华理高数全部复习资料之 导数的应用共8页文档

华理高数全部复习资料之 导数的应用共8页文档
华理高数全部复习资料之 导数的应用共8页文档

第4章导数的应用

内容提要

本章以导数和微分学的一些基本结论为工具,讨论了函数性态的研究,最值计算,相关变化率,平面曲线曲率,导数在经济学中的应用等五个问题,其主要内容和结论可归为以下几个方面。

(一)函数性态的研究

1.函数的单调性

设函数在闭区间上连续,开区间可导,若在上有(或),则在上严格单调增加(或严格单减)。

注意:保证严格单调增加的条件可以放宽为,且使的点不形成区间,对严格单调减的情形,条件可放宽为,且使的点不形成区间。

2. 函数的局部极值

(1)极值点的定义:若函数在点的某邻域有定义,且对一切成立(或),则称在取得[严格]极大值(或极小值),称为的[严格]极大点(或极小点)。若将“<”(或“>”)用“”(或“”)代替,则称为非严格意义下的极值。

(2)极值点的必要条件:函数的极值点必定是它的驻点或不可微点。

(3)判别极值得充分条件

一阶充分条件:设在处连续,并且在的某去心邻域内可导,则有以下结论成立:

(i)若当时,;当时,,则在处取得极大值。

(ii)若当时,;当时,,则在处取得极小值。

(iii)若在的两旁,不变号,则在处不取得极值。

二阶充分条件:设在点的某邻域内可导,,存在,则有以下结论成立:若,则是函数的极大值点。若,则是函数的极小值点。若,则对无明确结论。3. 函数的凹凸性和拐点

(1)函数的凹凸性的定义

如果在上,曲线始终位于区间内任意一点处切线的上方(或下方),则称该曲线在上是凸的(或凹的)。函数称为上的凸函数(或凹函数)。

(2)凸函数的性质

(a)若是上的凸函数,则对任意及有

(b)若是上的凸函数,并且在上可导,则在上单调不减。

(c)若是上的凸函数,则对任意不相等的及,有。

(3)凹凸性判别的充分条件

设在上二阶可导,若在上,,则在上是凸的;

若在上,,则在上是凹的。

(4)拐点

拐点的定义:若连续曲线在点的近旁发生凹凸性改变,则称点为曲线的拐点。拐点的必要条件:若点是曲线的拐点,则是使的点或者是使不存在的点。

拐点判别的充分条件:设在的某邻域内二阶可导(处可以不存在,但在处连续),若在的两旁符号发生改变,则点是曲线的拐点。

4. 函数作图的步骤

(1)确定函数的定义域及某些几何特性(如奇偶性,周期性等),求出及。

(2)在函数的定义域内求出方程和的根,以及一阶,二阶导数不存

在的点,并把这些点作为分界点将定义域划分成若干个部分区间。

(3)列表并在每一个部分区间内确定,的符号,从而确定函数的单调区间,凹凸区间,局部极值点以及拐点。

(4)确定函数图形的渐近线。

(5)标出函数极值点,拐点在图形上的位置,结合(3),(4)的结果,光滑的连接这些点作出的图形。

(二)函数的最值

由于开区间内的最值点也为极值点,所以在计算上的最值可按以下步骤进行:(1) 求出在内的所有驻点和导数不存在的点,即求出在内的所有可能的极值点。

(2) 计算上述各可能极值点以及区间端点处的函数值。

(3) 比较以上各函数值的大小,最大者和最小者即为在上的最大值和最小值。在实际问题中,若由问题本身确定函数的最值存在,而可能的极值点又唯一,此时可确定该可能的极值点即为最值点。

(三)相关变化率问题的处理方法

根据具体问题建立变量间的关系式,通过对此关系式求导,求得变量间导数满足的关系式,然后根据此式以及题意从已知变量的变化率推算所求变量的变化率。(四)平面曲线的曲率

1.曲率的定义:

2.弧微分公式:

(1)若曲线方程为,则,

其中曲线弧的正向为参数从小到大描绘曲线的方向(否则根式前取负号)。

(2)若曲线方程为,则。

(3)若曲线方程为,则。

3.曲率计算公式:。

4.曲率半径的计算公式:。

(五)导数在经济学中的应用

1.基本概念

边际设函数在点处可导,则称导数值为函数在点的边际(函数),称为函数在点的边际(函数)值。

成本函数表示产品数量为时所化费的总成本。

平均成本函数

边际成本对于总成本函数,其中表示产量,则生产第个单位产品时所化的成本称为边际成本,边际成本的记号及计算公式为。

边际收益当销售价为,销售量为时,总收益函数为,则其边际收益为

边际利润销售件产品后总收益与总成本之差为总利润,记为,其边际利润为。2.弹性分析

弹性设函数在点处可导,函数的相对改变量(),与自变量的相对改变量之比称为函数在与之间的平均弹性。函数在点的弹性为。

需求价格弹性。

若,涨价则引起收入减少;若,涨价则引起收入增加。

收益价格弹性。

复习指导:

第4章导数的应用

学习指导

本章的内容较多,但主要的习题可分为三类问题:

1. 直接求函数的单调区间,极值,最值,凹凸区间,拐点,曲率等;

2. 利用单调性,最值,凹凸性证明不等式;

3. 求相关变化率,最值等的应用题。

解以上问题的要点是:

1. 正确地计算出各阶导数;

2. 对各个基本概念的理解要准确;

3. 对增或减,凹与凸,极大与极小的判别法要正确使用;

4. 证不等式时,要通过恒等变形选取合适的辅助函数,通过是否变号来确定是用单调性还是用最值证不等式,有时可能需要通过的符号来判别的符号。

5. 凸函数的常用不等式为:

(a);

(b),

其中。

第5章积分

一、定积分

1 定积分的定义

设函数在上有定义,在区间内任意插入个分点记 ,若极限存在(极限值与的分法无关,与的取法无关),则称此极限值为在上的定积分,记为 ,同时称在上可积.

