8均匀设计法

合集下载

均匀设计法

均匀设计法

第六章 均匀设计法
▪例如用U11(1110)的1,7 和1,2列分别画图,得到下面的图 (a)和图 (b)。我们看到,(a)的点散布比较均匀,而(b)的点散 布并不均匀。均匀设计表的这一性质和正交表有很大的不同, 因此,每个均匀设计表必须有一个附加的使用表。
11 10
9 8 7 6 5 4 3 2 1
第六章 均匀设计法
▪1978年,七机部由于导弹设计的要求,提出了一个 五因素的试验,希望每个因素的水平数要多于10, 而试验总数又不超过50,显然优选法和正交设计都 不能用,方开泰与王元经过几个月的共同研究,提 出了一个新的试验设计,即所谓“均匀设计”,将 这一方法用于导弹设计,取得了成效。
▪均匀设计法与正交设计法的不同:
两种设计的均匀性比较
很难找到正交设计和均匀设计具有相同的试验数和相同的水平数。我们从 如下三个角度来比较:
v 1.试验数相同时的偏差的比较
v 当因素s=2时,若用L8(27)安排试验,其偏差为0.4375;
若用均匀设计表
U
* 8
(88
)
,则偏差最好时要达0.1445。
显然试验数相同时均匀设计的均匀性要好得多。值得
U6(64)的使用表
s列

213
312 3
412 3 4
偏差值越小,表示均匀度越好
D
0.1875 0.2656 0.2990
第六章 均匀设计法
均匀设计和正交设计的比较
将目前最常用正交设计和均匀设计作一下比较,讨论两种试验设计方法的特 点。
➢1.试验次数的比较 ➢正交设计用于水平数不高的试验,因为它的试验数至少为 水平数的平方。例如一项试验,有五个因素,每个因素取31 水平,若用正交设计,至少需要做961次试验,而用均匀设 计只需31次,所以均匀设计适合于多因素多水平试验。

均匀设计法的基本原理和应用范围

均匀设计法的基本原理和应用范围

农业试验设计
总结词
在农业研究中,均匀设计法可用于优化种植密度、施肥量等农业措施,提高作物产量和 品质。
详细描述
在农业试验中,需要研究多种因素对作物生长的影响,如种植密度、施肥量、灌溉方式 等。通过均匀设计法,可以有效地安排试验条件,以最少的试验次数获得最佳的试验效
果。
产品制造工艺优化
总结词
在产品制造过程中,均匀设计法可用于优化工艺参数,提高产品质量和生产效率。
均匀设计法的基本原理和应用范围
目录
• 均匀设计法的基本概念 • 均匀设计法的基本原理 • 均匀设计法的应用范围 • 均匀设计法的优势与局限性 • 均匀设计法的实际应用案例
01 均匀设计法的基本概念
定义与特点
定义
均匀设计法是一种实验设计方法,旨在通 过合理地选择实验点和实验次数,最大限 度地获取所需的信息,并减少实验误差。
确定试验点数量
根据试验因素和水平,确定试 验点数量,以确保试验结果的 准确性和可靠性。
进行试验
按照生成的试验点进行试验, 收集数据。
确定试验因素和水平
根据研究目的和问题,确定试 验因素和水平,为后续的试验 设计提供基础。
生成试验点
根据均匀性准则和试验点分布 方法,生成试验点,确保每个 试验点具有代表性。
有限制条件
在满足一定限制条件下选择实验点。
均匀分散
在实验范围内,实验点均匀分散,避免集 中在某些区域。
高效性
通过合理设计,用较少的实验次数获取更 多信息。
与其他设计方法的比较
与正交设计法比较
均匀设计法的实验点分布更均匀,适 用于探索性实验和多因素多水平实验 。
与拉丁方设计法比较
拉丁方设计法适用于两因素实验,而 均匀设计法可应用于多因素实验。

均匀设计及其应用

均匀设计及其应用

法的试验数据分析要用到回归分析方 法,例如线性回归模 型、 次回归模型 、 二 非线 性回归模
型 ,以 及 各 种 选 择 回归 变 点 的 方 法 ,也 有 利 用 多元 样 条 函 数 技 术 、小 波 理 论 、人 工 神 经 网 络
模型应用于试验设计 和数据分析. 具体选择何种模型要根据实际试验的具体性质来确 定. 利用 回归分析得出的模型 , 即可进行 影响因素的重要性分 析及新条件试验 的结果估算 , 预报和最
均 匀 设 计 及 其 应 用
刘 永 才
( 中国航天科工集 团第三研究 院, 北京 10 7 ) 0 0 4
[ 摘
要] 概谜 了均匀设计法的诞 生 、 发展、基本内强与应 用特点 . 介绍了均 匀设计法在 国防和
国民经济诸多领域中的应用成果 . 总结了均匀设计法诞生、发展与广泛应用的几个鲜明特点. [ 关键调] 均匀设计 ; 试验设计 ; 均匀设计法应用
究其诸多影响 因素的需要 , 由中国科学院应用数 学所方开 泰教授和王元教 授提出的一种试验 设计方法. 均匀设计 是统计试 验设 计的方法 之一 , 它与其它 的许多试 验设计方法 ,如正交设 计、 最优设计 、 旋转设计、稳健 设计 和贝叶斯设计等相辅相成. 我们知道 , 试验设计就是如何在试验域内最有效地选择试验点 , 过试验得到响应 的观 通
・5 ・ 9
均匀设计 是通过一套精心 设计 的表来进行试验设计 的, 对于每一个均匀设计 表都有一个
使 用 表 ,可 指导 如何 从 均 匀 设 计 表 中 选 用 适 当 的列 来 安 排 试 验 . 匀 设 计 分 会 还 编 制 了 一 套 均 软 件《 匀 设 计 与 统 计 调 优 软 件 包 》 试 验 设 计 和 数 据 处 理 、分 析 使 用 ,非 常 方 便 . 匀 设 计 均 供 均

