生物钟及其基因的研究

生物钟及其基因的研究
生物钟及其基因的研究

生物钟及其基因的研究综述

摘要:生物钟(biological clock),也称生物振荡器(Oscillators)。这是一种近昼夜节律,受外界因素,尤其是光的调节。当没有外界因素存在或一直处于黑暗的状态下,生物体内的各种活动仍然具有节律。由此可见,生物节律是由其内在的生物钟所控制的。从单细胞生物到多细胞生物,从原核生物到真核生物,这种昼夜节奏现象在生物界中广泛存在。因此关于它的特征、意义和机理的研究日益受到人们重视。这种节律系统包括输入机制、内在的生物钟和输出机制。三者彼此协调才能使生物的各种活动具有节律性。而内在的生物钟机制,实际上是一些生物钟基因相互作用的结果。

关键词:生物钟钟基因拟南芥

一、第一个生物钟基因

果蝇per基因是第1个被克隆的生物钟基因,第二个是tim基因。然后人们才对昼夜节律的分子机制有了较深人的了解。随着对其他的生物钟基因的相继发现,一种公认的生物钟分子调控机制——反馈调节回路凸现出来。以往的研究表明,tim 基因在此反馈回路中发挥着重要作用。且tim对行为节律的作用可能与per基因的产物有关,而tim基因对生物多种活动节律具有协同进化关系。

二、生物钟基因的表达

早期的研究已经指出,昼夜节奏的表现可能涉及到细胞内的生物化学过程。现在已经清楚,这种昼夜节奏与基因的节奏性表达有关。这些基因常常受到生物钟的调节,它们的表达量伴随着昼夜循环发生规律性变化。例如在拟南芥中编码富含甘氨酸的蛋白质基因Cc1和

CC2等等。这些基因的mRNA水平都表现出昼夜规律性起伏,表明生物钟调节的机制有可能发生在转录水平上,使基因周期性“开放”与‘关闭”,从而表现出节奏性转录的特征。然而,在许多昼夜节奏活动中,mRNA的合成并没有明显的节奏变化,可见生物钟调节反应不仅仅局限于转录水平。如果是非转录水平的调节,根据人们的研究,可能发生在RNA加工、蛋白质翻译以及翻译后的蛋白质修饰等环节上,由此可导致最终产物的量或形式的变化。

三、拟南芥生物钟分子机制

微阵实验表明至少有6% 的拟南芥基因是节律性表达的,在白天和黑夜的所有阶段都有表达峰(Harmer et al,.2000;Schaffer et al,2001)

拟南芥生物钟振荡器第一个稳定的模式(Alabadi et al. 2001)包含有3个基因: 编码与Myb 相关的转录因子的CCA1(CIRCADIAN CLOCK ASSOCIATED1)、LHY((LATE ELONGATED HYPOCOTYL)和一个伪反应调控子TOC1(TIMING OF CABEXPRESSION 1)。TOC1 的强功能缺失等位基因LHY 和CCA1的双重突变体,或是这些基因的任何一个的组成型过量表达都能引起在持续光照或持续黑暗下的无节律性(Schaffer etal.1998; Makino et al. 2002; Mizoguchi et al.2002; Mas et al.2003)。但是现在还不知道植物在光暗周期下保持节律和持续光照(或黑暗)条件下某些植物能短暂保持节律的原因。CCA1/LHY蛋白在深夜和凌晨过量表达,与TOC1 启动子的黑夜元件(AAATATCT)相结合从而抑制TOC1 的表达(Harmer et al.2000; Alabadi et al. 2001; Mizoguchi et al.2002)。当傍晚CCA1/LHY 水平下降时,TOC1蛋白可能激活CCA1/LHY的转录,从而形成了转录反馈环的轮廓(Alabadi et al.2001)。这种激活可能是间接的,因为夜间至少还需要以下3种基因与TOC1共表达:

ELF3(EARLYFLOWERING 3) (Schaffer et al, 1998)、GI(GIGANTEA) (Fowler et al,1999)和GIF4(EARLY-FLOWERING 4) (Doyle et al.2002)。这些基因编码的蛋白的生化功能还不是很清楚。自相矛盾的是,TOC1的过量表达,某种程度上会减弱而不是激活C C A 1 的表达(Makino et al.2002; Mas et al.2003)。

