电容器介质损耗因数试验

电容器介质损耗因数试验
电容器介质损耗因数试验

https://www.360docs.net/doc/907844299.html,

电容器介质损耗因数试验

电容器介质损耗因数和电容器绝缘介质的种类、厚度、浸渍剂的特性以及制造工艺有关。电容器tanδ的测量能灵敏地反映电容器绝缘介质受潮、击穿等绝缘缺陷,对制造过程中真空处理和剩余压力、引线端子焊接不良、有毛刺、铝箔或膜纸不平整等工艺的问题也有较灵敏的反应,所以说电容器介质损耗因数是电容器绝缘优劣的重要指标。

耦合电容器介质损耗因数测试方法:

(1)采用正接线测量时,先将被试电容器对地放电并接地,拆除被试电容器对外所有一次连接线,电容器法兰接地,打开小套管接地线并与Cx端相连接,高压引线接至电容器高压电极,取下接地线,检查接线无误后,通知

https://www.360docs.net/doc/907844299.html, 其他人员远离被试品并监护。合上试验电源,从零开始升压至测试电压进行测试,测试电压为10KV。测试完毕后先将电压降到零,然后读取测量数据,切断电源,对被试品进行放电并接地,拆除测试引线。特别注意小

套管接地引线的恢复。

(2)采用反接线测量时,电桥Cx端接电容器高压电极,低压电极接地。测量下节耦合电容器时下法兰和小套管接地,采用反接线测量时,桥体接地应

直接与被试品接地点直接连接,测试电压为10KV。

断路器电容器介质损耗因数测试方法:

(1)交接时断口电容器的tanδ应在安装前测试,主要是避免断路器灭弧室的影响。测试前先将被试电容器对地放电并接地,高压引线接至断路器电容

器一端电极,电容器另一端接电桥Cx端。取下接地线,检查接线无误后,通知其他人员远离被试电容器。合上试验电源,从零开始升压至测试电压

进行测试,测试电压为10KV。测试完毕后将电压降至零后读取测量数据,然后切断电源,对被试品进行放电并接地。

(2)预防性试验时,如果测试数据偏大,可将电容器拆下进行测试。

变压器讲义

主变压器讲义 一、系统(设备)概述 1、变压器的用途 变压器是借助于电磁感应,以相同的频率,在两个或更多的绕组之间变换交换电压或电流的一种静止电气设 备。 电力变压器在电力系统中,用以改变电压的主要电气设备,再从电力系统的角度来看,一个电力网将许多发电厂 和用户联在一起,分成主系统和若干个分系统。各个分系 统的电压并不一定相同,而主系统必须是统一的一种电压 等级,这也需要各种规格和容量的变压器来联接各个系统。 所以说电力变压器是电力系统中不可缺少的一种电气设 备。 2、变压器的分类 变压器有不同的使用条件、安装场所,有不同电压等级和容量级别,有不同的结构形式和冷却方式,所以应按不同原则进行分类。变压器分类方法见表1—1。 表1—1 电力变压器分类

A、按电源输出相数分1)、单相变压器; 2)、三相变压器; 3)、多相变压器; B、按冷却方式分 1)、干式(自冷)变压器;2)、油浸自冷变压器;

3)、油浸不冷或风冷变压器; 4)、氟化物(蒸发冷却)变压器。 C、按绕组结构分 1)、单绕组变压器; 2)、双绕组变压器; 3)、三绕组变压器; 4)、多绕组变压器。 D、按铁芯结构分 1)、心式铁心变压器; 2)、壳式铁心变压器; 3)、C型、T型及环形铁心变压器。 E、按防潮方式分 1)、开启式变压器; 2)、密封式变压器; 3)、全密式变压器。 F、按用途分 1)、电力变压器; 2)、电炉变压器; 3)、整流变压器; 4)、调压变压器; 5)、各种小型电源变压器; 6)、各种特殊用途变压器,如试验变压器、焊接变压器等。

G、按调压方式分 1)、无载调压变压器; 2)、有载调压变压器。 二、通用理论部分(或原理)介绍 利用电磁感应原理工作的,它由相互绝缘且匝数不等的两个绕组(构成电路)套装在由良好导磁性能材料叠成的铁心(构成磁路)上。两个绕组间只有磁的耦合而没有电的联系,其原理示意图如下图所示,其中绕组1接交流电源,这一侧称为一次侧,有关的物理量冠以下标1,如μ1、i1等;绕组2接有负载,这一侧称为二次侧,有关的物理量冠以下2如μ2、i2等。 根据电磁感应原理,变压器一、二次绕组中产生的感应电动势分别为: E1=4.44f1N1B m S×10-4 E2=4.44f2N2B m S×10-4