函数在上可积的必要条件是: 在上有界.

函数在上可积的充分条件是: 在上连续或分段连续.

2 定积分的几何意义

由曲线 ,直线和轴所界的各个图形面积的代数和(如图),其中轴上方图形的面积带“”号, 轴下方图形的面积带“”号.

3 定积分的性质

以下性质都是针对函数在所示区间上可积而言

(1). , 其中为常数.

(2).

(3).

(4). , ,

(5).(定积分运算对被积函数的保序性)若在上, ,则 .特别有 .

(6).(定积分的估值定理) 若在上, , 则 .

(7) (定积分的中值定理) 若在上连续,则 ,使 .

二、不定积分

1 原函数与不定积分的定义

(1)设是定义在某区间上的函数,若存在函数 ,使在该区间上成立 (或 ),则称是在此区间上的一个原函数.若和是的两个原函数,则 ,其中是某仪个常数.因此,若是的一个原函数,则原函数的全体可表达成 .

(2) (原函数存在定理)连续函数的原函数必定存在.

(3) 若函数在区间上存在原函数,则其任意两个原函数之间只相差一个常数.

(4) 称原函数的一般表达式为的不定积分,记为 .

(5) 微分运算与积分运算是一对互逆的运算,即有

(i),或;

(i i),或 .

2 基本积分公式

三、微积分基本定理

(1) (微积分第一基本定理)若在上连续,则变上限积分函数在上可微,且 .

由定理可知,若在上连续,则是在上的一个原函数.

(2) (微积分第二基本定理) 若在上连续, 是的任意一个原函数,则―――――牛顿-莱布尼兹公式

复习指导:

第5章积分

一、关于微积分第一基本定理

若在上连续,可微函数的值域均含于 ,则有

若题中含变限积分,则一般离不开变上限定积分求导.

要能熟练利用变上限定积分是被积函数的一个原函数,请看下例.

例:证明:连续奇函数的一切原函数均为偶函数;而连续偶函数的原函数中,只有一个是奇函数.

证:(1).设是连续奇函数, 是的任一原函数,则由亦是一个原函数,知 ,其中是某一常数.而

于是是偶函数.

(2). 设是连续偶函数, 是的任一原函数,则

由于 ,得到 ,因此是的唯一奇函数的原函数.

二、关于微积分第二基本定理

要熟练掌握并运用牛顿-莱布尼兹公式

希望以上资料对你有所帮助,附励志名言3条:

1、宁可辛苦一阵子,不要苦一辈子。

2、为成功找方法,不为失败找借口。

3、蔚蓝的天空虽然美丽,经常风云莫测的人却是起落无从。但他往往会成为风云人物,因为他经得起大风大浪的考验。

华东理工大学继续教育学院《高等数学》(下)练习试卷(答案)

华东理工大学继续教育学院成人教育 《高等数学》(下)(专升本68学时)练习试卷(1)(答案) 一、单项选择题 1、设xy e y z 2 =,则=)1,1(dz 答( A ) (A ))3(dy dx e + (B ))3(dy dx e - (C ))2(dy dx e + (D ))2(dy dx e - 解 (知识点:全微分的概念、全微分的计算方法) 因为 32 , 2xy xy xy x y z y e z ye xy e ==+,得 (1,1) , (1,1)3x y z e z e ==, 所以 (1,1)(1,1)(1,1)3(3)x y dz z dx z dy edx edy e dx dy =+=+=+ 2、设方程0yz z 3y 2x 22 2 2 =-++确定了函数z=z (x ,y ),则 =??x z 答( B ) (A ) y z x -64 (B ) z y x 64- (C ) y z y +64 (D )y z y -64 解 (知识点:多元隐函数的概念、隐函数求导法) 将方程两边对x 求导得 460z z x z y x x ??+-=??,解得 46z x x y z ?=?- 3、平面0D Cz By Ax =+++过y 轴,则 答( C ) (A )A=D=0 (B )B=0,0D ≠ (C )0D ,0B == (D )C=D=0 解 (知识点:平面0D Cz By Ax =+++中的系数是否为零与平面位置的关系) 由平面0D Cz By Ax =+++过y 轴知平面平行于y 轴 0B ?=. 平面过原点 0D ?=,所以有 0D ,0B ==, 选(C ). 4、 设u =(0,0) u x ?=? 答( A ) (A )等于0 (B )不存在 (C )等于1- (D )等于1