均匀设计-均匀设计.ppt

均匀设计-均匀设计.ppt

3.3.3.2 非线性回归模型(续1)
法、后退法、逐步回归法或最优子集法等进行变量的 筛选。其回归系数求解可经过方程项的转换按多元线 性回归的方法完成。 (2) 多项式回归模型
一般地,包含多变量的任意多项式可表述为:
可通过类似x1=Z1,x2=Z2,x3=Z12,x4=Z1Z2,x5=z22 的变换, 将其按多元线性回归分析。多项式回归在回归分析中 占特殊地位,因为任何函数至少在一
S
列号
D
2 15
0.1632
3 145
0.2649
4 1345
0.3528
5 12345
0.4286
6 1 2 3 4 5 6 0.4942
说明:设计表中的列代表的是各因素的水平, 但具体代表的是哪个因素的水平,需按使用 表确定,使用表s一栏的数字是试验的因素数, 它后面的数字指定了各种因素数进行试验时 该如何选择设计表的列;使用表中D栏代表 不同因素数选择设计表的不同列时均匀设计 的偏差,偏差越小,均匀性越好,试验成功 的几率和结果的可靠性越大。
(4) 用分次试验的指标值和取得该指标值的各因 素水平值建立试验指标—各因素水平关系的回归 模型(这也是均匀设计中的最重要的环节之一);
(5) 成功地建立了回归模型后在各试验因素的试 验范围内寻找最佳的各因素水平组合并进行该组 合的验证试验(也可和步骤6一起进行);
(6) 验证试验成功则进一步缩小水平划分更为细致的新的一 轮的试验,进一步寻找最优试验条件组合。一般 情况下,此次最优条件即为整个试验的最优条件, 试验结束。
3 均匀设计的应用方法
试验设计的共性问题 均匀设计的应用方法 具体问题的解决方法
3.1 试验设计的共性问题
试验设计(如正交试验设计、裂区试验设 计、系统分组设计等)过程必然离不开试验基 础内容的构思(试验的评价指标;试验的因素、 水平的选择和试验次数的拟定)、试验结果数 据的分析等共性方面的问题。试验的因素和水 平的选择关系到一个试验能否成功的关键,下 列的注意事项和建议对使用试验设计(当然也 包括均匀设计)的人员应该是有益的:

均匀实验设计

均匀实验设计

均匀试验设计均匀设计均匀设计(uniform design)是中国数学家方开泰和王元于1978年首先提出来的,它是一种只考虑试验点在试验范围内均匀散布的一种试验设计方法。

与正交试验设计类似、均匀设计也是通过一套精心设计的均匀表来安排试验的。

由于均匀设计只考虑试验点的“均匀散布”而不考虑“整齐可比”,因而可以大大减少试验次数,这是它与正交设计的最大不同之处。

例如,在因素数为5,各因素水平数为31的试验中,若采用正交设计来安排试验,则至少要作3俨=961次试验,这将令人望而生畏,难以实施,但是若采用均匀设计,则只需作31次试验。

可见,均匀设计在试验因素变化范围较大,需要取较多水平时,可以极大地减少试验次数。

经过20多年的发展和推广,均匀设计法已广泛应用于化工、医药、生物、食品、军事工程、电子、社会经济等诸多领域,并取得了显著的经济和社会效益。

1.均匀设计表1.1等水平均匀设计表均匀设计表,简称均匀表,是均匀设计的基础,与正交表类似,每一个均匀设计表都有一个代号,等水平均匀设计表可用U n ( r1)或U n* (r1)表示,其中,U为均匀表代号;n为均匀表横行数(需要做的试验次数);r为因素水平数,与n相等;I为均匀表纵列数。

代号U右上角加“*”和不加“*”代表两种不同的均匀设计表,通常加“* ”的均匀设计表有更好的均匀性,应优先选用。

表1-1、表1-3分别为均匀表U7 (74)与U7* (7 4),可以看出,U7 ( 74)和U7*(74) 都有7行4列,每个因素都有7个水平,但在选用时应首选U7*(74 )。