变压器介质损耗讲义

变压器绕组连同套管介质损耗试验 一、介质损耗得定义及意义 电介质就就是绝缘材料。当研究绝缘物质在电场作用下所发生得物理现象时,把绝缘物质称为电介质;而从材料得使用观点出发,在工程上把绝缘物质称为绝缘材料。既然绝缘材料不导电,怎么会有损失呢?我们确实总希望绝缘材料得绝缘电阻愈高愈好,即泄漏电流愈小愈好,但就是,世界上绝对不导电得物质就是没有得。任何绝缘材料在电压作用下,总会流过一定得电流,所以都有能量损耗。把在电压作用下电介质中产生得一切损耗称为介质损耗或介质损失。 如果电介质损耗很大,会使电介质温度升高,促使材料发生老化(发脆、分解等),如果介质温度不断上升,甚至会把电介质熔化、烧焦,丧失绝缘能力,导致热击穿,因此电介质损耗得大小就是衡量绝缘介质电性能得一项重要指标。 然而不同设备由于运行电压、结构尺寸等不同,不能通过介质损耗得大小来衡量对比设备好坏。因此引入了介质损耗因数tgδ(又称介质损失角正切值)得概念。 介质损耗因数得定义就是:被试品得有功功率比上被试品得无功功率所得数值。 介质损耗因数tgδ只与材料特性有关,与材料得尺寸、体积无关,便于不同设备之间进行比较。 当对一绝缘介质施加交流电压时,介质上将流过电容电流I1、吸收电流I2与电导电流I3,如图所示。其中反映吸收过程得吸收电流,又可分解为有功分量与无功分量两部分。电容电流与反映吸收过程得无功分量就是不消耗能量得,只有电导电流与吸收电流中得有功分量才消耗能量。 为了讨论问题方便,可进一步将等值电路简化为由纯电容与纯电阻组成得并联与串联电路。我们就采用它得并联电路来分析。 当绝缘物上加交流电压时,可以把介质瞧成为一个电阻与电容并联组成得等值电路,如图21(a)所示。根据等值电路可以作出电流与电压得相量图,如图2(b)所示。

介质损耗详解

1、介质损耗 什么就是介质损耗:绝缘材料在电场作用下,由于介质电导与介质极化得滞后效应,在其内部引起得能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过得电流相量与电压相量之间得夹角(功率因数角Φ)得余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,就是指介质损耗角正切值,简称介损角正切。介质损耗因数得定义如下: 如果取得试品得电流相量与电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic与电阻电流IR合成,因此: 这正就是损失角δ=(90°-Φ)得正切值。因此现在得数字化仪器从本质上讲,就是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备得绝缘状况就是一种传统得、十分有效得方法。绝缘能力得下降直接反映为介损增大。进一步就可以分析绝缘下降得原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损得同时,也能得到试品得电容量。如果多个电容屏中得一个或几个发生短路、断路,电容量就有明显得变化,因此电容量也就是一个重要参数。 4、功率因数cosΦ 功率因数就是功率因数角Φ得余弦值,意义为被测试品得总视在功率S中有功功率P所占得比重。功率因数得定义如下: 有得介损测试仪习惯显示功率因数(PF:cosΦ),而不就是介质损耗因数(DF:tgδ)。一般cosΦ

(1) 容量与误差:实际电容量与标称电容量允许得最大偏差范围、一般使用得容量误差有:J级±5%,K 级±10%,M级±20%、 精密电容器得允许误差较小,而电解电容器得误差较大,它们采用不同得误差等级、 常用得电容器其精度等级与电阻器得表示方法相同、用字母表示:D级—±0、5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%、 (2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受得最大直流电压,又称耐压、对于结构、介质、容量相同得器件,耐压越高,体积越大、 (3) 温度系数:在一定温度范围内,温度每变化1℃,电容量得相对变化值、温度系数越小越好、 (4) 绝缘电阻:用来表明漏电大小得、一般小容量得电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆、电解电容得绝缘电阻一般较小、相对而言,绝缘电阻越大越好,漏电也小、 (5) 损耗:在电场得作用下,电容器在单位时间内发热而消耗得能量、这些损耗主要来自介质损耗与金属损耗、通常用损耗角正切值来表示、 (6) 频率特性:电容器得电参数随电场频率而变化得性质、在高频条件下工作得电容器,由于介电常数在高频时比低频时小,电容量也相应减小、损耗也随频率得升高而增加、另外,在高频工作时,电容器得分布参数,如极片电阻、引线与极片间得电阻、极片得自身电感、引线电感等,都会影响电容器得性能、所有这些,使得电容器得使用频率受到限制、 不同品种得电容器,最高使用频率不同、小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ、 不同材质电容器,最高使用频率不同、COG(NPO)材质特性温度频率稳定性最好,X7R次 之,Y5V(Z5U)最差、 贴片电容得材质规格 贴片电容目前使用NPO、X7R、Z5U、Y5V等不同得材质规格,不同得规格有不同得用途、下面我们仅就常用得NPO、X7R、Z5U与Y5V来介绍一下它们得性能与应用以及采购中应注意得订货事项以引起大家得注意、不同得公司对于上述不同性能得电容器可能有不同得命名方法,这里我们引用得就是敝司三巨电子公司得命名方法,其她公司得产品请参照该公司得产品手册、

