用MATLAB实现数据挖掘的一种算法

用MATLAB实现数据挖掘的一种算法
用MATLAB实现数据挖掘的一种算法

一、数据挖掘的目的

数据挖掘(Data Mining)阶段首先要确定挖掘的任务或目的。数据挖掘的目的就是得出隐藏在数据中的有价值的信息。数据挖掘是一门涉及面很广的交叉学科,包括器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。它也常被称为“知识发现”。知识发现(KDD)被认为是从数据中发现有用知识的整个过程。数据挖掘被认为是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patter,如数据分类、聚类、关联规则发现或序列模式发现等。数据挖掘主要步骤是:数据准备、数据挖掘、结果的解释评估。二、数据挖掘算法说明

确定了挖掘任务后,就要决定使用什么样的挖掘算法。由于条件属性在各样本的分布特性和所反映的主观特性的不同, 每一个样本对应于真实情况的局部映射。建立了粗糙集理论中样本知识与信息之间的对应表示关系, 给出了由属性约简求约简决策表的方法。基于后离散化策略处理连续属性, 实现离散效率和信息损失之间的动态折衷。提出相对值条件互信息的概念衡量单一样本中各条件属性的相关性, 可以充分利用现有数据处理不完备信息系统。

本次数据挖掘的方法是两种,一是找到若干条特殊样本,而是找出若干条特殊条件属性。最后利用这些样本和属性找出关联规则。(第四部分详细讲解样本和属性的选择)

三数据预处理过程

数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换(如把连续值数据转换为离散型数据,以便于符号归纳,或是把离散型数据转换为连续)。

本文使用的数据来源是名为“CardiologyCategorical”的excel文件中的“源数据”。该数据表共303行,14个属性。即共有303个样本。将该数据表的前200行设为训练样本,剩下后的103行作为测试样本,用基于粗糙集理论的属性约简的方法生成相应的规则,再利用测试样本对这些规则进行测试。

首先对源数据进行预处理,主要包括字符型数据的转化和数据的归一化。

数据预处理的第一步是整理源数据,为了便于matlab读取数据,把非数字数据转换为离散型数字数据。生成lisanhua.xsl文件。这一部分直接在excel工作表中直接进行。

步骤如下:

将属性“sex”中的“Male”用“1”表示,“Female”用“2”表示;

将属性“chest pain type”中的“Asymptomatic”用“1”表示,“Abnormal Angina”用“2”表示,“Angina”用“3”表示,“NoTang”用“4”表示;

将属性“Fasting blood suga<120”与属性“angina”中的“FALSE”用“1”表示,“TRUE”用“2”表示;

将属性“resting ecg”中的“Hyp” 用“1” 表示,“Normal”用“2”表示,“Abnormal”用“3”表示;

将属性“slope”中的“Down”用“1”表示,“Flat”用“2”表示,“Up”用“3”表示,;

将属性“thal”中的“Rev”用“1”表示,“Normal”用“2”表示,“Fix”用“3”表示;

将属性“class”中的“Healthy”用“1”表示,“Sick”用“2”表示;

数据预处理的第二步:使用

dm=xlsread('lisanhua');

导入’lisanhua’.xls文件,在MATLAB中对一些连续属性值离散化。

如下:

1、[29,48]=1,[48,62]=2,[62,77]=3

4、[94,110]=1,[110,143]=2,[143,200]=3

5、[126,205]=1,[205,293]=2,[293,564]=3

8、[71,120]=1,[120,175]=2,[175,202]=3

10、[0,1.5]=1,[1.5,2.5]=2,[2.5,6.2]=3。

然后对数据进行归一化处理:

由于不同属性之间的属性值相同,所以利用下面语句对一共13个条件属性中的38个属性进行如下赋值,使每条属性唯一确定。从而得到38个条件属性,只不过38个里面有且只能出现13个。

程序如下:

m1=[0,3,2,4,3,3,2,3,3,2,3,3,4,3];k=1;w=m1(k);dm3=dm2;

for i=1:3939

dm3(i)=dm2(i)+w;

if rem(i,303)==0

k=k+1;

w=w+m1(k);

end

end

从而得到dm(3)矩阵。而且决策属性分为1:healthy;2:sick。

并且在38个条件属性中没有值为0。

四、挖掘算法

1、特殊样本

首先在前200条样本中分别找出三条对应两种决策属性的重要样本,样本必须满足在同类决策属性下其他199条的13条决策属性中和它的13条条件属性数目大于等于10的前3条样本。