四、开花周期的调节

季节性事件如开花的光周期调控需要日照长度的测量。大部分拟南芥植株是长日照植物, 这是对光周期传感器的反应。它们在长日照下开花快些(16小时光照/8小时黑暗周期下长出

6~8片叶子后即开花), 而短日照下则开花迟得多(8小时光照/16小时黑暗周期下大约长出30 片叶子才开花)。目前的关于开花时间的调控机制存在着两种模型。一种是“外协和模型”, 这个模型中光受体产生一个开花信号, 这个信号移动到苗端启动花的发育。光受体有两个功能, 即导引生物钟和产生开花信号。另一种是“内协和模型”, Pittendrigh(1972)指出光受体不能直接产生开花信号, 而是依赖于光周期引导两个不同的生物钟到不同的相位。在某些光周期中,

两个生物钟的重叠会产生开花信号。

最近有报道外协和模型(Suarez-Lopez et al., 2001; Blazquez et al., 2002; Roden et al., 2002; Yanovsky andKay, 2002)。这个模型中的关键基因是CO(CONSTANS)。对co 突变体和CO 过量表达株的研究表明, CO对于长日照下快速开花是必需且足够的, 所以它很明显是这个机制的一个重要组分。然而, 光受体在CO RNA表达水平几乎没有任何效果, 所以它们可能影响CO蛋白的积累或是功能(Yanovsky and Kay,2002)。同时生物钟的正确导引是必不可少的, 因为当昼夜节律相位被生长在正常的24小时光暗周期下的短周期生物钟突变体toc1-1或是被生长在长于或短于24 小时周期的野生型所改变时, 会引起开花时间的改变(Roden etal.,2002; Yanovsky and Kay, 2002)。这两种处理中, 开花时间能从CORNA表达水平与光照的一致性来预测, 但是两种处理都能影响包括CO表达的许多昼夜节律。

生物钟在多种生物中普遍存在,可以认为各种生物的生物钟作用机制是相同的,但在不同的节奏性活动中,生物钟调控机制可能不同,大量的例证似乎说明,生物钟对基因表达的调控主要发生在转录水平上。总之,生物钟的昼夜节律由per、tim、clock和cycle4个生物钟齿轮组成的正负反馈回路进行调节。其中tim可以受光因子调控,它还可以与per形成异二聚体,通过正负调控方式调节果蝇的昼夜节律行为。但是这个内在的生物钟怎样与输入机制以

及输出机制相协调,还有哪些因子参与了这两个过程,尚不得而知。尽管对tim基因及生物节律的作用的研究过程较为漫长,但是将遗传学和基因组学相结合,对节律行为分子机制的研究已经取得了非凡的成就,尤其是在昼夜节律的分子生物学机制方面。近年来,已有越来越多的学者关注生物钟的研究,此外,人类基因组测序工作的完成又为该课题的进一步深入提供了方便。利用人类基因组提供的候选序列,可以在哺乳动物中发现更多的生物钟基因,再与后基因组的分析相结合,其研究结果将有助于对睡眠异常和精神疾病的治疗。此外,人类基因组的成果还将对生物节律的输出机制研究产生巨大的影响,结合DNA芯片技术我们可以进一步鉴定出控制哺乳动物输出机制相关的基因,最终加速昼夜节律的研究进程,从而在不同水平对人类复杂行为有一个全面深入地了解。

参考文献:

1.Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, MasP, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1. Science, 293: 880-883

2.拟南芥生物钟分子机制研究进展,徐张红赵晓刚何奕昆①植物学通报2005, 22 (3):

341~349,Chinese Bulletin of Botany

3.Kim JY, Song HR, Taylor BL, Carre' IA (2003) Lightregulatedtranslation mediates

gated induction ofthe Arabidopsis clock protein LHY. The EMBOJournal, 22: 935-944