变压器介损

FS3001抗干扰介质损耗测试仪 一、产品简介 FS3001抗干扰介质损耗测试仪用于现场抗干扰介损测量,或试验室精密介损测量。仪器为一体化结构,内置介损电桥、变频电源、试验变压器和标准电容器等。采用变频抗干扰和傅立叶变换数字滤波技术,全自动智能化测量,强干扰下测量数据非常稳定。测量结果由大屏幕液晶显示,自带微型打印机可打印输出。 二、产品别称 介损测试仪、抗干扰介损测试仪、全自动介损测试仪、异频介损测试仪、异频介质损耗测试仪、抗干扰介质损耗测试仪、全自动介质损耗测试仪 三、产品特征 1、变频抗干扰 采用变频抗干扰技术,在200%干扰下仍能准确测量,测试数据稳定,适合在现场做抗干扰介损试验。 2、高精度测量 采用数字波形分析和电桥自校准等技术,配合高精度三端标准电容器,实现高精度介损测量。 仪器所有量程输入电阻低于2Ω,消除了测量电缆附加电容的影响。 3、多级安全保护,确保人身和设备安全

高压保护:试品短路、击穿或高压电流波动,能以短路方式高速切断输出。 低压保护:误接380V、电源波动或突然断电,启动保护,不会引起过电压。 接地保护:仪器接地不良使外壳带危险电压时,启动接地保护。 C V T:高压电压和电流、低压电压和电流四个保护限,不会损坏设备;误选菜单不会输出激磁电压。CVT测量时无10kV高压输出。 防误操作:两级电源开关;电压、电流实时监示;多次按键确认;接线端子高/低压分明;缓速升压,可迅速降压,声光报警。 防“容升”:测量大容量试品时会出现电压抬高的“容升”效应,仪器能自动跟踪输出电压,保持试验电压恒定。 抗震性能:仪器采用独特抗震设计,可耐受强烈长途运输震动、颠簸而不会损坏。 高压电缆:为耐高压绝缘导线,可拖地使用。 四、技术指标 准确度:Cx: ±(读数×1%+1pF) tgδ: ±(读数×1%+0.00040) 抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度 电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV 外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV 分辨率:最高0.001pF,4位有效数字 tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。 试验电流范围:10μA~1A 内施高压:设定电压范围:0.5~10kV 最大输出电流:200mA 升降压方式:连续平滑调节 试验频率:45、50、55单频 45/55Hz自动双变频 频率精度:±0.01Hz 外施高压:正接线时最大试验电流1A,工频或变频40-70Hz 反接线时最大试验电流10kV/1A,工频或变频40-70Hz CVT自激法低压输出:输出电压3~50V,输出电流3~30A

电流互感器介质损耗试验作业指导书

电流互感器介质损耗试验作业指导书 试验目的: 能有效发现绝缘受潮、劣化以及套管绝缘损坏等缺陷;测量电容型电流互感器末屏对地的tanδ主要是检查电流互感器底部和电容芯子表面的绝缘状况。 试验仪器: 泛华AI-6000E 自动抗干扰精密介损测试仪 试验接线: (1)一次绕组对末屏tanδ 1K1 N L1L2 HV Cx CT 介损仪1K22K12K23K13K2 4K14K2CT (2)末屏对地tanδ

1K1 N L1L2 HV Cx CT 介损仪1K22K12K23K13K2 4K14K2CT 屏蔽线 试验步骤: 1) 办理工作许可手续; 2) 向工作人员交代工作内容、人员分工、带电部位,进行危险点告知,并履行确认手续后开工; 3) 准备试验用的仪器、仪表、工具,所用仪器、仪表、工具应良好并在合格周期内; 4) 在试验现场周围装设围栏,打开高压警示灯,摆放温湿度计,必要时派专人看守; 5) 抄录被试电流互感器的铭牌参数; 6) 检查被试电流互感器的外观是否完好,必要时对套管进行擦拭和烘干处理; 7) 两人对电源盘进行验电,同时检测电源盘的漏电保护装置是否可靠动作;

8)将介损测试仪水平放稳; 9)按试验接线图进行接线; 10)确认接线正确后,试验人员撤到绝缘垫上,相关人员远离被试品; 11)大声呼唱,确认相关人员都在安全距离外,接通电源,打开仪器开关; 12)正确设置仪器的参数,一次绕组对末屏采用正接线,试验电压10kV,末屏对地采用反接线,试验电压2kV; 13)得到工作负责人许可后,按下“启动”按钮开始测量,测量完毕后记录测量数据; 14)关闭仪器开关,断开电源; 15)用放电棒对电流互感器充分放电; 16)拆除试验接线(先拆测量线,再拆接地线,拆接地线时先拆设备端,再拆接地端); 17)整理仪器,记录温度和湿度,把仪器放回原位; 18)测量数值与标准或历史数据比较,判断是否合格,撰写试验报告。 试验标准: 交接标准: 1)互感器的绕组tanδ测量电压应为10 kV,末屏tanδ测量电压为2 kV;