2、特殊条件属性值

其次分别对应两条决策属性值的5条重要条件属性值(在38个条件属性里找),特殊属性值必须满足:(1)在对应相同决策属性下,此决策属性支持率必须在前五,(2)而且如果不同决策属性出现相同条件属性。如果相同决策属性同时出现在不同决策属性中,删除这条后找支持率第六的条件属性,以此类推。

挖掘算法在MATLAB里列出并做了标注。

五、验证程序

1、预处理

在验证程序里面分别对测试数据和六条样本做了对比,又对其属性值和特殊属性值做了对比,最后利用加权求和算法判断测试样本的决策属性正确率。

其中:nc,mc代表测试数据分别和两类样本属性中相同数是否大于等于9时的加权值。ncc,mcc代表测试数据分别和两类特殊属性满足几条数目的加权值。

2、关联规则

(1)、如果(nc>=0.9&ncc>=8)|(ncc>=10&nc>=0.6) 得到决策属性healthy

(2)、不满足以上条件的话如果(mc>=0.9|mcc>=8)|(mcc>=9&mc>=0.6) 得到决策属性sick。

(3)、不满足以上条件的话如果nc>=(mc+0.3)|ncc>=(mcc+2) 得到决策属性healthy。

(4)、不满足以上条件的话如果mc>nc 得到决策属性为sick。

(5)、不满足以上条件的话如果ncc>mcc 得到决策属性为healthy。

(6)、不满足以上条件的话如果mcc>ncc 得到决策属性为sick。

(7)、不满足以上条件的话得到决策属性为sick。

六、正确率及结果分析

正确率为82.5%

结果分析:由于采用了两类约束方法,所以效果还可以。

七、程序如下页所示

clear;

%%%%% 数据预处理程序%%%%%%

dm=xlsread('lisanhua'); % 载入数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z1=dm(:,1); % 离散化第一列数据

for i=1:303

if z1(i)>=29&z1(i)<48

z1(i)=1;

elseif z1(i)>=48&z1(i)<62

z1(i)=2;

else z1(i)=3;

end

end

z2=dm(:,2);

for i=1:303

if z2(i)==0

z2(i)=1;

else z2(i)=2;

end

end

z3=dm(:,3);

for i=1:303

z3(i)=z3(i)+1;

end

z4=dm(:,4);

for i=1:303

if z4(i)>=94&z4(i)<110

z4(i)=1;

elseif z4(i)>=110&z4(i)<143

z4(i)=2;

else z4(i)=3;

end

end

z5=dm(:,5);

for i=1:303

if z5(i)>=126&z5(i)<205

z5(i)=1;

elseif z5(i)>=205&z5(i)<293

z5(i)=2;

else z5(i)=3;

end

end

z6=dm(:,6);

for i=1:303

z6(i)=z6(i)+1;

end

z7=dm(:,7);

for i=1:303

z7(i)=z7(i)+1;

end

z8=dm(:,8);

for i=1:303

if z8(i)>=71&z8(i)<120

z8(i)=1;

elseif z8(i)>=120&z8(i)<175

z8(i)=2;

else z8(i)=3;

end

end

z9=dm(:,9);

for i=1:303

z9(i)=z9(i)+1;

end

z10=dm(:,10);

for i=1:303

if z10(i)>=0&z10(i)<1.5

z10(i)=1;

elseif z10(i)>=1.5&z10(i)<2.5

z10(i)=2;

else z10(i)=3;

end

end

z11=dm(:,11);

for i=1:303

z11(i)=z11(i)+1;

end

z12=dm(:,12);

for i=1:303

z12(i)=z12(i)+1;

end

z13=dm(:,13);

for i=1:303

z13(i)=z13(i)+1;

end

z14=dm(:,14);

for i=1:303

z14(i)=z14(i)+1;

end

dm2=[z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%

m1=[0,3,2,4,3,3,2,3,3,2,3,3,4,3];k=1;w=m1(k);dm3=dm2;