4.生物钟基因研究新进展,李经才,于多.HEREDITAS (Beijing) 26 (1) : 89~96,2004

5.生物钟的分子机制研究进展侯丙凯,于惠敏,Recent Developments in Molecular

Mechanisms of Biological Clock, HEREDITAS (Beijing) 18(4): 42-44 1996

6.Timeless与生物钟基因,刘仲敏,张亚平,动物学研究, 2001 ,Dec.22(6):497-501

人体生物钟与四季关系详解

人体生物钟与四季关系详解(一)
东汉哲学家王充在其《论衡》中写道:“人本于天,天本于道, 道本于自然,顺乎自然,即是最上养生之道。”由此可见,人在后天 若能顺乎生命的自然规律,采用自然科学的养生方法来养护身体,那 么就能够有效地增强人的身体功能,增进健康,延年益寿。科学研究 证明,节律养生是提高生活质量与工作、学习效率,放松身心,减少 疾病,增进健康,延年益寿的最有效、最实际和最经济的一种方法。 人的生命中有许多隐性“钟摆”,这些“钟摆”维持着人的正常 生命节律。 只有顺应生命节律, 减少生物钟磨损, 保证生物钟 “准点” , 才能提高生命质量,健康长寿! 大自然是人类的母亲,只要正视自然节律,尊重自然节律,奏好 生命的和弦,就会百事俱兴,延年益寿。 科学家研究证实, 人体生理有节律地发生周期性变化, 如体温在 清晨 2~6 点偏低,下午 5~6 点偏高;血压早晨最低,傍晚偏高;正 常人的呼吸是白天快,夜里慢;人体排尿的量和尿中成分随着昼夜而 发生周期性改变。另外,人体内细胞的分裂、血液成分、眼压和瞳孔 的光反射等,也都有昼夜的周期性变化。就拿最简单的例子来说,女 性的月经周期恰与月亮盈缺周期相似。也许还有不少人有过这种体 验:即使没有闹钟的铃声,也能每天按时醒来,误差甚至可少于 1 分
1

钟??花有花开花谢,月有阴晴圆缺,人的生命也有成长周期,也有 从新生到强壮,到衰老的过程。这些自然现象,生物学家称是由“生 物节律”作用引起的,这种生物节律也称为“生命节奏”,其所显示 的周期性循环犹如时钟的运转,故被称为“生物钟”。 人体内有许许多多的生物钟,它们对人类的健康、长寿、美容、 养生、生育,以及保证高效的生活、工作等都有着很重要的作用和意 义。 顺应生物钟的运转, 会使身体各组织器官都高度规律化、 自动化, 获得最佳的生理效益,并提高工作、学习的效率。相反,人为打乱生 物钟的节奏,生活无规律,就会使身体各器官处于紧张状态,功能发 生紊乱,这是造成疾病与早衰的重要原因之一。 你的健康你做主!就算你不是医生,不会开方抓药,但是顺应自 己的身体发出的各种信号,合理地安排日常的作息,如吃饭、排泄、 运动等,总该没问题吧?其实,这种做法就是节律养生,其概念是顺 应人体的生物节律来养生。主动顺应生物节律,趋利避害,进行合理 的生活与工作,使你的身心与大自然的节律相顺应并保持在最佳状 态。 自然界除了昼夜日节律、年节律外。还有月节律,即,月球的 运转能引起潮汐等变化,对人的生理也有影响。
2