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23- ),=b ( 16 - ). ∵()12++='bx x a x f ,当2,121==x x 时, 012=++b a ,0142=++b a ,解之得6 1 ,32-=-=b a 2.函数()() 1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 211 2 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

华东理工大学高等数学(下册)第9章作业答案

第9章(之1) (总第44次) 教学内容:§微分方程基本概念 *1. 微分方程7 359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A ) 解 微分方程的阶数是未知函数导数的最高阶的阶数. *2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) ( (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D ) 解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ; (B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解; (C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了 x C x C y 2sin 12cos 2 ++=,实质上只有一个任意常数; (D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解. *3.在曲线族 x x e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线. : 解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由x x e c e c y -+=21, x x e c e c y --='21,可得1,02121=-=+c c c c , 故21,2121-==c c ,这样就得到所求曲线为)(2 1 x x e e y --=,即x y sinh =. *4.证明:函数y e x x =-233321 2 sin 是初值问题??? ????===++==1d d ,00d d d d 0022x x x y y y x y x y 的解.

华东理工大学高等数学答案第11章

第 11 章(之1)(总第59次) 教材内容:§11.1多元函数 1.解下列各题: **(1). 函数f x y x y (,)ln()=+-221连续区域是 ??????? . 答:x y 221+> **(2). 函数f x y xy x y x y x y (,)=++≠+=? ?? ? ?22 2222000 , 则( ) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A ) **2. 画出下列二元函数的定义域: (1)= u y x -; 解:定义域为:{ } x y y x ≤) ,(,见图示阴影部分: (2))1ln( ),(xy y x f +=; 解:{} 1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包 括 边 界 , 双 曲 线 1 -=xy 用虚线表 示). (3)y x y x z +-= . 解 : .

***3. 求出满足2 2, y x x y y x f -=?? ? ??+的函数()y x f ,. 解:令?? ? ??=+=x y t y x s , ∴?? ???+=+=t st y t s x 11 ∴()() ()t t s t t s s t s f +-=+-=111,22 222, 即 ()()y y x y x f +-=11,2. ***4. 求极限: ()() 2 2 0,0,11lim y x xy y x +-+→. 解:()( )( ) ( )( ) 2 222 2 22 2 112111110y x xy y x y x xy xy y x xy ++++≤ +++= +-+≤ () 01 122 2→+++= xy y x (()()0,0,→y x ) ∴ ()() 011lim 2 2 0,0,=+-+→y x xy y x . **5. 说明极限()()2 22 20,0, lim y x y x y x +-→不存在. 解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同. 首先,0=x 时,极限为()()1lim 22 22220,0,0-=-=+-→=y y y x y x y x x , 其次,0=y 时,极限为()()1lim 22 22220,0,0==+-→=x x y x y x y x y , 故极限()()2 22 20,0,y y lim +-→x x y x 不存在. **6. 设1 12sin ),(-+= xy x y y x f ,试问极限 ),(lim ) 0,0(),(y x f y x →是否存在?为什么? 解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域内函数 1 12sin ),(-+= xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.

最新(高等数学)第四章导数的应用

(高等数学)第四章导 数的应用

第四章导数的应用 第一节中值定理 一.费马定理 1.定义1.极值设函数?Skip Record If...?在点?Skip Record If...?的某邻域?Skip Record If...?内对一切?Skip Record If...?有 ?Skip Record If...?或(?Skip Record If...?), 则称?Skip Record If...?在点?Skip Record If...?处取得极大值(或极小值);并称?Skip Record If...?为?Skip Record If...?的极大值点(或极小值点). 注意:极大值、极小值在今后统称为极值; 极大值点、极小值点在今后统称为极值点; 2.定理1.极值的必要条件(费马定理)设?Skip Record If...?在点?Skip Record If...?的某邻域?Skip Record If...?内有定义,且在?Skip Record If...?处可导,若 ?Skip Record If...?为极值,则必有:?Skip Record If...?. 证明:不妨设?Skip Record If...?为极大值。按极大值的定义,则?Skip Record If...?的某个邻域,使对一切此邻域内的?Skip Record If...?有?Skip Record If...?--------------(1) 所以,?Skip Record If...? ?Skip Record If...?--------(2) 又因为?Skip Record If...?存在,所以应有?Skip Record If...?---------(3) 故,由(2)式及(3)式,必有?Skip Record If...?. 1.注意:使?Skip Record If...?的点?Skip Record If...?可能为?Skip Record If...?的极大值点(或极小值点),也可能不是.比如:?Skip Record If...?

华理高数全部复习资料之数列与无穷级数

第8章 数列与无穷级数 (一) 数列 1. 数列极限的定义 若ε?>0,?正整数N ,使得当N n >时成立n a L -<ε,则称常数L 是数列}{n a 的极限, 或称数列}{n a 收敛于L ,记为L a n n =∞→lim 。否则称数列}{n a 发散。 2. 数列极限的运算法则 若 ()1 lim L a n n =∞ →,2 lim L b n n =∞ →,c 是常数,则 ()1 lim cL ca n n =∞ →; ()21lim L L b a n n n ±=±∞→; ()2 1lim L L b a n n n =∞ →; ()0,lim 221 ≠=∞→L L L b a n n n 。 3. 数列极限的性质 (1)若L a n x =∞→lim >0则正整数?N ,当N n >时成立n a >0;L b a N n N n n n =≥>?∞→lim ,0且时成立,当正整数若,则0≥L 。 (2) 收敛数列是有界数列。 4.数列极限的存在性准则 (1) 夹逼准则(夹逼定理): L b L c a c b a N n N n n n n n n n n n ===≤≤>?∞ →∞ →∞ →lim ,lim lim ,则且时成立,当正整数若(2)单调有 界准则(数列的单调有界收敛定理): 单调有界数列必有极限。 5. 数列极限与函数极限的联系