for i=1:3939

dm3(i)=dm2(i)+w;

if rem(i,303)==0

k=k+1;

w=w+m1(k);

end

end

%%%%% 预处理结束%%%%%%

%%%% 挖掘算法%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% 找6条样本前的预处理

dm4=zeros(200,14);dm5=zeros(200,14);

for i=1:200

if dm3(i,14)==1

dm4(i,1:13)=dm3(i,1:13);

else dm5(i,1:13)=dm3(i,1:13);

end

end

a1=zeros(38,1);a2=zeros(38,1);

for k=1:38

for i=1:13

for j=1:200

if dm4(j,i)==k&dm4(j,i)~=0

a1(k)=a1(k)+1;

end

if dm5(j,i)==k&dm5(j,i)~=0

a2(k)=a2(k)+1;

end

end

end

end

a5=a1;a6=a2;

a3=zeros(5,1);a4=zeros(5,1);

j=1;

while j<6

a11=0;

a11=max(a1);

for i=1:38

if a1(i)==a11

a3(j)=a11;

j=j+1;

if j>5

break;

end

a1(i)=0;

end

end

end

j=1;

while j<6

a22=0;

a22=max(a2);

for i=1:38

if a2(i)==a22

a4(j)=a22;

j=j+1;

if j>5

break;

end

a2(i)=0;

end

end

end

%%%%%%%%%%%%%%%% 构造h1 h2 矩阵

h1=zeros(200,14);

h2=zeros(1,200);

y1=0;y2=0;y3=0;y4=0;

for j=1:200

x=0;

for i=1:200

h1(i,1:13)=dm3(j,1:13)==dm3(i,1:13);

h1(i,14)=dm3(j,14)==dm3(i,14);

if sum(h1(i,1:13))>=10&h1(i,14)==1

x=x+1;

end

end

h2(j)=x;

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%% 筛选h2 矩阵得到h3 h4矩阵h3=zeros(1,200);h4=zeros(1,200);

for i=1:200

if z14(i)==1

h3(i)=h2(i);

else h4(i)=h2(i);

end

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h5=h3;h6=h4;

%%%%%%%%%%%%%% 找六条重要样本%%%%%%%%% y1=max(h5);

for i=1:200

if h5(i)==y1

h5(i)=0;t1=i;

end

end

y2=max(h5);

for i=1:200

if h5(i)==y2

h5(i)=0;t2=i;

end

end

y3=max(h5);

for i=1:200

if h5(i)==y3

h5(i)=0;t3=i;

end

end

y4=max(h6);

for i=1:200

if h6(i)==y4

h6(i)=0;t4=i;

end

end

y5=max(h6);

for i=1:200

if h6(i)==y5

h6(i)=0;t5=i;

end

end

y6=max(h6);

for i=1:200

if h6(i)==y6

h6(i)=0;t6=i;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% 找特殊样本结束

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 找特殊属性值

dm4=zeros(200,14);dm5=zeros(200,14);

for i=1:200

if dm3(i,14)==1

dm4(i,1:13)=dm3(i,1:13);

else dm5(i,1:13)=dm3(i,1:13);

end

end

a1=zeros(38,1);a2=zeros(38,1);

for k=1:38

for i=1:13

for j=1:200

if dm4(j,i)==k&dm4(j,i)~=0

a1(k)=a1(k)+1;

end

if dm5(j,i)==k&dm5(j,i)~=0

a2(k)=a2(k)+1;

end

end

end

end

a5=a1;a6=a2;

a3=zeros(6,1);a4=zeros(6,1); j=1;

while j<7

a11=0;

a11=max(a1);

for i=1:38

if a1(i)==a11

a3(j)=a11;

j=j+1;

if j>6

break;

end

a1(i)=0;

end

end

end

j=1;

while j<7

a22=0;

a22=max(a2);

for i=1:38

if a2(i)==a22

a4(j)=a22;

j=j+1;

if j>6

break;

end

a2(i)=0;

end

end

end

b1=zeros(6,1);b2=zeros(6,1); for j=1:6

for i=1:38

if a5(i)==a3(j)

b1(j)=i;

end

end

end

for j=1:6

for i=1:38

if a6(i)==a4(j)

b2(j)=i;

end

end

end

b3(1:5,1)=b1(2:6,1);b4(1:5,1)=b2(1:5,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 寻找结束