表1-1 U7 (74)474747每个均匀设计表都附有一个使用表,根据使用表可将因素安排在适当的列中。

例如,表1-2是U7 ( 74)的使用表,由该表可知,两个因素时,应选用1,3两列来安排试验;当有三个因素时,应选用1,2,3三列,。

最后一列D表示均匀度的偏差((discrepancy),偏差值越小,表示均匀分散性越好。

均匀设计法PPT课件

均匀设计法PPT课件

b x 数 的绝对值不能直接进行比较,必须将各回归系数标准化,按式(8-15)求出标准回
归系数 ,然后才能通过比i较
i
xi
y
y
b'i b'的绝对值来判断各因子影响的大小。
i
26
第26页/共44页
标准回归系数
bi' bi Lij / Lyy
(8―15)
标准回系数 与因子 所' 用单位无关,其绝对值越大,表示该因子对 值的影响越大。
j 1
。f u m
Qe QT U
第24页/共44页
(8―11)
(8-12) (8-13)
24
自由度
f e 从而n统计量m 1
给定显著性水平F,从附表2查U出
/
m
检验临界值
Qe /(n m 1)
F ( fu , fe )
,若 (8-14)
F
F F ( fu , f e )
我们可以在显著性水平下 ,认为所建立的回归方程是有显著意义的。反之,则
用的条件下,只需选用实验次数等于因子数的均匀设计表来安排实验就可以的。而 当要考虑因子高次项与因子之间的交互作用时,需用多项式回归来描述指标函数。 若研究的因子数因子数为 ,在回归方程中,一次项与二次项各
m
13
第13页/共44页
14
m 2m C C 有 项,交互效应项有 项,共有( )项2,因此至少要选用有( )次2实验的均匀设
U 5 (54 ) U 5 (54 ) 则U正表5好(的5每4第列)1安列排和一第个2列因;子若。有又3如个前因面子提,到则的将因子表安,排如在果第只1,安2,排4列2因;子若,有则4个可因由子,
的使用表查得应将这2个因子分别

均匀设计法名词解释

均匀设计法名词解释

均匀设计法名词解释
均匀设计法是一种试验设计方法,它的设计点在试验范围内均匀散布。

该方法由方开泰教授和数学家王元在1978年共同提出,是数论方法中的“伪蒙特卡罗方法”的一个应用。

在科学研究和技术开发中,常常需要进行试验设计来探究不同因素对试验结果的影响。

试验设计的目的在于最小化试验次数和最大化试验信息的收集。

均匀设计法是一种有效的试验设计方法,它可以在试验点均匀散布的条件下,最小化试验次数,同时收集到足够的试验信息。

均匀设计法的优点在于它可以减少试验次数,提高试验效率,同时还可以均匀散布试验点,使试验结果更具代表性。

此外,均匀设计法还可以筛选关键因素,帮助研究人员更好地理解试验结果。

在均匀设计法中,每个因素的水平都被均匀地分配到试验中的各个点。

这使得每个试验点的数据都能够提供关于该因素的信息,从而使得在较少的试验次数下获得足够的信息成为可能。

总的来说,均匀设计法是一种有效的试验设计方法,可以帮助研究人员在较少的试验次数下收集到足够的试验信息,同时还可以提高试验效率并筛选关键因素。

均匀试验设计

均匀试验设计

均匀试验设计主要参考文献:1、方开泰. 均匀设计与均匀设计表. 北京:科学出版社,19942、林维萱. 试验设计方法.大连:大连海事大学出版社,19953、栾军. 现在试验设计优化方法. 上海:上海交通大学出版社,19954、茆诗松等. 回归分析及其试验设计. 上海:华东师范大学出版社, 1981一、均匀设计的概念及特点均匀设计是由我国数学家方开泰教授和王元教授于1978年提出的。

1978年,七机部由于导弹设计的要求,提出了一个五因素的试验,希望每个因素的水平数要多于10,而试验总数又不超过50。

显然,正交试验设计不能用。

对于一个水平数为m的正交试验,至少要做m2次试验,如m=10时,m2=100,即至少要做100次试验,这在实际中是难于实施的。

因此,正交试验设计方法只适用于因素水平数不太多的多因素试验。

正交表的特点是使试验点“均匀分散、整齐可比”。

“均匀分散”即均匀性,使试验点均匀分布在试验范围内,让每个试验点都具有一定的代表性,可以用部分试验反映全面试验的情况,大大减少试验次数。

“整齐可比”就是综合可比性,使试验结果的分析十分方便,易于分析各因素及其交互作用对试验指标的影响大小及规律性。

但是,为了保证整齐可比性(即“均衡搭配”),对任意两个因素而言,必须是全面试验,每个因素的水平必须有重复。

这样,试验点在试验范围内就不能充分均匀分散,试验点就不能太少。

综上所述,正交试验为了保证“整齐可比”,使均匀性受到了一定限制,使试验点的代表性还不够强,试验次数不能充分地少,如果不考虑整齐可比(即综合可比)性,而完全保证均匀性,让试验点在试验范围内充分地均匀分散,不仅可大大减少试验点,而且仍能得到反映试验体系主要特征的试验结果。