介质损耗因数(tanδ)试验

align="center"> 图5-2 绝缘介质的等效电路 表5-2 绝缘电阻测量结果 绝缘电阻/MΩ(每隔60s测一次)

tanδ与施加电压的关系决定于绝缘介质的性能、绝缘介质工艺处理的好坏和产品结构。当绝缘介质工艺处理良好时,外施电压与tanδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tanδ值是基本重合的。当施加电压达到某一极限值时,tanδ曲线开始向上弯曲,见图5-8曲线1。 如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tanδ比良好绝缘时要大。另外,由于工艺处理不好的绝缘介质在极低电压下就会发生局部放电,所以,tanδ曲线就会较早地向上弯曲,且电压上升和下降时测得的tanδ值是不相重合的,见图5-8曲线2。 当绝缘老化时,绝缘介质的tanδ反而比良好绝缘时要小,但tanδ开始增长的电压较低,即tanδ曲线在较低电压下即向上弯曲,见图5-8曲线3。另外,老化的绝缘比较容易吸潮,一旦吸潮,tanδ就会随着电压的上升迅速增大,且电压上升和下降时测得的tanδ 值不相重合,见图5-8曲线4。 2.2 温度特性 图5-6 绝缘介质等值电流相量图 I C—吸收电流的无功分量I R—吸收电流的有功分量 —功率因数角δ—介质损失角

图5-7 绝缘介质简化等效电路和等值电流相量图 (a)等效电路(b)等值电流相量图 C x—绝缘介质的总电容R x—绝缘介质的总泄漏电阻I Cx—绝缘介质的总电容电流I Rx—绝缘介质的总泄漏电流 图5-8 绝缘介质tanδ的电压特性 tanδ随温度的上升而增加,其与温度之间的关系与绝缘材料的种类、性能和产品的绝缘结构等有关,在同样材料、同样绝缘结构的情况下与绝缘介质的工艺干燥、吸潮和老化程度有关。 对于油浸式变压器,在10℃~40℃范围内,干燥产品的tanδ增长较慢;温度高于40℃,则tanδ的增长加快,温度特性曲线向上逐渐弯曲。为了比较产品不同温度下的tanδ,GB/T6451—1999国家标准规定了不同温度t下测量的tanδ的换算公式。 tanδ2=tanδ1·1.3(t1-t2)/10 (5-2) 式中tanδ2——油温为t2时的tgδ值,%; tanδ1——油温为t1时的tgδ值,%。 3 tanδ测量方法 3.1 测量仪器及测量电压

变压器绝缘介质损耗检测

绝缘介质损耗检测 绝缘介质在交流电压作用下,会在绝缘介质内部产生损耗,这些损耗包括绝缘介质极化产生的损耗、绝缘介质沿面放电产生的损耗和绝缘介质内部放电产生的损耗等。 绝缘介质内部产生损耗,造成施加在绝缘介质上的交流电压和电流之间的功率因数角不再是90°。功率因数角的余角称为介质损失角,并用tgδ来表示绝缘系统电容的介质损耗特性。用tgδ来表示相对的介质损耗因数的大小,它与绝缘介质几何尺寸无关,便于比较和判断不同结构变压器的绝缘性能。 1、变压器tgδ绝缘测试的特性 1)变压器绝缘良好时,外施电压与tgδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tgδ值是基本重合的。当施加电压达到某一极限值时,tgδ曲线开始向上弯曲。 2)如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tgδ比良好绝缘时要大。同时,由于工艺处理不好的绝缘介质在很低电压下就可能发生局部放电,所以,tgδ曲线便会较早地向上弯曲,且电压上升和下降时测得的tgδ值是不相重合的。 3)当绝缘老化时,绝缘介质在低电压下的tgδ也有可能比良好绝缘时要小,但tgδ开始增长的电压较低,即tgδ曲线在较低电压下即向上弯曲。 4)绝缘比较容吸潮,一旦吸潮,tgδ就会随着电压的上升迅速增大,且电压上升和下降时测得tgδ值不相重合。 5)当绝缘存在离子性缺陷时,tgδ曲线随电压升高曲线向下弯曲,即tgδ随电压升高反而变小。 2、变压器油tgδ增大的原因及绝缘受潮的判断 1)油中浸入溶胶杂质。变压器在出厂前残油或固体绝缘材料中存在着溶胶杂质;在安装过程中也可能再次浸入溶胶杂质;在运行中还可能产生溶胶杂质。油的介质损耗因数正比于电导系数,油中存在溶胶粒子后,由电泳现象(带电的溶胶粒子在外电场作用下有定向移动的现象,叫做电泳现象)引起电导系数,可能超过介质正常电导的几倍或几十倍,因此,tgδ值增大。

工频介电常数及介质损耗测试仪

工频介电常数及介质损耗测试仪 GCSTD-C 产 品 技 术 方 案 书 北京冠测精电仪器设备有限公司材料电极液体电极

GCSTD-C工频介电常数及介质损耗测试仪 满足标准: GB/T1409-2006 测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法 GB/T 5654-2007 液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量 GB/T 21216-2007 绝缘液体测量电导和电容确定介质损耗因数的试验方法 GB/T 1693-2007 硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T 5594.4-1985__电子元器件结构陶瓷材料性能测试方法__介质损耗角正切值的测试方法 …………………………………………………………………………………………… 一、产品概述 本仪器是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,测量各种绝缘材料、绝缘套管、绝缘液体、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx)。具有操作简单、中文显示、打印、使用方便、无需换算、自带高压,抗干扰能力强,测试时间短等优点。 本测试仪采用变频电源技术,利用单片机和电子技术进行自动频率变换、模/数转换和数据运算,达到抗干扰能力强、测试速度快、精度高、操作简便的功能。 二、性能特点 1、仪器测量准确度高,可满足油介损测量要求,因此只需配备标准油杯,和专用测试线即可实现油介损测量。 2、采用变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。 3、过流保护功能,在试品短路或击穿时仪器不受损坏。 4、内附标准电容和高压电源,便于现场测试,减少现场接线。 5、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。 三、技术指标 技术指标 1、试验环境温度:10℃~30℃(LCD液晶屏应避免长时间日照) 2、相对湿度:20%~80% 3、供电电源:电压:220V±10% 4、外形尺寸:长*宽*高=470mm*320mm*360mm 5、重量:16kg 6、输出功率:1.5KV A