果蝇的昼夜生物钟基因及其作用机理

果蝇的昼夜生物钟基因及其作用机理 摘要:昼夜节律生物钟是一种以近似24 小时为周期的自主维持的振荡器,由输人通路、中央振荡器和输出通路三部分组成的。生物钟机制的研究已深入到分子水平。生物钟相关基因相继被分离鉴定,它们及其编码的蛋白质产物构成的自主调节的转录和翻译反馈环是生物钟运转的分子机制。本文介绍了果蝇主要生物钟基因及其作用机理,展望了揭示生物钟调节机制在遗传学上的重要意义。 关键词:昼夜节律生物钟,生物钟基因,分子机制 Abstract: The circadian clock is a self - sustaining oscillator with a period of about 24 hour that includes input ,central oscillator and output . The circadian clock mechanism has been studied extensively at the molecular level and several clock - related genes have been identified. The clock genes and the coded protein comprise the self – sustaining feedback loop that can regulate both on the transcriptional and on the translational level . This article introduced the clock genes and molecular circadian mechanism found in drosophilam. The significance of the circadian clock regulation mechanism research in genetics was also prospected. Keywords: circadian clock, Clock gene, Molecular circadian mechanism 生物钟是基因和行为之间的联系的一个强有力的例证,它也揭示了环境对基因表达的影响,表现了遗传和外界因素的相互作用决定有机体外在的行为。生物钟是许多有机体所固有的,从细菌到人类,这或许是由于有机体长期接受光照和黑暗循环的进化结果。最初人们猜想生物钟可能是因为有机体对每天昼夜变化的反应,白天寻找食物,晚上休息。但是实验证明生物体在没有任何环境变化的条件下仍表现出以24 小时为一周期的有节律的行为。生物钟能够使生物体本身的节律与环境的节律同步化,因此生物钟可以优化生物体日常行为的节律,并且生物钟确实影响机体的健康[ 1 ,2 ]。 昆虫经过长期的演化,在它们的生命活动和行为中,有着明显的昼夜节律性周期变化。许多昆虫的活动节律还有季节性,对于一年发生多代的昆虫,各世代在滞育、迁移、交配、生殖等方面对季节性昼夜变化有明显的反应。这些周期性节律活动,主要受光周期、温度等外在因子和内在神经-内分泌物(诸如各种激素)的调节和控制。昆虫的生物钟种类很多,本文详细介绍果蝇的昼夜节律生物钟[ 3 ]。 昼夜钟可分3 个部分:(1) 生物振荡器(oscillator) ,由一组呈节律表达的基因及其编码

人体生物钟论文人体论文人体健康论文

人体生物钟论文人体论文人体健康论文: 人体为什么会有“生物钟” 在世界上,整个生物界好像都在按着同一个时刻表有规律地运转着,例如夜晚万物入眠,清晨鸡啼鸟鸣。当你每天都需要在某一特定的时刻醒来,在开始几天可能必须借助于闹钟之类的提醒,可是,日子一久你就会惊奇地发现,当不再借助闹钟时,你仍然能在大约这个时刻里醒来,中间的误差甚至相差不到几分钟。 这说明,人体内部有一定的生命节律,有一种类似时钟的机构,这种结构不依赖外部条件而自行运转,指挥人体的正常生理活动,这就是人体的生物钟。可是,究竟是什么使人体产生了生命节律,这个控制生命节律的生物钟在哪里? 有人根据达尔文的进化论提出了进化学说,这种学说认为,人类之所以有生物节律,是因为生存的需要,人类只有在生理上、行为上适应了环境的节律,才能得以生存。人类在长期的进化过程中,使得体内有利的基因能够得到遗传,这样,就使后人出现天生的生物节律来,而这种节律又受到周围环境的影响。 也有一些人认为,人体的生物节律是外源性的,也就是说控制生命节律现象的动因,是某些复杂的宇宙信息。人类对广泛的外界信息,如电场变化、地磁变化、月球引力以及光的变化等特别敏感,这些变化的周期性能够引起人体生命节律的周期性。

日本科学家也有了一个新的发现:原来人类的生物钟与时钟并不同步。人类生物钟的周期是24小时18分钟,也就是说人类生物钟每天比时钟慢18分钟。 既然人体生物钟每天会晚18分钟,那么为什么生物钟与时钟这种不同步现象不会累计起来最终打乱人们的生活规律,从而让人醒来得一天比一天晚呢?研究者说,光线会通过影响体内激素水平和体温等多重因素来不断重新设定生物钟,这种解释应该是比较合理的。 哈佛大学的神经生物学家已确定了生物钟所在的部位,它位于大脑的后部,由特殊的细胞组成。它的两大部分分别位于大脑的两个半球。