这种从均匀性出发的试验设计,称为均匀试验设计。

均匀试验设计的最大优点是可以节省大量的试验工作量,尤其在试验因素水平较多的情况下,其优势更为明显。

例如,一个四因素七水平试验,进行一轮全面试验要做74=2401次,用正交试验也至少要做72 = 49次,而用均匀试验则仅需7次。

均匀设计实验方法

均匀设计实验方法

均匀设计实验方法
它是一种很特别的实验设计方法哦。

你想想看,做实验的时候,我们常常想要用最少的实验次数得到最多最有用的信息,均匀设计就有这个本事呢。

比如说,要是传统的全面实验法,那可能要做超级多的实验组合,又费时间又费材料。

但是均匀设计呢,就像是一个聪明的小助手,它会巧妙地安排实验点,让这些点在整个实验范围内分布得超级均匀。

这种均匀分布有啥好处呢?这就好比你在一个大果园里摘果子,你要是乱走乱摘,可能有的地方果子好你没发现,有的地方你又白跑了。

但要是按照均匀设计的方法,就像是有个小地图,告诉你在哪几个地方摘,就能摘到各种不同类型的果子,把果园的情况摸得门儿清。

在实际操作的时候呢,它有自己的一套规则。

它会根据因素的个数和水平数来确定实验方案。

就像搭积木一样,每个积木块(因素)都有自己不同的样子(水平),均匀设计能把这些积木搭得又整齐又合理。

而且哦,它的实验点不会集中在某个小区域,而是均匀地散落在整个实验空间里。

均匀设计在很多领域都大显身手呢。

在化学实验里,要调配各种试剂的比例,用均匀设计就能快速找到比较好的配比组合。

在农业上,研究不同肥料、水分、光照对作物的影响,也可以靠它。

它就像一个多面手,到处都能帮忙。

均匀设计及其应用(精品)

均匀设计及其应用(精品)
均匀设计法诞生于1978年。由中国著名数学 家方开泰教授和王元院士合作共同发明。
正交设计可使试验点“均匀分散、整齐可 比”,为保证“整齐可比性”,使试验设计的 均匀性受到了一定限制,使试验点的代表性还 不够强,试验次数不能充分地少。
均匀设计是另一种部分实施的试验设计方 法。它可以用较少的试验次数,安排多因素、 多水平的析因试 验,是在均匀性的度量下最好 的析因试验设计方法。它可以使试验点在试验 范围内充分地均匀分散,不仅可大大减少试验 点,而且仍能得到反映试验体系主要特征的试 验结果。
为了进行分析,我们引进5个‘伪变量’。它们的记
号和取值如下:
B因素的
z31 (1 0 0 0 1 0 0 0 1 0 0 0) z32 (0 1 0 0 0 1 0 0 0 1 0 0) z33 (0 0 1 0 0 0 1 0 0 0 1 0)
A因素的
z41 (0 0 0 0 1 0 1 0 1 0 1 0)
中的三项,在 5%的水平下都是显著的。
图1.1.1:
残差与 yˆ 的示意图
y yˆ
状态是正常的,所以模型 (1.1.4)是可接受的。

图 1.1.2a 匹配图
16
图 1.1.2b 正态 Q-Q 图
图 1.1.2c偏回归图
第5步: 优化 -- 寻找最佳的因素水平组合
表1.1.5的设计是73=343个全面试验的部分实施, 其中最好的 试验点是值为Y= 48.2%的 #7。它不一定是全局最好的。人 们想找到满足下式的x1*和 x3* :
第4列安排种子品种A,
分3个A1,A2,A3。
表2.1.1
1 2 3 4 5 6 7 8 9 10 11 12
U12(12×6×4×3 )

均匀设计法

均匀设计法

2
1.4(2) 19(4) 3.0(6) 0.336
3பைடு நூலகம்
1.8(3) 25(6) 1.0(2) 0.294
4
2.2(4) 10(1) 2.5(5) 0.476
5
2.6(5) 16(3) 0.5(1) 0.209
6
3.0(6) 22(5) 2.0(4) 0.451
7
3.4(7) 28(7) 3.5(7) 0.482
xik
_
xi
xik
_
xj
Liy
N K 1
xik
_
xi
yk
_
y
Lyy
N i1
yk
_
y
2
_
N
xi xi
i1
i 1, 2, m
i, j 1, 2, , m i 1, 2, , m
(8 2) (8 3) (8 4) (8 5)
_ 1 N
y N i1 yk 回归方程组系数由下列正规方程组决定:
^
2mT
方程(8 9)化为 y b0 bl xl (T Cm2 ) (8 11)
l 1
在这种情况下,为了求得二次项和交互作用项,就不能
选用试验次数等于因素数的均匀设计表,二必须选用试
验次数大于或等于回归方程系数总数的U表了
§9-2 应用举例
▪ 利用均匀设计表来安排试验的步骤:
• (1)根据试验的目的,选择合适的因素和相应的水平。 • (2)选择适合该试验的均匀设计表,然后根据该表的使
§6-1 基本原理
• 一、引言
• 正交试验设计利用:
▪ 均衡分散:试验点在试验范围内排列规律整齐
▪ 整齐可比:试验点在试验范围内散布均匀