对于数列{} n a,若存在定义域包含[)∞ , 1的函数()x f,使()n f n a=,且()L x f x = +∞ → lim , 且 L a n n = ∞ → lim 。 6.数列与数列的关系 (1)若 L a n n = ∞ → lim , {} k n a是{}n a的一个子数列,则L a k n k = ∞ → lim 。 (2)若 L a a k k k k = = + ∞ → ∞ → 1 2 2 lim lim ,则 L a n n = ∞ → lim 。 (二)无穷级数的基本概念1.级数敛散性的定义 称 ∑ = = n k k n u s 1为级数 ∑∞ =1 n n u 的前n项部分和 () ,2,1=n,而称数列{} n s为级数 ∑∞ =1 n n u 的部 分和数列。 若级数∑∞ =1 n n u 的部分和数列 {} n s收敛,即s s n n = ∞ → lim ,则称级数 ∑∞ =1 n n u 收敛,称s为该级 数的和,记为 s u n n = ∑∞ =1,同时称 ∑∞ + = = - = 1 n k k n n u s s r 为级数 ∑∞ =1 n n u 的余和。 若级数∑∞ =1 n n u 的部分和数列 {} n s发散,则称级数 ∑∞ =1 n n u 发散。 2.级数的基本性质 (1)若 s u n n = ∑∞ =1,c是常数,则 cs cu n n = ∑∞ =1。 (2)若∑∞ =1 n n u =s, σ = ∑∞ =1 n n v ,则 ()σ+ = + ∑∞ = s v u n n n 1。 (3)若∑∞ =1 n n u 收敛,则 ∑∞ + =1 m n n u 也收敛,其中m任一正整数;反之亦成立。 (4)收敛级数添加括弧后仍收敛于原来的和。

吉林大学作业及答案-高数A1作业答案

高等数学作业 AⅠ 吉林大学数学中心 2017年8月

第一次作业 学院 班级 姓名 学号 一、单项选择题 1.下列结论正确的是( A ). (A )x arctan 是单调增加的奇函数且定义域是),(∞+∞- ; (B )x arc cot 是单调减少的奇函数且定义域是),(π0; (C )x arctan 是无界函数; (D )4 -22arccos π =. 2.下列函数中不是奇函数的为( B ). (A )x x x x e e e e --+-;(B )x x cos 3+;(C ))1ln(2 x x ++;(D )x arcsin . 3.函数x x y 3cos 2sin +=的周期为( C ). (A )π; (B )π3 2 ; (C )π2; (D )π6. 4.. ??? ??-??? ??-??? ? ? -∞→22211311211lim n n Λ=( C ) (A )0; (B )1; (C )0. 5; (D )2. 5.已知数列{}n x 是单调增加的.则“数列{}n x 收敛”是“数列{}n x 有上界”的( A )条件 (A )充分必要;(B )必要非充分;(C )充分非必要;(D )即非充分也非必要. 6.设数列{}n a (Λ,2,1,0=>n a n )满足,0lim 1 =+∞→n n n a a 则( D ). (A ){}n a 的敛散性不定; (B )0lim ≠=∞ →c a n n ; (C )n n a ∞ →lim 不存在; (D )0lim =∞ →n n a . 二、填空题

1.=???? ??-+ +-+-∞→n n n n n 2 2241 2 411 41 lim Λ 0. 5 . 2.设? ? ?<+≥+=,0,2, 0,12)(2 x x x x x f 42)(-=x x g . 则)]([x g f = ? ??<+-≥-2,181642, 742x x x x x . 3.函数1 )(+=x x e e x f 的反函数)(1x f -= )1,0(,1ln ∈-x x x . 4.“数列{}n x 2及数列{}12+n x 同时收敛”是“数列{}n x 收敛” 必要 条件. 5. =++--+++∞ →])2()11(1sin [lim 1 n n n n n n n n n 22e + . 三、计算题 1.设6 331 34)11(x x x f ++=+ ,求)(x f . 解:令31 1x t +=,则3 1 1-=t x 代入已知的式子中得, 2)1)1(34)(-+-+=t t f t 即有 22)(t t f ++=t 2.求n n n x 13)|1(lim | +∞ →, 解:(1)当1||>x 时 由于311 33||2)||1(|| x x x n n n <+< 以及 331||||2lim x x n n =∞ → 所以有 313||)|1(lim x x n n n =+∞ →| (2)当1||≤x 时