变压器绕组连同套管的介质损耗因数测量及注意事项

变压器绕组连同套管的介质损耗因数测量及注意事 项 The Standardization Office was revised on the afternoon of December 13, 2020

变压器绕组连同套管的介质损耗因数测量一、工作目的 发现变压器绕组绝缘整体受潮程度。 二、工作对象 SL7-1000/35型电力变压器变压器一次绕组连同套管三、知识准备 见第一篇第四章、第二篇第七章第三节 四、工作器材准备 五、工作危险点分析 (1)实验前后充分放电; (2)介质损耗测试仪一定要接地; (3)禁止湿手触摸开关或带电设备; (4)注意与其他相邻带电间隔的协调。

六、工作接线图 图1介质损耗因数测试试验接线示意图 七、工作步骤 1. 试验前准备工作。 1)布置安全措施; 2)对变压器一、二次绕组充分放电; 3)试验前应将变压器套管外绝缘清扫干净; 4)测量并记录顶层油温及环境温度和湿度。 2.试验接线。 1)将介质损耗测试仪接地端接地。 2)二次绕组短路接地、非测量绕组套管末屏接地; 3)高压绕组短路接高压芯线; 4)两人接取电源线,并用万用表测量电压是否正常,测试电 源盘继电器是否正常工作; 5)复查接线; 6)接通电源。

3.试验测试过程,参数设定。 1)打开介质损耗测试仪,在菜单中选取反接法; 2)对于额定电压10KV及以下的变压器为10KV,对于额定电 压10KV及以上的变压器,试验电压不超过绕组的额定电 压; 3)打开高压允许开关,进行升压, 4)测试介质损耗, 5)填写试验报告。 4.测量结束的整理工作。 1)关闭高压允许开关,抄录数据; 2)关闭介质损耗测试仪,切断试验电源; 3)用放电棒对变压器一次绕组充分放电; 4)收线,整理现场。 八、工作标准 1)当变压器电压等级为35kV 及以上且容量在 8000kV A及以上时,应测量介质损耗角正切值tanδ ; 2 )被测绕组的tanδ 值不应大于产品出厂试验值的130%; 3 )当测量时的温度与产品出厂试验温度不符合时,可按下表 换算到同一温度时的数值进行比较。 介质损耗角正切值tgδ (%)温度换算系数

固体绝缘材料介电常数、介质损耗试验方法

固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 本标准等效采用国际标准 IEC 250(1969)《测量电气绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的推荐方法》,只是去掉其中液体试样及其试验部分。 1主题内容与适用范围 本标准规定了固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法。 本标准适用于 15 HZ~300 MHZ频率范围内测量固体绝缘材料的相对介电常数、介质损耗因数,并由此计算某些数值,如损耗指数。 测量所得的数值与一些物理条件,例如频率、温度、湿度有关,在特殊情况下也与场强有关。 2定义 2.1相对介电常数 绝缘材料的相对介电常数。r是电极间及其周围的空间全部充以绝缘材料时,其电容 Cx与同样构型的真空电容器的电容C0之比: Er=CX/C0………………………………………( 1) 在标准大气压下,不含二氧化碳的干燥空气的相对介电常数等于 1. 000 53。因此,用这种电极构型在空气中的电容C。来代替C。测量相对介电常数时,有足够的精确度。在一个给定的测量系统中,绝缘材料的介电常数是该系统中绝缘材料的相对介电常数。与真空介电常数的乘积。 真空介电常数: E0=8.854×10-12F/m≈1×10-9F/36πm………………………( 2) 在本标准中用PF/cm来计算,真空介电常数为: E0=0.08854pF/cm 2. 2介质损耗角 6 绝缘材料的介质损耗角a,是由该绝缘材料作为介质的电容器上所施加的电压与流过该电容器的 电流之间的相位差的余角。 2.3介质损耗因数tanδ 绝缘材料的介质损耗因数是介质损耗角E的正切tanE。 2.4损耗指数E n 绝缘材料的损耗指数E n,等于该材料的介质损耗因数不清tanE与相对介质常数e的乘积。 2.5相对复介电常数E 绝缘材料的相对复介电常数是由相对介电常数和损耗指数结俣而得出的。 Er=Er-JEr Er=Er 式中:Er是2.1条中所定义的相对介电常数。 E=Etane 有介质损耗的电容量,在任何经定的频率下既可用电容Cs和电阻Rs的串联回路来表示:

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念 (泛华电子) 1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义 如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下: 有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