均匀设计法的结果分析方法及试验结果的评价ppt课件

均匀设计法的结果分析方法及试验结果的评价ppt课件

8
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
第六章 均匀设计法
➢一般的均匀设计表水平数为奇数 ➢当水平数为偶数时,用比它大1的奇数表划去最后 一行即可得到水平数为偶数的均匀设计表 ➢利用均匀设计表安排试验时,试验点是均匀的
很难找到正交设计和均匀设计具有相同的试验数 和相同的水平数。我们从如下三个角度来比较:
• 1.试验数相同时的偏差的比较
• 当因素s=2时,若用L8(27)安排试验,其偏差为0.4375;
若用均匀设计表
U
* 8
(8
8
)
,则偏差最好时要达0.1445。显
然试验数相同时均匀设计的均匀性要好得多。值得注
意的是,这种比较方法对正交设计是不公平的,因为
▪如U6(64)表示要做次6试验,每个因素有6个水平, 该表有4列。
U6(64)
列号 试验号
1
2
3
4
1
1
2
3
6
2
2
4
6
5
3
3
6
2
4
4
4
1
5
3
5
5
3
1
2
6
6
5
4
1
School of Microelectronics and Solid-State Electronics
13
烧伤病人 的治疗 通常是 取烧伤 病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人

均匀设计和均匀设计软件

均匀设计和均匀设计软件

均匀设计表U9*(94)和它的使用表
均匀设计表 U9*(94) U 9*(94)的使用表
均匀设计表的使用表的产生方法
均匀设计表U13 *(134 ) 和它的使用表及3 因素时各次试验2 7 12
3
4
S 2 3 4 试验次数序号 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 3 3 2 因素 1选用水平 1 1 3 4 5 6 7 8 9 10 11 12 13
o § § § §
正交试验设计利用: 均衡分散:试验点在试验范围内排列规律整齐 整齐可比:试验点在试验范围内散布均匀 可以进行部分试验而得到基本上反映全面情 况的试验结果 但是, 当试验中 因素数或水平数比 较大时,正交试验的次数也 会很大。如 5因素 5水平, 用正交表需要安 排 5× 5= 25次试验。这时,可以选用均匀设计法,仅用 5次试验 就可能 得到能满足需要 的结果
9 9 3 10 10 8 11 11 13 12 12 13 13 4 9
y = b0 + b1 x1 + b2 x2 + L + bm xm
试验结果分析
^
(8 − 1)
令 xik 代表因素xi 在第 k次 试验时取的 值,y k 表 示响 应值 y在第k次 试验的结果。
n _ _ Lij = ∑ xik − x i xik − x j i , j = 1,2,L , m k =1
列 号
D 0.0962 4 3 4 0.1442 0.2076 因素3选用水平 11 8 5 2 13 10 7 4 1 12 9 6 3
1 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

均匀实验设计

均匀实验设计

均匀试验设计均匀设计均匀设计(uniform design)是中国数学家方开泰和王元于1978年首先提出来的,它是一种只考虑试验点在试验范围内均匀散布的一种试验设计方法。

与正交试验设计类似、均匀设计也是通过一套精心设计的均匀表来安排试验的。

由于均匀设计只考虑试验点的“均匀散布”,而不考虑“整齐可比”,因而可以大大减少试验次数,这是它与正交设计的最大不同之处。

例如,在因素数为5,各因素水平数为31的试验中,若采用正交设计来安排试验,则至少要作312 =961次试验,这将令人望而生畏,难以实施,但是若采用均匀设计,则只需作31次试验。

可见,均匀设计在试验因素变化范围较大,需要取较多水平时,可以极大地减少试验次数。

经过20多年的发展和推广,均匀设计法已广泛应用于化工、医药、生物、食品、军事工程、电子、社会经济等诸多领域,并取得了显著的经济和社会效益。

1. 均匀设计表1.1 等水平均匀设计表均匀设计表,简称均匀表,是均匀设计的基础,与正交表类似,每一个均匀设计表都有一个代号,等水平均匀设计表可用U n ( r l)或U n* (r l)表示,其中,U为均匀表代号;n为均匀表横行数(需要做的试验次数);r为因素水平数,与n相等;l为均匀表纵列数。