人体生物钟时间表

人体生物时钟时间表 5:00——7:00大肠的排毒 血压上升,心跳加快,即使我们想睡觉,但此时肌体已经苏醒,大肠排毒活跃,此时最好上厕所排便。 7:00——9:00 小肠活跃时期 应吃早餐,这是小肠大量吸收营养的时段,疗病者最好是在7点进餐;养生者最好是在7点半前吃早餐;不吃早餐者应改变饮食习惯,即使拖到9点、10点吃都比不吃好。为保护肝脏,此时最好不要饮酒。 10:00——12:00心脏运作的黄金时段 心脏开始加大马力投入工作,人的精力被积极调动起来,人体精神活动最强,身体的痛感降低,此时几乎感觉不到紧张的工作压力。如果谁在此时喝茶聊天,那他将虚度一天中最清醒的时刻。 12:00——13:00全身器官总动员 12点基本上是上午工作的最后冲刺阶段,此时在人体生物钟的作用下全身器官进入总动员,这个时候最好不要马上吃午餐,最好将用餐时间推迟到下午1点左右。 13:00——14:00人体的第二个低潮阶段 血压及荷尔蒙分泌降低,身体逐渐产生倦怠感,精力消退,血液中溶入一些糖原,反应迟缓。我们感觉有些疲劳,最好适当休息一下。 14:00——16:00感觉器官很敏锐 人体在生物钟的控制下开始逐渐恢复工作能力,人体重新步入正轨,下午3点人体感觉器官尤其敏感,特别是嗅觉和味觉。下午4点血液中的糖分含量达到最高。 17:00——18:00运动的最佳时段 人体疼痛感觉减弱,神经的活动能力降低,想多运动的渴望上升,此时最好离开工作岗位,进行一些户外活动,使精神重新振作起来,运动员此时应加倍努力训练。 18:00——20:00情绪极不稳定 晚上7点左右是一天中情绪最不稳定的时刻,此时人的心理稳定性降到最低点,很容易激动,常会因一些小事而争吵。吃完了晚餐到晚上8点,身体反应又得以恢复。 20:00——21:00反应很敏捷 晚上8点是人体体重最重、反应最敏捷的时间,司机此时处于最佳状态,几乎不会出事故。晚上9点时人的记忆力会特别好,是学习的好时间。 21:00——23:00免疫系统(淋巴)排毒时间 血液中充满白血球,白血球的数量增加一倍,体温开始下降。此段时间应安静或听音乐。 23:00——1:00肝排毒时间 除肝脏外,大部分人体器官运作缓慢。肝脏利用这段空闲时间紧张工作,为人体排除毒素,但这一排毒过程必须在熟睡中进行。 24:00——4:00脊椎造血时段 必须熟睡,不宜熬夜,否则影响脊椎的造血过程。凌晨4点左右血压降到了一天中最低点,但此时听觉变的异常灵敏,极易被微小的动静所惊醒。 1:00——3:00胆的排毒 凌晨1点,人进入了易醒的浅睡阶段。到了凌晨2点,胆的排毒有条不紊的进行。凌晨3点左右整个人都会得到休息。 3:00——5:00肺的排毒 此时咳嗽的人在这段时间咳得最剧烈,因为排毒运作已走到肺,有咳嗽症的人此时不宜用止咳药,以免抑制废积物的排除。