%%%%%%%%%%%%%%%%%%%%% 验证程序开始

h7=zeros(103,14);h8=zeros(103,14);tc=0;

for i=1:103

h7(i,1:13)=dm3(200+i,1:13);

end

%%%%%%%%%%%%%%%%%%%%%%%%%% 特殊样本

for i=1:103

nc=0;mc=0;ncc=0;mcc=0;

h8(i,1:13)=h7(i,1:13)==dm3(t1,1:13);

if sum(h8(i,1:13))>=9

nc=nc+0.3;

end

h8(i,1:13)=h7(i,1:13)==dm3(t2,1:13);

if sum(h8(i,1:13))>=9

nc=nc+0.3;

end

h8(i,1:13)=h7(i,1:13)==dm3(t3,1:13);

if sum(h8(i,1:13))>=9

nc=nc+0.3;

end

h8(i,1:13)=h7(i,1:13)==dm3(t4,1:13);

if sum(h8(i,1:13))>=9

mc=mc+0.3;

end

h8(i,1:13)=h7(i,1:13)==dm3(t5,1:13);

if sum(h8(i,1:13))>=9

mc=mc+0.3;

end

h8(i,1:13)=h7(i,1:13)==dm3(t6,1:13);

if sum(h8(i,1:13))>=9

mc=mc+0.3;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 样本结束

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 特殊属性值

ncc=0;mcc=0;

for j=1:13

if h7(i,j)==b3(1)

ncc=ncc+3;

else if h7(i,j)==b3(2)

ncc=ncc+3;

else if h7(i,j)==b3(3)

ncc=ncc+2;

else if h7(i,j)==b3(4)

ncc=ncc+2;

else if h7(i,j)==b3(5)

ncc=ncc+2;

else if h7(i,j)==b4(1)

mcc=mcc+3;

else if h7(i,j)==b4(2)

mcc=mcc+3;

else if h7(i,j)==b4(3)

mcc=mcc+2;

else if h7(i,j)==b4(4)

mcc=mcc+2;

else if h7(i,j)==b4(5)

mcc=mcc+2;

end

end

end

end

end

end

end

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 属性值结束

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 挖掘算法

if (nc>=0.9&ncc>=8)|(ncc>=10&nc>=0.6)

h7(i,14)=1;

else if (mc>=0.9|mcc>=8)|(mcc>=9&mc>=0.6)

h7(i,14)=2;

else if nc>=(mc+0.3)|ncc>=(mcc+2)

h7(i,14)=1;

else if mc>nc

h7(i,14)=2;

else if ncc>mcc

h7(i,14)=1;

else if mcc>ncc

h7(i,14)=2;

else

h7(i,14)=2;

end

end

end

end

end

end

end %%%%%%%%%%%%%%%%%%%%%%%%% 挖掘结束%%%%%%%%%%%%%%%%%% 计算正确率

h9=zeros(103,1);

h9=h7(:,14)==dm3(201:303,14);