代号U右上角加“*”和不加“*”代表两种不同的均匀设计表,通常加“*”的均匀设计表有更好的均匀性,应优先选用。

表1-1、表1-3分别为均匀表U7 (74)与U7* (74),可以看出,U7 ( 74)和U7*(74)都有7行4列,每个因素都有7个水平,但在选用时应首选U7*(74 )。

表1-1 U7 (74)表1-2 U7 (74)的使用表表1-3 U7* (74)表1-4 U7* (74)的使用表每个均匀设计表都附有一个使用表,根据使用表可将因素安排在适当的列中。

例如,表1-2是U7 ( 74)的使用表,由该表可知,两个因素时,应选用1,3两列来安排试验;当有三个因素时,应选用1,2,3三列,……。

《均匀设计法》课件

《均匀设计法》课件

均匀设计法的应用领域
化学与制药
用于寻找最佳反应条件 和优化化学合成路径。
生物与医学
用于研究生物体内各种 因素之间的相互作用和
最佳条件。
工程与制造
用于优化产品设计、工 艺参数和制造流程。
经济与社会
用于研究市场、消费者 行为和社会现象等复杂 系统的最佳策略和条件

均匀设计法的优势与局限性
高效性
通过减少实验次数提高效率,降 低实验成本。
代表性
选择的实验点应具有代表 性,能够反映实验范围内 的各种情况和变化趋势。
可行性
实验设计方案应具有实际 可行性,考虑到实验条件 、资源、时间等因素的限 制。
均匀设计法的实施步骤
确定因素和水平
选择影响实验结果的主要因素 ,并确定每个因素的取值范围 和水平。
实施实验
按照实验设计表进行实验,记 录实验数据和结果。
需要保证实验条件的一致性和稳定性 ,以确保实验结果的准确性和可靠性 。
需要建立准确的数学模型来描述实验 结果,并对模型精度有较高要求。
02
均匀设计法的基本原理
BIG DATA EMPOWERS TO CREATE A NEW
ERA
均匀设计法的数学基础
线性代数
均匀设计法涉及到线性代数中的 矩阵和向量运算,用于描述实验 设计中的各种关系和约束条件。
均匀设计法与拉丁方设计的比较
拉丁方设计是一种用于排列试验的方阵,而均匀设计法更注重试验点在参数空间中的均匀分布。
均匀设计法在交叉学科领域的应用探索
均匀设计法在生物医学领域的应用
在生物医学研究中,通过均匀设计法可以更有效地设计和实施实验,以探究不同因素对 生物系统的影响。
均匀设计法在环境科学领域的应用

均匀设计方法简介

均匀设计方法简介

均匀设计方法简介在工农业生产和科学研究中,常须做试验,以获得予期目的:改进生产工艺,提高产品收率或质量,合成出某化合物等等。

怎样做试验,是大有学问的。

本世纪30年代,费歇(R.A.Fisher)在试验设计和统计分析方面做了一系列先驱工作,使试验设计成为统计科学的一个分支。

今天,试验设计理论更完善,试验设计应用更广泛。

本节着重介绍均匀设计方法。

一、试验设计对于一项试验,例如用微波加热法通过离子交换制备Cu13X分子筛。

我们可以13X分子筛、CuCl2为原料来制备,为寻找最佳条件,应如何设计这个试验呢?若我们已确定了微波加热功率(A)、交换时间(B)、交换液摩尔浓度(C)为三个影响因素,每个因素取五个不同值(即水平:A1,…,A5,B1,…,B5,C1,…,C5)。

有两种方法最易想到:1.全面试验:将每个因素的不同水平组合做同样数目的试验。

对上述示例,不计重复试验,共需做5×5×5=125次试验。

2.多次单因素试验:依次考查各因素(考查某因素时,其它因素固定)取最佳值。

容易知道,对上示例(不计重复试验)共需做3×5=15次试验。

该法在工程和科学试验中常被人们采用,可当考查的因素间有交互作用时,该法所得结论一般不真。

3.正交设计法:利用正交表来安排试验。

本世纪60年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,使正交试验设计得到更广泛的使用。

70年代以来,我国许多统计学家深入工厂、科研单位,与广大工程技术人员、工人一起,广泛开展正交设计的研究、应用,取得了大批成果。

该法是目前最流行,效果相当好的方法。

正交表记为:L n(q m),这里“L”表示正交表,“n”表总共要做的试验次数,“q”表每个因素都有q个水平,“m”表该表有4列,最多可安排m个因素。

常用的二水平正交表为L4(23),L8(27),L16(215),L32(231);三水平正交表有L9(34),L27(313);四水平正交表L16(45)及五水平正交表L25(56)等。