变压器绕组介质损耗测试操作程序规范

变压器绕组介质损耗测试操作程序规范 一、考生穿好工作服、戴好安全帽、绝缘鞋在考场外排队等候,在等候过程中必须进行如下检查工作: 1、检查工作服是否干净整洁,着装规范,避免纽扣漏扣的现象; 2、检查过安全帽是否在有效使用日期内,状态是否良好,紧固带是否松紧合适,以低头安全帽不跌落为准; 3、检查绝缘鞋是否在有效日期内,状态是否良好; 二、考生向考官报到,申请下达试验任务; 1、注意礼貌用语(各位考官,早上好,我是考生张三前来报到,请求接受考核,请下达考试指令,谢谢!); 三、考官下达试验任务,考生应准确领会考官的意图,避免理解试验任务出现偏差: 1、考官下达试验任务不明确,应提出意见; 2、考生没有听清试验任务,应向考官申请再次下达试验任务,避免凭猜测开始试验工作; 3、考官下达试验任务:对220kV坂桥变电站#1主变压器高压侧绕组连同套管进行介质损耗的测试,变压器高压、中压、低压引线已经拆除并接地,安装了网状围栏,悬挂了标示牌,请开始作业; 四、考生检查安全措施是否到位;

1、围绕网状检查一周,重点检查围栏与变压器距离、出入口大小是否设置合理,网状围栏有无脱落现象; 2、围栏上有无对内悬挂“止步,高压危险”标示牌,出入口有无悬挂“在此工作”标示牌; 3、变压器本体爬梯有无悬挂“从此上下”标示牌; 五、考生准备文件资料、文具用品 1、#1主变压器交接试验报告、历年预试报告,并与被试变压器核对型号、编号是否一致; 2、空白记录纸、文件夹、计算器、签字笔;六、考生检查并选择介损测试仪; 1、检查介损仪铭牌参数是否满足测试要求,输出电压是否达到10kV,量程、测试精度能否满足测试要求,检查过程中向考官通报检查结果; 2、检查介损仪是否在有效检定日期内,检查过程中向考官通报检查结果;七、考生检查并选择放电棒; 1、检查放电棒长度是否合适,10kV的有效距离为0、7米,是否在有效期内,线夹是否完好,用万用表检查放电线有无断路,检查过程中向考官通报检查结果;八、考生检查并选择安全工器具; 1、检查绝缘手套是否检验合格并在有效期内,按照规范的方法将手套密封,检查是否漏气,检查过程中向考官通报检查结果;

介质损耗详解

1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下:

有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般 cosΦ

介质损耗试验

电容和介质损耗测量 一试验目的 测量介质损耗的目的是判断电气设备的绝缘状况。测量介质损耗因数在预防性试验中是不可缺少的项目。因为电气设备介质损耗因数太大,会使设备绝缘在交流电压作用下,许多能量以热的形式损耗,产生的热量将升高电气设备绝缘的温度,使绝缘老化,甚至造成绝缘热击穿。绝缘能力的下降直接反映为介质损耗因数的增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。所以,在出厂试验时要进行介质损耗的试验,运行中的电气设备亦要进行此种试验。测量介质损耗的同时,也能得到试品的电容量。电容量的明显变化,反映了多个电容中的一个或几个发生短路、断路。 二概念及原理 介质损耗是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 在交流电压作用下,电介质内流过的电流相量和电压相量之间的夹角为功率因数角(Φ),而余角(δ)简称介损角。 介质损耗正切值δ tg又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。 介质损耗因数(δ tg)的测量在电气设备制造、绝缘材料电气性能的鉴定、绝缘的试验等都是不可缺少的。因为测量绝缘介质的δ tg值是判断绝缘情况的一个较灵敏的试验方法。在交流电压作用下,绝缘介质不仅有电导的损耗,还有极化损耗。介质损耗因数的定义如下:

如果取得试品的电流相量和电压相量,则可以得到如下相量图: 合成,因此: 总电流可以分解为电容电流Ic和电阻电流I R 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。有的介损测试仪习惯显示功率因数(PF:cos Φ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗

