× 式中B 为附墙宽度,L 为导架中心与墙面间的垂直距离 1、SC200/200W 升降机, L=4500, B=1500;所以

F=05 .25001605004??=87.80 kN 2、M20螺栓的截面积 A=πd 2/4 (mm 2) =3.1416×17.2942/4=235(mm 2) 二、螺栓承载力验算 根椐螺栓受力方式,需对M20螺栓进行抗剪连接验算及抗拉连接验算。以下仅对SC200/200W 电梯进行验算。 1.根据《钢结构设计规范》(GB50017-2003)中7. 2.1-1所示, 普通螺栓的受剪承载力设计值公式: N b v =b v v f d n 4 2 π =4294.1714.312??×320×10-3=75.13(KN) 螺栓上承受的剪力: N V =4F =4 80.8721.95KN <N b v =75.13(KN) 故M20螺栓的抗剪承载力可以满足安装使用要求。 2.根椐《钢结构设计规范》(GB50017-2003)中7.2.1-5所示, 普通螺栓的受拉承载力设计值公式: N b t =b t f d 42 π=32 104004294.1714.3-???=93.91(KN) 螺栓上承受的拉力: 480.874==F N t =21.95(KN)<b t N =93.91(KN) 故螺栓的抗拉承载力满足要求。

膨胀螺栓抗拔计算书

膨胀螺栓拉拔力计算 该工程基本设计参数;基本风压值o ω=0.35KN/㎡,干挂石材通过膨胀螺栓与建筑结构连接。最不利龙骨分隔宽度为B=1.0米,圆立柱连接点之间的竖向间距3.0米、横向间距0.8米,每个连接点膨胀螺栓个数为4个。相应的风压高度变化系数z μ=1.0(本工程的场地类别属于B 类,计算高度小于10米),按7度抗震设防设计。按照国家行业标准《建筑抗震设计规范》GB 50011—2010、《金属与石材幕墙工程技术规范》JBJ —2001、《建筑结构荷载规范》GB 50009—2012,针对本工程的实际情况,对膨胀螺栓的允用强度进行计算和校核。 一、设计荷载与作用 石材设计中按50年需要考虑荷载与作用有;风荷载、地震作用分别计算如下。 1、风荷载标准值 o z s z k w w ***μμβ= 式中: k w :为作用在幕墙上的风荷载标准值(KN/㎡) z β :为z 高度处瞬时风压的阵风系数 s μ :为风荷载体形系数 z μ :为风压高度变化系数 o ω :基本风压(KN/㎡)

k w =1.7x1.3x1.0x0.35=0.7735KN/㎡ 2、风荷载设计值 W=k w x q γ k w ;是风荷载标准值 q γ;是风荷载分项系数,q γ=1.4 W=0.7735x1.4=1.0829KN/㎡ 3、地震作用 垂直于幕墙水平分布的地震作用 G a q e ek **=max β 式中:ek q :垂直于幕墙的水平地震作用力 e β:动力放大系数 max a :地震影响系数,按七度抗震设计 G :单位面积自重荷载 ek q =5.0x0.12x0.71=0.428KN/㎡ 4、荷载效应组合 水平作用效应组合系数;风荷载w ψ=1.0 地震作用e ψ=0.5 二、膨胀螺栓拉拔力计算 膨胀螺栓石材每个连接点的在风荷载作用下的水平力为 N=W*w ψ*A+e ψ*ek q =1.0829x1.0x3+0.5x0.428 =3.2487+0.214