均匀设计

均匀设计
全面交叉试验要N=73=343次,太多了。 建议使用均匀设计。 有现成的均匀设计表,提供使用。参见:
“方开泰,均匀设计与均匀设计表,科学出版社(1994).” 之附表 1
也可以浏览如下网页
网络地址:.hk/UniformDesing 9
第1步: 将试验因素的水平列成下表:
U7 (74 )
234 236 465 624 153 312 541 777
表 1.1.4:
No. 1 2 3 1 123 2 246 3 362 4 415 5 531 6 654 7 777
第3步: 应用选择的 UD-表, 做出试验安排。
13
表 1.1.5: 1.5
No. 1 2 3 4 5 6 7
3. 对第二列,第三列做同样 的替代. 4. 完成该设计对应的试验, 得到7个结果,将其放入最 后一列.
14
第 4步: 用回归模型匹配数据 首先,考虑线性回归模型:
y 0 1x1 2 x2 3x3
(1.1.1)
使用回归分析中变量筛选的方法,比如‘向后法’,得到 推荐的模型为:
yˆ 0.2142 0.0792 x3
对某农作物产量的影响,
前两个为定量因素,后两个为定性因素。
如何安排试验,引出了下面的内容。
28
混合型因素混合型水平的均匀设计
一般情况下试验中既有定量型连续变化因素,又有定性型状态变化 因素。
假设有k个定量因素X1,…,Xk;
这k个因素可化为k个连续变量, q1,…,qk。

其水平数分别为
又有t个定性因素G1,…,Gt,
第四列安排种子品种 A,分3个A1,A2,
A3。
31
表 2.1.1
1 2 3 4 5 6 7 8 9 10 11 12

均匀设计

均匀设计
均匀试验设计
组成员:
主要内容
均匀设计的概念、特点、原理
均匀设计的具体应用方法
1 什么是均匀设计
1.1 均匀设计的概念
均匀设计(Uniform Design)是一种试验设计
方法(Experimental Design Method),称为均 匀设计(Uniform Design)或均匀设计试验法 (Uniform Design Experimentation)。它可 以用较少的试验次数,安排多因素、多水平 的析因试 验,是在均匀性的度量下最好的析 因试验设计方法。
3.3.2 设计表的选择 选择均匀设计表需要注意以下几点: (1) 要满足试验次数的要求:即确定Un表n的 问题;
(2) 表的列数要满足试验因素数的要求;即确
定Un表s的问题;
3.3.3 回归模型建立
回归模型可分为线性回归模型和非线性模型 等。 3.3.3.1 线性回归模型 分为一元线性回归模型和多元线性回归模型。 (1) 一元线性回归模型 模型为 y=a+bx,线性相关的程度常用相关系 数来衡量,在某一显著性水平α下,当相关系数 的绝对值大于相关系数临界值时才可以认为x和y 有线性相关关系。
3.3 具体问题的解决方法
试验次型优化
试验参数优化 使用均匀设计时需要注意的其它问题
例1 某猪场研究30-
50kg育肥猪的饲料配方 时,研究蛋白质、消化 能和粗纤维三个因素的 不同水平对该阶段猪增 重的影响,具体因素与 水平如表:
3.1 试验设计的共性问题(续1)
(1) 因素的含义:在一个试验过程中,影响试验指 标的因素通常是很多的,通常固定的试验因素在试验 方案中并不称为因素,只有变化的因素才称为因素; (2) 关于因素数量:在一项试验中,因素不宜选得 太多(如超过10个),那样可能会造成主次不分;相反 地,因素也不宜选得太少(如只选定一、二个因素), 这样可能会遗漏重要的因素,或遗漏因素间的交互作 用,使试验的结果达不到预期的目的;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) 用均匀设计安排实验,实验次数较少,为了提 高实验精度和可靠性,可采用实验次数较多的均匀设计 表来重复安排因子各水平的实验。例如考察5个因子的 影响,每个因子取6个水平,可选用 U13(1312 ) 表安排实验。 根据该均匀设计表的使用表(参见附表8),将因
11
子 A , B , C , D , E分别安排在均匀设计表相应的列 (1,6,8,9,10列)内,再将该表第13号实验划去,并 将各因子6个水平的每一水平在均匀设计表中重复安 排一次,如将因子A的水平1安排为第1与2号实验,水 平2安排为第3与4号实验,水平3安排为第5与6号实验, 水平4安排为第7与第8号实验,水平5安排为第9与第 10号实验,水平6安排为第11与12号实验。其它几个 因子也作同样安排,则得如表8.2所示的具体实验安 排。
数因子数为 m ,在回归方程中,一次项与二次项各 14