电介质在交变电场作用下,所积累的电荷有两种分量:(1)有功功率。一种为所消耗发热的功率,又称同相分量;(2)无功功率,又称异相分量。异相分量与同相分量的比值即称为介质损耗。 通常用正切tanδ表示。tanδ=1/WCR(式中W为交变电场的角频率;C为介质电容;R为损耗电阻)。介电损耗角正切值是无量纲的物理量。可用介质损耗仪、电桥、Q表等测量。对一般陶瓷材料,介质损耗角正切值越小越好,尤其是电容器陶瓷。仅仅只有衰减陶瓷是例外,要求具有较大的介质损耗角正切值。橡胶的介电损耗主要来自橡胶分子偶极化。在橡胶作介电材料时,介电损耗是不利的;在橡胶高频硫化时,介电损耗又是必要的,介质损耗与材料的化学组成、显微结构、工作频率、环境温度和湿度、负荷大小和作用时间等许多因素有关。 电介质损耗(dielectric losses ):电介质中在交变电场作用下转换成热能的能量。这些热会使电介质升温并可能引起热击穿,因此,在电绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数(即电介质损耗角正切tgδ,它是电介质损耗与该电介质无功功率之比)较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3~300 兆赫)对电介质损耗大的材料(如木材、纸、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热的加热速度快、热效率高,且加热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 电介质损耗按其形成机理可分为弛豫损耗、共振损耗和电导损耗。前两者分别与电介质的弛豫极化和共振极化过程有关。对于弛豫损耗,当交变电场的频率ω=1/τ时,介质损耗达到极大值,τ为组成电介质的极性分子和热离子的弛豫时间。对于共振损耗,当电场频率等于电介质振子固有频率(共振)时,损失能量最大。电导损耗则是由贯穿电介质的电导电流引起,属焦耳损耗,与电场频率无关。 电容介质损耗和电流电压相位角之间的关系 又称介电相位角。反映电介质在交变电场作用下,电位移与电场强度的位相差。在交变电场作用下,根据电场频率、介质种类的不同,其介电行为可能产生两种情况。对于理想介质电位移与电场强度在时间上没有相位差,此时极化强度与交变电场同相位,交流电流刚好超前电压π/2。对于实际介质而言,电位移与电场强度存在位相差。此时介质电容器交流电流超前电压的相角小于π/2。由此,介质损耗角等于π/2与介质电容器交流电流超差电压的相角之差。 介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。

变压器直流电阻和介质损耗试验word版本

变压器直流电阻和介质损耗试验

讲 义 变压器泄露电流试验 1、工作目的 检查变压器绝缘整体受潮,部件表面受潮或脏污,以及贯穿性的集中缺陷。 2、工作器材准备 温度计、湿度计、放电棒、万用表、直流发生器。 3、工作接线图

4、工作步骤 (1)将变压器各绕组引线断开,将试验高压引线接至被测绕组,其他非被测的绕组短路接地。 (2)按接线图(如图1所示)准备试验,保证所有试验设备、仪表仪器接线正确、指示正确。 (3)记录顶层油温及环境温度和湿度。 (4)将直流电源输出加在被试变压器绕组上,测量时,加压到试验电压,待1 min后读取泄漏电流值。 (5)被测绕组试验完毕,将电压降为零,切断电源,必须充分放电后再进行拆线操作。 5、工作标准 现的缺陷也基本一致,只是由于直流泄漏电流测量所加电压高,因而能发现在较高电压作用下才暴露的缺陷,故由泄漏电流换算成的绝缘电阻值应与兆欧表所测值相近。 (3)500 kV变压器的泄漏电流一般不大于30μA。 (4)任一级试验电压时,泄漏电流的指示不应有剧烈摆动。 6、综合分析方法及注意事项 (1)工作危险点分析 1)测量前应断开变压器与引线的连接,并应有明显断开点。 2)变压器试验前应充分放电,防止残余电荷对试验人员的伤害。 3)为保证人身和设备安全,要求必须在试验设备周围设围栏并有专人监护。负责升压的人要随时注意周围的情况,一旦发现异常应立刻断开电源停止试验,查明原因并排除后方可继续试验。 4)接地线应牢固可靠。 5)注意对试验完毕的变压器绕组必须充分放电。 6)进行直流泄漏电流试验过程中,如发现泄漏电流随时间急剧增长或有异常放电现象时,应立即停止试验,并断开电源,将被测变压器绕组接地,充分放电后,再进行检查。

SX-9000全自动介质损耗测试仪使用说明书

SX-9000全自动介质损耗测试仪使用说明书全自动介质损耗测试仪 使 用 讲 明 书

目录 1概述 (2) 2技术指标 (2) 3内部结构与工作原理 (3) 4使用和操作 (5) 5注意事项 (9) 6仪器成套性 (9) 7保管及免费修理期限 (9) 8附录1、2、3…………………………………..……...(10-12) 1.概述 SX-9000(CVT)型全自动介质损耗测试仪是在我公司生产智能化介质 损耗测量仪和变频(异频)抗干扰介质损耗测试仪之后,研制成功第五代 一种新型的测量仪,随着城乡电网改造的持续深入,更高电站越来越多, 倒相法、移相法,已不能满足现场测试需求,异频测量(变频),把50HZ 变成其它频率,能够排除干扰。但由于电子技术的限制,其变频后的频率 一样离50HZ有一定距离,其50Hz条件下的电容值cx及tgδ值是换算模拟出来的,与真实工频测试有一定的距离,专门对少数被试品,测出数据 就有明显误差,通过综合比较,现研制一种新型介质损耗测量仪,其原理 不改变频率,能得到50HZ条件下电容值cx及tgδ值,提升测量可靠性和准确性,完全抑制电场干扰,满足电场下的使用要求,SX-9000(CVT)型全自动介质损耗测试仪体积最小,重量最轻,便于携带。有灵活的扩展性, 通过接口与运算机连接,使用强大的软件附件,对仪器升级,人性化设计,