好好利用人体生物钟的四种功能

好好利用人体生物钟得四种功能 学习了人体生物钟的秘密,觉得收获颇丰,实践性极强,可以在日常生活中使自己极大地获益,而生物钟得四种功能,正是获益的起点。 第一种功能:提示时间 是指你在特定的时间必须做某事,到了这个时间,你自动会想起这个事情来。好像很多同学在平时养成的睡午觉习惯,即使周末赖床,起得很晚,到了平时睡午觉的时间还是会有睡觉的想法。而在日常生活中,有许多事物都是时间提示起作用的,例如几点就餐、赶几点的车,某节课什么时候从寝室动身。所以我们需要做的就是养成利于我们成长、健康的日常习惯,逐渐形成生命活动的内在节律,即形成生物钟。如此,我们的生活将变得有规律,到了该做某事的时候,人体生理也调节掉了最好的状态,使你事半功倍,同时也不容易忘记时间和事情。 第二钟功能:提示事件 是指当你遇到某事时,生物钟可以自动提示另外一个事件的出现。比如有人拜托你将一件东西给某人,当你遇到那人时,生物钟这一功能就会自动起作用,使你马上想到这个托付的东西来。用得最多的是看到某事时,在你的大脑里所依次产生的那些“忆块”,比如看到熊猫,你就会想到:它是国宝、它喜欢吃竹子、它是珍惜动物等。正因为生物钟有这个功能,所以很多同学回到寝室看到电脑的第一反应就是玩游戏,几乎忘了它还是学习的伙伴,因为他们的生物钟已经形成了电脑-游戏的提示事件模块了。因此,我建议各位同学可以在刚开始忍耐下,打开电脑,先看看课件,即使只有十几二十分钟也好。过一段时日,各位估计就不会再像当初一样痛苦了,说不定还会很自觉地开电脑学习,戒除游戏瘾。随着时间发展,电脑-游戏转变成电脑-课件,曾经的学习杀手就可以化身成学习助手了。同样的,同学们不能一见到电脑就想到:它可以玩游戏,它可以上网,它可以看电影。而应该往这上面靠近:它可以查阅课件,它可以联网咨询不懂的问题,它可以和教师同学在群里交流学习。相信这些改变刚开始都是不好受的,需要毅力的,但抗过开始阶段,获益就是一辈子。 第三种功能:维持状态 是指人们在作某一事时,能够使人一直做下去的力量。有很多同学会好奇,为什么有些同学可以连续上那么久的课而不走神,而自己才定下心20分钟,又情不自禁地掏出手机找娱乐。这就是凭借生物钟的第三种功能:维持状态。所以,你想要认真听完一节课,不可能一蹴而就,昨天刚立志学习,今天就连续2个小时不分神,因为这

人体生物钟解说一

人体生物钟解说(一) ——生物钟与情、智、体人与自然界是一个统一的整体。人们只有顺从它的变化及时地作出适应的调节,才能保持健康。天地四时气候变化规律有着春温、夏热、秋凉、冬寒以及春生、夏长、秋收、冬藏的天地大经。贤人长寿秘诀是按照天地、日月、星辰的自然运行规律,适应阴阳升降变化,“春夏养阳,秋冬养阴”的养生方法,使之长寿健康。历代长寿老人均具有起居,饮食规律的生活。尽管现实生活中常常有些事不尽人意,但长寿者由于保持乐观情绪,正确对待和处理矛盾,使生活节律中同步因子不断维持动态平衡,这对延缓衰老有着不可估量的回春作用。一、人体生物钟的起源 人们早就发现,一个人有时体力充沛,精神焕发、情绪高涨、才思敏捷、记忆力强:而有时却浑身困乏、情绪消沉、思维迟钝、记忆力差。这是什么原因呢?人们百思不得其解,长期只知道其然,而不知其所以然。 直到本世纪初,德国柏林的医生威廉弗里斯和奥地利维也纳的心理学家赫乐曼斯沃博达,这两位素不相识的科学家,各自通过长期的观察、研究,最早提出了人体生物钟理论。他们用统计学的方法对观察到的大量事实进行分析后惊奇的发现:人的体力存在着一个从出生之日算起以23天为一周期的“体力盛衰周期”;人的感情和精神状态存在着一个从出生之日起以28天为一周期的“情绪波动周期”;经过二十年后,奥地利的阿尔费雷德特尔教授发现了人的智力存在着一个从出生之日算起以33天为一个周期的“智力强弱周期”。——他们的发现揭开了人的体力、情绪和智力存在着周期性变化的秘密。 后来,人们把这三位科学家发现的三个生物节奏总结为“人体生物三节律”,因为这三个节律像钟表一样循环往复,又被人们称作“人体生物钟”,外国人叫做“PSI周期”。注:PSI 是英文physical(体力)、sensitive(情绪)、intellectual(智力)的缩写。 二、生物钟的运行规律 人体生物钟在运行中呈现正弦曲线变化,体力生物钟一周期是23天,情绪钟一周期是28天,智力钟一周期是33天。一个人的智力、体力、情绪状态在每个周期中都分别有高潮、低谷和临界期。 1、人体生物钟从零开始进入高潮期,经过1/4周期时为高峰日,高峰日前后2——3天为“高 峰区”。当人体处在高峰期时,体力充沛,身体机能协调性好,有较强的分析能力,记忆力强,注意力集中,即人体有利日。 2、高峰日后开始向低潮期过渡,到达1/2周期时,正是高潮期向低潮期过渡交替的日子, 称为“下降临界日”,即高潮期结束,人体进入临界日。临界日时,人体由高潮期向低潮期转换,此时身体各部机能处于调节之中,周身无力,心情烦躁,协调性差,易产生愤恨情绪和盲目行为,同时对疾病的抵抗能力及综合分析能力均明显下降,即人体有害日。临界日前后一两天的低态反应,即是临界日的外延,称为临界期(“危险期”)。3、此后便进入低潮期,到达3/4周期时为低谷日,低谷日前后2——3天为“最低潮区”。 人体处在低潮期时,体力不足,易疲劳,耐力下降,做事拖拉,对疾病的抵抗力减弱; 情绪低落,意志沮丧,喜怒无常;思维迟钝,记忆减退,反应缓慢,判断力降低,机体各方面协调性差。 4、低谷日过后开始上升,向高潮期过渡,到达整周期(0周期)时,称为“上升临界日” (也叫周期日),生物钟完成一个周期的运行,进入另一个周期运行,即低潮期结束人体进入周期日。周期日时,人体正处在转换之中,新思想、新行动易在此时产生,虽思维活跃,但辨别力差,身心起伏不定,盲目易动。周期日也是每个周期的开始日。为期一天。