高等数学中导数的求解及应用

高等数学中导数的求解及应用 摘要:高等数学是一门方法学科,因此可以说是许多专业课程的基础。然而导 数这一章节在高等数学中是尤为重要的,在高等数学的整个学习过程中,它起着 承前启后的作用,是学习高等数学非常重要的任务。本文详细地阐述了导数的求 解方法和在实际中的应用。 关键词:高等数学导数求解应用 导数的基本概念在高等数学中地位很高,是高等数学的核心灵魂,因此学习 导数的重要性是不言而喻的。然而这种重要性很多同学没有意识到,更不懂得如 何求解导数以及运用导数来解决有关的问题。我通过自己的学习和认识,举例子 说明了几种导数的求解方法以及导数在实际中的应用。 一、导数的定义 1.导数的定义 设函数y=f(x)在点x0的某一邻域内有定义,如果自变量x在x0的改变量 为△x(x0≠0,且x0±△x仍在该邻域内)时,相应的函数有增量△y=f(x0+△x)- f(x0)。 若△y与△x之比,当△x→0时,有极限lim =lim存在,就称此极限为该函数y=f(x)在点x0的导数,且有函数y=f(x)在点x=x0处可导,记 为f`(x0)。 2.导数的几何意义 函数y=f(x)在点x0处的导数在几何上表示曲线y=f(x)在点〔x0,f(x0)〕处 的切线斜率,即f`(x0)=tan,其中是切线的倾角。如果y=f(x)在点x0处的导数 为无穷大,这时曲线y=f(x)的割线以垂直于x轴的直线x=x0为极限位置,即曲线 y=f(x)在点〔x0,f(x0)〕处具有垂直于x轴的切线x=x0。根据导数的几何意义 并应用直线的点斜式方程,可知曲线y=f(x)在点〔x0,f(x0)〕处的切线方程。 二、导数的应用 1.实际应用 假设某一公司每个月生产的产品固定的成本是1000元,关于生产数量x的 可变成本函数是0.01x2+10x元,若每个产品的销售价格是30元,求:总成本的 函数,总收入的函数,总利润的函数,边际收入,边际成本及边际利润等为零时 的产量。 解:总的成本函数是可变成本函数和固定成本函数之和: 总成本的函数C(x)=0.01x2+10x+1000 总收入的函数R(x)=px=30x(常数p是产品数量) 总利润的函数I(x)=R(x)-C(x)=30x-0.01x2-10x-1000=-0.01x2+20x-1000 边际收入R(x)Γ=30 边际成本C(x)=0.02x+20 边际利润I(x)=-0.02x+20 令I(x)=0得-0.02x+20=0,x=1000。也就是每月的生产数量为1000个时,边际利润是零。这也就表明了,当每月生产数目为1000个时,利润也不会再增加了。 2.洛必达法则的应用 如果当x→a(或x→∞)时,两个函数f(x)与F(x)都趋于零或都趋于无 穷大,那么极限lim可能存在,也可能不存在。通常把这种极限叫做未定式,分别简记为或。对于这类极限,即使它存在也不能用“商的极限等于极限的商”

高等数学(上下册)自测题及参考答案

高等数学标准化作业参考答案(内部使用)山东交通学院土木工程学院,山东济南 SHANDONG JIAOTONG UNIVERSITY

第一章 自测题 一、填空题(每小题3分,共18分) 1. () 3lim sin tan ln 12x x x x →=-+ . 2. 2 1 lim 2 x x x →=+- . 3.已知212lim 31 x x ax b x →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1 ,0,0ax x x f x x a x ?+-≠? =??=? 在()+∞∞-,上连续,则a = . 5. 曲线21 ()43 x f x x x -= -+的水平渐近线是 ,铅直渐近线是 . 6. 曲线() 121e x y x =-的斜渐近线方程为 . 二、单项选择题(每小题3分,共18分) 1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的 . A. 充分条件但非必要条件 B. 必要条件但非充分条件 C. 充分必要条件 D. 既非充分也非必要条件 2. 设()2,0 2,0x x g x x x -≤?=?+>?,()2,0 , x x f x x x ?<=? -≥?则()g f x =???? . A. 22,02,0x x x x ?+

华丽高数上作业答案

第12次作业 教学内容:§3.1微分 **1. . 求,设 dy x x x x y x ),4 0(2tan )(cos )(sin π < <+= 解: dy y x dx ='() []{} dx x x x x x x x 2sec 2tan sin )ln(cos cos )(cos 2sin +?-= . **2. 设 求.y x e e dy x x ()ln()=++--241 解: du u du du dy dy e u x 2211,+===-则 令 dx e e x x 4212--+-= . **3. 设 且处处可微求?????(),(),ln ()()x x d x x >???? ??0 解: )() (ln x x u ??= 记, 则du u x x d )()()(ln ????'=??????dx x x x x u )() (ln )()()(2 ??????'-'?'= []dx x x x x x ??????'?-'= )()(ln )(ln 1)() (2?????? . **4. .的微分所确定隐函数求由方程dy x y y a axy y x )(,)0(033 3 =>=-+ 解: 由 033 3=-+axy y x , 得 0)d d (3d 3d 322=+-+y x x y a y y x x x ax y x ay y d d 22 --=∴.