tc=sum(h9)/103 %%%%%%%%%%%%%%%%%%%%%%% 算法完毕

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

用MATLAB实现数据挖掘的一种算法知识讲解

用M A T L A B实现数据挖掘的一种算法

一、数据挖掘的目的 数据挖掘(Data Mining)阶段首先要确定挖掘的任务或目的。数据挖掘的目的就是得出隐藏在数据中的有价值的信息。数据挖掘是一门涉及面很广的交叉学科,包括器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。它也常被称为“知识发现”。知识发现(KDD)被认为是从数据中发现有用知识的整个过程。数据挖掘被认为是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patter,如数据分类、聚类、关联规则发现或序列模式发现等。数据挖掘主要步骤是:数据准备、数据挖掘、结果的解释评估。 二、数据挖掘算法说明 确定了挖掘任务后,就要决定使用什么样的挖掘算法。由于条件属性在各样本的分布特性和所反映的主观特性的不同, 每一个样本对应于真实情况的局部映射。建立了粗糙集理论中样本知识与信息之间的对应表示关系, 给出了由属性约简求约简决策表的方法。基于后离散化策略处理连续属性, 实现离散效率和信息损失之间的动态折衷。提出相对值条件互信息的概念衡量单一样本中各条件属性的相关性, 可以充分利用现有数据处理不完备信息系统。 本次数据挖掘的方法是两种,一是找到若干条特殊样本,而是找出若干条特殊条件属性。最后利用这些样本和属性找出关联规则。(第四部分详细讲解样本和属性的选择) 三数据预处理过程 数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换(如把连续值数据转换为离散型数据,以便于符号归纳,或是把离散型数据转换为连续)。 本文使用的数据来源是名为“CardiologyCategorical”的excel文件中的“源数据”。该数据表共303行,14个属性。即共有303个样本。将该数据表的前200行设为训练样本,剩下后的103行作为测试样本,用基于粗糙集理论的属性约简的方法生成相应的规则,再利用测试样本对这些规则进行测试。 首先对源数据进行预处理,主要包括字符型数据的转化和数据的归一化。 数据预处理的第一步是整理源数据,为了便于matlab读取数据,把非数字数据转换为离散型数字数据。生成lisanhua.xsl文件。这一部分直接在excel工作表中直接进行。 步骤如下: 将属性“sex”中的“Male”用“1”表示,“Female”用“2”表示;

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.360docs.net/doc/881238190.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.360docs.net/doc/881238190.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.360docs.net/doc/881238190.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.360docs.net/doc/881238190.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.360docs.net/doc/881238190.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.360docs.net/doc/881238190.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。(4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘关于Kmeans算法的研究(含数据集)

浙江大学算法研究实验报告 数据挖掘 题目:K-means

目录 一、实验内容 (5) 二、实验目的 (7) 三、实验方法 (7) 3.1软、硬件环境说明 (7) 3.2实验数据说明 (7) 图3-1 (7) 3.3实验参数说明/软件正确性测试 (7) 四、算法描述 (9) 图4-1 (10) 五、算法实现 (11) 5.1主要数据结构描述 (11) 图5-1 (11) 5.2核心代码与关键技术说明 (11) 5.3算法流程图 (14) 六、实验结果 (15) 6.1实验结果说明 (15) 6.2实验结果比较 (21) 七、总结 (23)

一、 实验内容 实现K-means 算法,其中该算法介绍如下: k-means 算法是根据聚类中的均值进行聚类划分的聚类算法。 输入:聚类个数k ,以及包含n 个数据对象的数据。 输出:满足方差最小标准的k 个聚类。 处理流程: Step 1. 从n 个数据对象任意选择k 个对象作为初始聚类中心; Step 2. 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分; Step 3. 重新计算每个(有变化)聚类的均值(中心对象) Step 4. 循环Step 2到Step 3直到每个聚类不再发生变化为止; k-means 算法的工作过程说明如下:首先从n 个数据对象任意选择k 个对象作为初始聚类中心,而对于所剩下的其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类。然后,再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值),不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数,具体定义如下: 21∑∑=∈-=k i i i E C p m p (1) 其中E 为数据库中所有对象的均方差之和,p 为代表对象的空间中的一个点,m i 为聚类C i 的均值(p 和m i 均是多维的)。公式(1)所示的聚类标准,旨在使所获得的k 个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 重点要求:用于聚类的测试级不能仅为单独的一类属性,至少有两种属性值参与聚类。

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师 : 陈莉 学生姓名 : 李阳帆 学号 : 201531467 专业 : 计算机技术 日期 : 2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了 K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