全自动操作本仪器适合500kv及以下电站有干扰现场的试验。本仪器通过 国家电力研究所及行业专家的鉴定,并获得国家高电压计量站的校准证书。 ●具有多种测量方式,可选择正/反接线、内/外标准电容器、CVT和内/外试验电压进行测量。正接线可测量高压介损。 ●测量电容式电压互感器(CVT)时,无需其它外接设备。 ●内置SF6标准电容器,tgδ<0.005%,受空气湿度阻碍小。 ●抗干扰成效好;能有效地排除强烈的电场干扰对测量的阻碍,适用 于500kv极其以下电站的强干扰现场试验。 ●高压短路和突然断电时,仪器能迅速切断高压,并发出警告信息。 ●测量重复性好,电压线性好(测量准确度不受电压阻碍) ●一体化结构,重量适中,便于携带。 ●大屏幕带背光中文液晶显示器信息提示操作,使用方便。 ●仪器自带打印机,及时储存测试数据。 ●高压电缆连接至试品,保证安全;仪器未接地报警,安全措施完备。 2.技术指标 2.1额定工作条件 2.1.1环境温度:0~40℃(当温度超出20℃±5℃时,每变化10℃仪器差不多误差的改变量不超过差不多误差限的1/2。) 2.1.2相对湿度:30%~85% 2.1.3供电电源:市电。电压:220V±22V, 频率:50±1Hz 2.2外型尺寸:a×b×h,mm:450×330×380 2.3仪重视量:不大于18kg 2.4电子电路功耗:不大于40VA 2.5测量范畴: 2.5.1介质损耗(tgδ): 0~1 辨论率0.0001 2.5.2电容量(Cx): ≤60000PF 最小辨论率0.01P F 2.5.2.1内接方式 试验电压试品电容量

变压器绕组介质损耗测试操作程序规范

CVT绝缘电阻、介质损耗测试操作程序规范 一、考生穿好工作服、戴好安全帽、绝缘鞋在考场外排队等候,在等候过程中必须进行如下检查工作: 1、检查工作服是否干净整洁,着装规范,避免纽扣漏扣的现象; 2、检查过安全帽是否在有效使用日期内,状态是否良好,紧固带是否松紧 合适,以低头安全帽不跌落为准; 3、检查绝缘鞋是否在有效日期内,状态是否良好; 二、考生向考官报到,申请下达试验任务; 1、注意礼貌用语(各位考官,早上好,我是考生张三前来报到,请求接受考核,请下达考试指令,谢谢!); 三、考官下达试验任务,考生应准确领会考官的意图,避免理解试验任务出现偏差: 1、考官下达试验任务不明确,应提出意见; 2、考生没有听清试验任务,应向考官申请再次下达试验任务,避免凭猜测 开始试验工作; 3、考官下达试验任务:对220kV坂桥变电站#1主变压器高压侧绕组连同 套管进行介质损耗的测试,变压器高压、中压、低压引线已经拆除并接 地,安装了网状围栏,悬挂了标示牌,请开始作业; 四、考生检查安全措施是否到位; 1、围绕网状检查一周,重点检查围栏与变压器距离、出入口大小是否设置 合理,网状围栏有无脱落现象; 2、围栏上有无对内悬挂“止步,高压危险”标示牌,出入口有无悬挂“在 此工作”标示牌; 3、变压器本体爬梯有无悬挂“从此上下”标示牌; 五、考生准备文件资料、文具用品 1、#1主变压器交接试验报告、历年预试报告,并与被试变压器核对型号、 编号是否一致; 2、空白记录纸、文件夹、计算器、签字笔; 六、考生检查并选择介损测试仪;

1、检查介损仪铭牌参数是否满足测试要求,输出电压是否达到10kV,量 程、测试精度能否满足测试要求,检查过程中向考官通报检查结果; 2、检查介损仪是否在有效检定日期内,检查过程中向考官通报检查结果; 七、考生检查并选择放电棒; 1、检查放电棒长度是否合适,10kV的有效距离为0.7米,是否在有效期 内,线夹是否完好,用万用表检查放电线有无断路,检查过程中向考官通报检查结果; 八、考生检查并选择安全工器具; 1、检查绝缘手套是否检验合格并在有效期内,按照规范的方法将手套密封, 检查是否漏气,检查过程中向考官通报检查结果; 2、检查棉纱手套是否破损,检查过程中向考官通报检查结果; 3、检查绝缘胶垫有无破损,是否贴有检验合格证并在有效期内,检查过程 中向考官通报检查结果; 4、检查安全带及后备保护带有无破损,重点检查金具连接部位,是否是否 贴有检验合格证并在有效期内,检查过程中向考官通报检查结果; 5、检查绝缘绳是否潮湿破损,否贴有检验合格证并在有效期内,检查过程 中向考官通报检查结果; 6、检查接地线是否为专用接地线,是否是透明的,是否有装用的线夹,用 万用表检查接地线有无断线,检查过程中向考官通报检查结果; 九、考生检查并选择温度表、湿度表 1、检查温度表指示值是否正常,是否检验合格并在有效期内,检查过程中 向考官通报检查结果; 2、检查湿度表指示值是否正常,是否检验合格并在有效期内,检查过程中 向考官通报检查结果; 十、检查并选择测试线、测试夹 1、检查测试线的接头是否完整,用万用表测试引线内部是否有暗断现象, 检查过程中向考官通报检查结果,选用数量足够并合格的测试线; 2、检查测试夹是否与测试线接头匹配,是否完整,需用足够数量并合格的 测试夹;

相关文档
最新文档