**5. .)(0)cos(sin dy x y y y x x y 的微分所确定隐函数求由方程==+- 解: 0)()sin(cos sin =+?+++?dy dx y x xdx y x dy 由  得 dy y x x y x x y dx =- ++++cos sin() sin sin(). **6. .26 3 的近似值用微分方法计算 解:127)()()()(0003 -=?=??'+≈∴=x x x x f x f x f x x f .,令  959.2271 3263 =- ≈. **7. .151cos ,0 的值计算用微分代替增量 解: f x x x x ()cos === ==.,000150561180ππ ?, 8747.036023180 )150(sin 150cos )151(000-≈-- =? -≈π π f . **8.cm cm cm 005.02.55一层厚的空心铁球的表面上镀 外半径为在一个内半径为 量。 个金球中含铁和金的质,试用微分法分别求这,金的密度为已知铁的密度为的金33g/cm 9.18g/cm 86.7, 解: , ..,86.72.0534 1113==?==ρπr r r V )(6.4932086.7486.712 11g r r m ≈?=???≈ππ, ,,,9.18005.02.5222==?=ρr r )(1.32005.0)2.5(49.1822g m =??≈π. **9. ,要使周期,摆长,其中单摆振动周期cm 8.9cm/s 98022===l g g l T π

华理高等数学(下)期终考试卷

高等数学(下)期终考试卷(华东理工) 222222{0,0,6},{2,2,1}_______;2 25(0),________; 4 )___a L a b xyz yz zx xy L x y R y yds x y z y y z ==-==??++=?+=≥=?++=?=??b 00 一、试解下列各题(每题4分,共16分) 1、向量在向量上的投影Prj 、曲线在(2,1,1)点的切线方程是____________; 3、(1)设是上半圆周则(2过曲线母线平行于轴的柱面方程是0 00 0(4)_______; 41(,,)(,,),:__________; )(,)(,),:0_________; (3)4'''3''0__________; L L x x x y z u x y z L y y I D x y u x y D L Ax By C I y y y y =?ΩΩ? =?++=-+==0、()立体上点处的密度为则对直线的转动惯量用三重积分可表示为(2平板上点处的密度为则对于直线的转动惯量用二中积分表示为微分方程的通解为 33001002(1)8(1)(1)8 121 8(2,3,2)101(2){1)}6241(,)ln(1)0n n n n y x x x y x n x y z M x dx e dy n y z z x y x ze z ∞ =--++--==-=--+=∑??0 二、(分)求幂级数的收敛域(包括收敛的端点)。三、(分)求点到直线的距离。 四、(1)计算二次积分求数列的极限。 五、试解下列各题(每题分,共分) 、设函数由方程 所确定,试求此函数1 1 2222232sin()()sin ,(0,0)(1,0)1 (0,0,1)(0,0,2),2 n n n L dz a x x y dx x y x dy L y x x MA M A B M MB ∞ ∞ ==+--=--=∑?00 的全微分。、设是收敛的正项级数,试证明级数、(1)计算曲线积分其中是自点沿至的一段有向曲线。 (2)动点到两定点及的两个距离之比为 求动点的轨迹。00101 41()012 2()ln ()x f x x f x x x e ≤

《高等数学》训练题:导数的应用及答案

1、下列函数在给定区间上满足罗尔定理条件的是( ). ]1,1[,)()](2 ,23[,sin )()](4,2[,)4()()](0,2[,1)()(2-=-=--=-= x x f D x x f C x x f B x x f A π π 2、函数f(x)=sinx 在[0,π]上满足罗尔定理结论的ξ=( ). (A ) 0(B ) 2 π(C )π (D )23π 3、下列函数在[1,e]上满足拉格朗日定理条件的是( ). (A ))ln(ln x (B ) x ln (C ))2ln(x - (D ) x ln 1 4、函数f(x)=2x 2-x+1在区间[-1,3]上满足拉格朗日定理的ξ等于( ). (A) 4 3- (B)0 (C) 43 (D) 1 5、函数x x y 4 + =的单调减区间为( ). (A)(,2),(2,)-∞-+∞ (B) )2,2(- (C) (,0),(0,)-∞+∞ (D) (2,0),(0,2)- 6、若x 0为f(x)的极小点,则下列命题正确的是( ). (A) 0)(0='x f (B) 0)(0≠'x f (C) )(0x f '不存在 (D)0)(0='x f 或)(0x f '不存在 7、若在(a ,b )内,0)(,0)(<''<'x f x f ,则f(x)在(a ,b )内为( ). (A)单调上升而且是凸的(B) 单调上升而且是凹的(C) 单调下降而且是凸的(D) 单调下降而且是凹的 8、曲线29623++-=x x x y 的拐点是( ). (A )(1,6)(B ) (2,3)(C ) (2,4)(D ) (3,2) 9、()y f x =在(a,b)内可导,且12a x x b <<<,则下列式子正确的是( ). (A )在12(,)x x 内只有一点ξ,使 2121 ()() ()f x f x f x x ξ-'=-成立; (B )在12(,)x x 内任一点ξ处均有2121()()()f x f x f x x ξ-'=-成立;(C )在1(,)a x 内至少有一点ξ,使 11()() ()f x f a f x a ξ-'=-成立; (D )在12(,)x x 内至少有一点ξ,使 2121 ()() ()f x f x f x x ξ-'=-成立. 10、求下列极限时,( )可用罗必达法则得出结果. (A )sin lim sin x x x x x →∞- +;(B )22sin lim x x x →∞; (C )lim x →+∞; (D )lim (arctan )2x x x π→+∞-. 11、下列命题中正确的是( ). (A )若0x 为()f x 的极值点,则必有0()0f x '=;(B )若0()0f x '=,则0x 必为()f x 的极值点; (C )若()f x 在(a,b)内存在极大值,也存在极小值,则极大值必定大于极小值;