用MATLAB实现数据挖掘的一种算法

一、数据挖掘的目的 数据挖掘(Data Mining)阶段首先要确定挖掘的任务或目的。数据挖掘的目的就是得出隐藏在数据中的有价值的信息。数据挖掘是一门涉及面很广的交叉学科,包括器学习、数理统计、神经网络、数据库、模式识别、粗糙集、模糊数学等相关技术。它也常被称为“知识发现”。知识发现(KDD)被认为是从数据中发现有用知识的整个过程。数据挖掘被认为是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patter,如数据分类、聚类、关联规则发现或序列模式发现等。数据挖掘主要步骤是:数据准备、数据挖掘、结果的解释评估。二、数据挖掘算法说明 确定了挖掘任务后,就要决定使用什么样的挖掘算法。由于条件属性在各样本的分布特性和所反映的主观特性的不同, 每一个样本对应于真实情况的局部映射。建立了粗糙集理论中样本知识与信息之间的对应表示关系, 给出了由属性约简求约简决策表的方法。基于后离散化策略处理连续属性, 实现离散效率和信息损失之间的动态折衷。提出相对值条件互信息的概念衡量单一样本中各条件属性的相关性, 可以充分利用现有数据处理不完备信息系统。 本次数据挖掘的方法是两种,一是找到若干条特殊样本,而是找出若干条特殊条件属性。最后利用这些样本和属性找出关联规则。(第四部分详细讲解样本和属性的选择) 三数据预处理过程 数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换(如把连续值数据转换为离散型数据,以便于符号归纳,或是把离散型数据转换为连续)。 本文使用的数据来源是名为“CardiologyCategorical”的excel文件中的“源数据”。该数据表共303行,14个属性。即共有303个样本。将该数据表的前200行设为训练样本,剩下后的103行作为测试样本,用基于粗糙集理论的属性约简的方法生成相应的规则,再利用测试样本对这些规则进行测试。 首先对源数据进行预处理,主要包括字符型数据的转化和数据的归一化。 数据预处理的第一步是整理源数据,为了便于matlab读取数据,把非数字数据转换为离散型数字数据。生成lisanhua.xsl文件。这一部分直接在excel工作表中直接进行。 步骤如下: 将属性“sex”中的“Male”用“1”表示,“Female”用“2”表示; 将属性“chest pain type”中的“Asymptomatic”用“1”表示,“Abnormal Angina”用“2”表示,“Angina”用“3”表示,“NoTang”用“4”表示;

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

数据挖掘经典算法

Apriori算法 一、Apriori算法简介:Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集。Apriori(先验的,推测的)算法应用广泛,可用于消费市场价格分析,猜测顾客的消费习惯;网络安全领域中的入侵检测技术;可用在用于高校管理中,根据挖掘规则可以有效地辅助学校管理部门有针对性的开展贫困助学工作;也可用在移动通信领域中,指导运营商的业务运营和辅助业务提供商的决策制定。 二、挖掘步骤: 1.依据支持度找出所有频繁项集(频度) 2.依据置信度产生关联规则(强度) 三、基本概念 对于A->B ①支持度:P(A ∩B),既有A又有B的概率 ②置信度: P(B|A),在A发生的事件中同时发生B的概率p(AB)/P(A)例如购物篮分析:牛奶?面包 例子:[支持度:3%,置信度:40%] 支持度3%:意味着3%顾客同时购买牛奶和面包 置信度40%:意味着购买牛奶的顾客40%也购买面包 ③如果事件A中包含k个元素,那么称这个事件A为k项集事件A满足最小支持度阈值的事件称为频繁k项集。 ④同时满足最小支持度阈值和最小置信度阈值的规则称为强规则 四、实现步骤 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法Apriori使用一种称作逐层搜索的迭代方法,“K-1项集”用于搜索“K项集”。 首先,找出频繁“1项集”的集合,该集合记作L1。L1用于找频繁“2项集”的集合L2,而L2用于找L3。如此下去,直到不能找到“K项集”。找每个Lk都需要一次数据库扫描。 核心思想是:连接步和剪枝步。连接步是自连接,原则是保证前k-2项相同,并按照字典顺序连接。剪枝步,是使任一频繁项集的所有非空子集也必须是频繁的。反之,如果某 个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从CK中删除。 简单的讲,1、发现频繁项集,过程为(1)扫描(2)计数(3)比较(4)产生频繁项集(5)连接、剪枝,产生候选项集重复步骤(1)~(5)直到不能发现更大的频集 2、产生关联规则,过程为:根据前面提到的置信度的定义,关联规则的产生如下: (1)对于每个频繁项集L,产生L的所有非空子集; (2)对于L的每个非空子集S,如果 P(L)/P(S)≧min_conf 则输出规则“SàL-S” 注:L-S表示在项集L中除去S子集的项集

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

相关文档
最新文档