膨胀螺栓施工及拉拔试验要求

膨胀螺栓施工及拉拔试 验要求 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

膨胀螺栓施工及拉拔试验要求 一、施工要求: 1、膨胀螺栓的选用:品牌及样品必须经过项目部确认,到场实物与样品一致,并 提供产品合格证明资料,选用规格参照附件《膨胀螺栓安装试验参数》。 2、打孔前最好使用光电测量仪进行吊点的弹线定位,装修吊顶及长距离各类管线 必须使用。 3、每次批量安装膨胀螺栓打孔之前,应先做钻头规格适配试验,经适配试验合格 后方可批量打孔。在更换钻头和使用不同批次材料时,应重新做适配试验。 4、根据膨胀螺栓长度需要的钻孔深度,在电锤上设置限位。 5、打孔时电锤应垂直用力,不要摆动,防止孔洞直径偏大,而造成膨胀螺丝锚固 不牢。 6、作业人员手持电锤打孔,禁止将电锤绑在长杆上打孔。 7、除特殊位置不具备条件外,膨胀螺栓锚固位置与混凝土结构边缘的间距要大于 3.5倍孔深,膨胀螺栓之间的间距也要尽量满足同样要求。 8、安装后套管不外露、加垫片并将螺母紧固牢固,紧固螺母时禁止采用手持长杆 套筒紧固的作法。 二、拉拔试验要求 1、拉拔试验仪器首选可显示试验拉力数据的电子测量仪,如条件不具备,可选用 能直观看出重量的重物作为测试块,试验承重支架离开地面高度不超过 200mm。 2、试验荷载应考虑施工人员在吊载物体上面作业的动荷载以及系统运行中的震动 疲劳载荷,以专业工程师计算实际承载重量的2倍为基准,但不得超过其极限抗拉力。

3、禁止采用吊篮上站人方法进行试验。 4、试验完成后填写部门提供的《膨胀螺栓拉拔试验报告》,并由相关人员签字确 认。 三、拉拔试验步骤: a) 试验前检查螺母安装是否紧固,用记号笔做好标记 b) 试验时对电子测试仪的读数进行拍照,作为依据 C)试验后检查紧固螺母位置是否有松动和旋转,膨胀螺栓是 否有拉出现象 附件

膨胀螺栓抗拔力计算

膨胀螺栓如何计算 工程2008-07-24 21:25:08 阅读1185 评论 1 字 号:大中小订阅 要对膨胀螺栓进行拉拔试验,可按下列公式验算:N 拔=[(N/2+M/Z)/n]*B w拔试/1.5 式中:N拔--单个膨胀螺栓承载能力设计值 N--拉力 M--弯矩 Z--上下两排螺栓中距 n--每排螺栓个数 B--调整系数,每处4个取1.25、6个取1.30、 8个取1.32 N拔试--单个膨胀螺栓拉拔试验结果一、建筑 概况 建筑物总高度约为120米,总宽度为150米,共26层,按8度抗震设计,基本风压w 0=0.35KN/M2 , 每个200X300埋件用4个M12X 110膨胀螺栓固定,

膨胀螺栓基孔内加注环氧树脂。膨胀螺栓使用时应严 格遵守有关工艺要求。 ⑴ 作用在幕墙上的风荷载标准值按下式计算: w k= 3 Z? [i S? [i Z?O 式中:w k —作用在幕墙上的风荷载标准值(KN /M2); 3Z—考虑瞬时风压的阵风系数,取2.25; 1S—风荷载体型系数,取1.5 ; 1Z—风压咼度变化系数; w O —基本风压,取0.35KN /M2。 故w k = 3 Z?i S?i Z w?O ⑵ 地震作用按下式计算 QE = 3 E? a max?G 式中:QE??作用于幕墙平面外水平地震作用 KN);

a max??水平地震影响系数最大值,8度抗震设 计取0.16 ; 3 E?动力放大系数,取3.0。 ⑶ 荷载分项系数和组合系数的确定 根据《建筑结构荷载规范》(GBJ9-87) 及《玻璃幕墙工程技术规范》之精神,结合本工程的地区地理环境,建筑特点以及幕墙的受力情况,各分项系数和组合系数选择如下: 分项系数组合系数 重力荷载,Yg取1.2

相关文档
最新文档