华理复变答案12次作业答案

华东理工大学 复变函数与积分变换作业(第1册) 班级____________学号_____________姓名_____________任课教师_____________ 第一次作业 教学内容:1.1复数及其运算 1.2平面点集的一般概念 1.填空题: (1)3 5arctan 2,234,2523,25,23-+-πk i (2)3arctan 2,10,31,3,1-+-πk i (3))31(2 1i +- (4) 13,1=-=y x 。 2.将下列复数化成三角表示式和指数表示式。 (1)31i +; 解:32)3sin 3(cos 2)2321(231π ππi e i i i =+=+=+ (2))0(sin cos 1π???≤≤+-i 解:)22(2sin 2)]22sin()22[cos(2sin 2sin cos 1? π??π?π???-=-+-=+-i e i i

(3)32 ) 3sin 3(cos )5sin 5(cos φφφφi i -+. 解:φφφφφφφφφ199********)/()()3sin 3(cos )5sin 5(cos i i i i i e e e e e i i ===-+-- φε19sin 19cos i + 3.求复数1 1+-z z 的实部与虚部 解:2| 1|)1)(1()1)(1()1)(1(11++-=+++-=+-=z z z z z z z z z w 2 22|1|Im 2|1|1|1|)1(+++-=+--+=z z i z z z z z z z z 所以,2|1|1Re +-= z z z w ,2|1|Im 2Im +=z z w 4. 求方程083=+z 的所有的根. 解:.2,1,0,2)8()21(331 ==-=+k e z k i π 即原方程有如下三个解: 31,2,31i i --+ 5. 若 321z z z ==且0321=++z z z ,证明:以321,,z z z 为顶点的三角形是正三角形. 证明:记a z =||1,则 23 2232223221|||(|2||z z z z z z z --+=+= 得22323||a z z =-221|)||(|z z -=,同样, 22212123||a z z z z =-=- 所以.||||212321z z z z z z -=-=- 6. 设2,1z z 是两个复数,试证明.

高数答案第七章

第七章 空间解析几何与向量代数 §7.1 向量及其线性运算 必作题:P300---301:1,3,4,5,6,7,8,9,12,13,15,18,19. 必交题: 1、 求点(,,)a b c 分别关于⑴各坐标面;⑵各坐标轴;⑶坐标原点的对称点的坐标. 解:(1) xoy 面(a,b,-c ),yoz 面(-a,b,c ), xoz 面(a,-b,c ); (2)ox 轴(a,-b,-c ), oy 轴(-a,b,-c ), oz 轴(-a,-b,c ); (2)关于原点(-a,-b,-c )。 2、 坐标面上的点与坐标轴上的点的坐标各有什么特征, 指出下列各点的 位置 (3,4,0),(0,4,3),(3,0,0),(0,1,0).A B C D - 解:xoy 面:z=0, yoz 面:x=0, xoz 面:y=0. ox 轴:y=0,z=0, oy 轴:x=0,z=0, oz 轴:x=0,y=0, A 在xoy 面上,B 在yoz 面上, C 在x 轴上, D 在y 轴上。 3、 在z 轴上求与点(4,1,7)A -和点(3,5,2)B -等距离的点的坐标. 解:设C (0,0,z ),有|AC|=|BC|,解得:z= 149,所求点为(0,0, 149 ). 4、 设2,3,u a b c v a b c =-+=-+- 试用,,a b c 表示23.u v - 解:235117u v a b c -=-+ . 5、已知两点1M 和2(3,0,2),M 求向量12M M 的模,方向余弦和方 向角. 解:{} 121,M M =- ,122M M = ,方向余弦为1c o s 2 α=-, cos 2β=- ,1cos 2γ=,方向角23πα=,34πβ=,3 πγ=.

高等数学习题册参考答案

《高等数学》习题册参考答案 说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错. 第一册参考答案 第一章 §1.1 1.??? ????+≤≤--<≤<≤+=--. ),(2, , , 0 , 211010101T t T T t a v T t v t at v v a v a v v a v v 图形为: 2.B. 3.)]()([)]()([)(2 121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(2 1x f x f x G --=为奇函数. 4.??? ????=<≤-<≤-<≤=.6 ,0, 64 ,)4(, 42 ,)2(, 20 ,)(22 2x x x x x x x x f 5.???.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f 6.无界. 7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同. §1.2 1.(1))1 ,0()0 ,1(?-=D ;(2)} , ,{2 Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.?????>-=<=,0 ,1,0 ,0 , 0 ,1 )]([x x x x g f ???? ???>=<=-. 1 ,,1 ,1 ,1 , )]([1x e x x e x f g 4.(1)]2 ,0[,)1arcsin(2 =-=D x y ; (2)Y ∞ =+=+=0 2 2),( , )(tan log 1k a k k D x y πππ. 5.(1)x x x f f 1 )]([-= ; (2)x x f f 1 )(1][=. 6.+∞<<=-h r V r h h r 2 ,2312 2π. 7.(1)a x =)(?; (2)h x x +=2)(?; (3)h a a h x x ) 1()(-= ?. §1.9 1.1-=e a . 2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类); (2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类) (注意:+∞==∞ +-→- e e x x x 11 lim ,而0lim 11 ==∞--→+ e e x x x );