m
项,交互效应项有
C
2项,共有(
m
2m
C
2 m
)项,因
此至少要选用有(
2m
C
2 m
)次实验的均匀设计表来安
排实验。例如要研究3因子的影响,如果因子与指标函
数之间的关系为线性,选用 U5 (54 ) 表安排实验;当各 因子与指标值之间的关系为二次多项式,而又要考虑
4
表8.1 U5(54)均匀设计表及使用表
5
类似于正交表,均匀设计表也有一个代号 Un (t q ), 其各符号的意义是
6
从附表8可看出,每一张均匀设计表后都附有一张 该表的使用表(如表8.1右表所示),与之配合使用; 每一张表安排的实验次数与因子水平数相等,且因子水 平数皆为奇数。当水平数为偶数时,则可用水平数比多 它1的奇数均匀设计表划去最后一行来安排偶数水平数 的实验。例如,因子水平数为4时,可利用 U5 (54 )表安排 实验,仅划去U5 (54 ) 表中最后一行,即实验5。当然,划 去最后一行后,相应的实验次数也少一次,U5 (54 )表就变 为U 4 (54 )均匀设计表了,而使用表不变。与正交实验相 似,因子数较少时,也可用因子数较多的均匀设计表安 排实验。如以2因子11水平的实验为例,可选用表来安 排实验,其实验的布点情况见图8.1中黑点所示。
9
(2) 正交表中各列的地位是相等的,因此,因子
的安排具有随意性。均匀设计表则不一样,表中各列
的地位是不平等的。因此,因子安排在均匀设计表中
的哪一列是不能随便改动的,需根据实验中欲考察的
因子数,按均匀设计表后的使用表来确定因子所处的
列号。如在利用U5 (54 ) 进行均匀实验设计时,若只有2 个因子,则按 U5 (54 )的使用所指示的,将因子安排在 U5 (54 )表的第1列和第2列;若有3个因子,则将因子安
7
图8.1 2因子11水平实验的实验点分布
8
从实验点的分布可以看到,实验点是均匀 地分散 在整个区域内。若是多因子时,实验点同样是在实验 范围构成的多维空间中均衡分布的。
与正交实验设计相比,均匀实验设计具有下述特 点:
(1) 每个因子的每一水平只做一次实验,因而实 验工作量少,这是均匀实验设计的一个突出的优点。 例如,要考察5因子对实验指标的影响,每个因子取5 水平,用正交表安排实验至少要进行25次实验;而用 均匀设计表来安排这一实验,只需进行5次实验。虽然 后一方法实验点减少了很多,但其实验结果仍能反映 实验体系的主要特征。
2
充分体现其均衡性,即让实验点在实验范围内充分 地均匀分散,则可从全面实验中挑选比正交实验设 计更少的实验点作为代表进行实验。这种着眼于实 验点充分地均匀分散的实验设计方法,称为均匀实 验设计法。
均匀设计法已在我国飞航式导弹的设计中取得 了有效的应用,使试验、设计周期大大缩短,并节 省了大量的费用。
12
表8.2 重复水平实验的具体安排表
13
由于均匀实验设计只要进行少数实验即可找到基 本上适用的分析条件,因此它在零星样品的快速分析, 确定待考察因子的实验范围,实验条件的初选方面都 大有好处。
8.2 实验安排 当研究个因子对实验指标值 y 的影响时,在不考
虑因子高次项与因子之间交互作用的条件下,只需选 用实验次数等于因子数的均匀设计表来安排实验就可 以的。而当要考虑因子高次项与因子之间的交互作用 时,需用多项式回归来描述指标函数。若研究的因子
3
8.1 均匀设计原理与均匀设计表
在多维数值积分中,目前最好的是数论方法, 其出发点是让点子在积分范围内散布得十分均匀, 使布的点离被积函数的各种值充分地近,因而用的 点不多却能使积分值得到很好的近似。我国数学家 方开泰先生将这一思想应用于实验设计,开发出均 匀实验设计的方法,并构造出如附表8所示的一套均 匀设计表,表8.1是其中之一。
8 均匀设计法
❖ 8.1 均匀设计原理与均匀设计表 ❖ 8.2 实验安排 ❖ 8.3 实验结果分析
1
8 均匀设计法
我们知道,正交表具有“均衡分散性”和“整齐 可比性”,因而,利用正交表进行正交实验设计,可 以通过较少的实验,获得全面实验的信息,是一种优 异的实验设计方法。为了保证整齐可比的特点,简化 数据处理,实验点不能在实验条件范围内充分地均衡 分散,因此实验点不能过少。显然,在正交实验中, 均匀性受到一定的限,使实验点的代表性还不够强。 由于这一原因, 当需考察的因子数较多,特别是因子 水平数较多时, 由正交实验设计安排的实验次数仍然 较多 。 如果不考虑实验数据的整齐可比性,而
排在第1,2,4列;若有4个因子,则正好每列安排一个
因子。又如前面提到的 U11(1110表) ,如果只安排2因子,
则可由
U11(1的11使0 ) 用表查得应将这2个因子分别
10
安排在第1与第7列。图8.1也正是由此而作出的。 (3) 由于均匀实验设计的特点,实验数据失去了整
齐可比性,因此,不能象正交实验设计那样,用方差分 析法来处理数据,而要用回归分析法处理实验数据。
因子之间的交互作用时,则回归方程的一次项与二次
项各有3项,因子之间的交互作用项有
C
2 m
3
项,除
常数项不计之外,在回归方程中至少有9个待定系数,
因此至少应选用表 U9(96)来安排实验。
相关文档
最新文档