华理高数答案word版

第2章 (之1) 第2次作业 教学内容: §2.1 导数概念 **1. 设,试用导数定义求)(x f '. 解: . **2. 试用导数定义计算下列函数的导数: (1)x x f 1)(=, 求)1(f '; (2)()3 8t t g -=,求()2g '; (3)()t t t -=2 3?,求()1-'?. 解:(1) . (2) ()()()t t g t t g t g t ?-?+='→?0lim ()[][ ] ()() t t t t t t t t t t t t t t t t t t t ??+?+?+-=??+-=?--?+-=→?→?→?3223303 3033033lim lim 88lim () 2 20 33lim t t t t t ?-?--=→?23t -=, 即 ()2 3t t g -=', ()122-='∴g . (3) ()()() t t t t t t ?-?+='→????0 lim ()()[][ ] t t t t t t t t ?--?+-?+=→?22 033lim t t t t t t ??-?+?=→?2036lim ()16136lim 0-=-?+=→?t t t t , ()16-='∴t t ?, ()71-=-'?. **3. 求曲线2 2x y = 在点 ()2,1=P 处的切线方程. 解:曲线在点P 处切线的斜率为 41 2 2lim 21=--→x x x , 所以切线方程为 ()214+-=x y . **4. 化学反应速率通常是以单位时间内反应物浓度的减少或生成物浓度的增加来表征。设有一化学反应,反应物浓度C 与反应开始后的时间 t 之间有如下关系:()t f C =.

华理高数答案第3章

第3章 (之1) 第13次作业 教学内容:§3.1微分 **1. . 求,设 dy x x x x y x ),4 0(2tan ) (cos )(sin π < <+= 解: dy y x dx ='() []{} dx x x x x x x x 2sec 2tan sin )ln(cos cos )(cos 2sin +?-= . **2. 设 求.y x e e dy x x ()ln()=++--241 解: du u du du dy dy e u x 2211,+===-则 令 dx e e x x 4212--+-= . **3. 设 且处处可微求?????(),(),ln ()()x x d x x >???? ? ? 0 解: ) () (ln x x u ??= 记, 则du u x x d )()()(ln ????'=?? ?? ??dx x x x x u )() (ln )()()(2 ??????'-'?'= []dx x x x x x ?? ????'?-'= )()(ln )(ln 1)() (2?????? . **4. .的微分所确定隐函数求由方程dy x y y a axy y x )(,)0(033 3 =>=-+ 解: 由033 3 =-+axy y x , 得 0)d d (3d 3d 32 2 =+-+y x x y a y y x x x ax y x ay y d d 22 --=∴. **5. .)(0)cos(sin dy x y y y x x y 的微分所确定隐函数求由方程==+- 解: 0)()sin(cos sin =+?+++?dy dx y x xdx y x dy 由  得 dy y x x y x x y dx =- ++++cos sin() sin sin() . **6. .263的近似值用微分方法计算 解:127)()()()(0003-=?=??'+≈∴=x x x x f x f x f x x f .,令

同济大学高等数学《导数及其应用》教案

第9次课2学时 第二章导数与微分 导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。导数反映出函数相对于自变量的变化快慢的程度,而微分则指明当自变量有微小变化时函数大体上变化多少,它从根本上反映了函数的变化情况。本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。

§2、1导数的概念 一、 引例 1、 切线问题:切线的概念在中学已见过。从几何上看,在某点的切线就是一直线,它在该点和曲线相切。准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。 设曲线方程为 )(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线 在P 点的切线,只须求出P 点切线的斜率k 。由上知,k 恰好为割线PQ 的斜率的极限。我们不难求 得PQ 的斜率为: 0) ()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即 0) ()(lim x x x f x f k x x --=→。 若设α为切线的倾角,则有αtan =k 。 2、速度问题:设在直线上运动的一质点的位置方程为)(t s s =(t 表示时刻),又设当t 为0t 时刻时, 位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少? 为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度 为 00)()(t t t s t s --,显然当t 与0t 越近,用0 0) ()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当 0t t →时, 0) ()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时, 二、导数的定义 综合上两个问题,它们均归纳为这一极限0 0) ()(lim x x x f x f x x --→(其中0x x -为自变量x 在0x 的 增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。 定义:设函数 )(x f y =在0x 点的某邻域内有定义,且当自变量在0x 点有一增量x ?(x x ?+0仍 在该邻域中)时,函数相应地有增量y ?,若增量比极限:x y x ??→?0lim 即0 0)()(lim 0x x x f x f x x --→存在,就称函数 y f x =()在x 0处可导,并称这个极限值为)(x f y =在0x x =点的导数,记为)(0x f ', 0x x y =', x x dx dy =或 x x dx df =。 即0 00) ()(lim )(0 x x x f x f x f x x --='→等等,这时,也称)(x f y =在0x x =点可导或有导数,导数存在。

相关文档
最新文档