生物钟基因与骨免疫研究进展

四综述四 基金项目:国家自然科学基金(81503662) ?通信作者:马文彬,Email:819754725@qq.com生物钟基因与骨免疫研究进展 景中坤一吴晓一马文彬? 成都中医药大学,四川成都610075 中图分类号:R336一一文献标识码:A一一文章编号:1006?7108(2018)10?1369?06 摘要:昼夜节律是生命体为适应自然环境而产生的一种生物特性,生物钟基因调节着生命体的节律,Bmal1二Clock二PERs二CRYs二Rev?erbα等生物钟基因及下游的钟控基因发挥了重要作用三免疫细胞与骨细胞之间通过共同的细胞因子和信号通路相互作用,调节骨代谢平衡,免疫紊乱会导致骨代谢异常三骨免疫学的诞生有利于深入研究骨骼系统与免疫系统的相互作用,骨免疫参与了许多骨科疾病和免疫性疾病的发生和进展三生理状态下,生物钟基因通过调控骨骼系统与免疫系统的生物节律,在维持骨免疫的平衡状态中发挥着重要作用三病理状态下,生物钟基因功能异常不但导致骨骼系统和免疫系统的节律紊乱,进一步导致骨量丢失和免疫炎症反应,而且通过IL-1二IL?6二TNF?α二RANKL等骨免疫因子对骨代谢产生作用三反过来,免疫炎症反应也会对生物钟基因正常功能产生影响,进而影响骨代谢三根据生物钟基因和骨代谢自身的特点,认识生理病理状态下生物钟基因与骨免疫的相互作用,对骨骼系统疾病和免疫系统疾病的防治有一定的指导意义三 关键词:生物钟基因;骨免疫;骨代谢;免疫细胞因子 Researchprogressonclockgenesandosteoimmunology JINGZhongkun,WUXiao,MAWenbin? ChengduUniversityofTCM,Chengdu610075,China?Correspondingauthor:MAWenbin,Email:819754725@qq.com Abstract:Thecircadianrhythmisabiologicalcharacteristicoflivingorganismsinordertoadapttothenaturalenvironment.TheclockgenessuchasBmal1,Clock,PERs,CRYs,Rev?erbαandclockcontrolgenesexertvitalfunction.Theinteractionbetweenimmunecellsandbonecellsregulatesthebalanceofbonemetabolismthroughtheinteractionofcommoncytokinesandsignalingpathways,andimmunedisorderscouldcauseabnormalbonemetabolism.Thebirthofosteoimmunologyisbeneficialtothefurtherstudyoftheinteractionbetweenskeletalsystemandimmunesystem,andosteoimmunologyisinvolvedintheoccurrenceandprogressionofmanyorthopedicdiseasesandimmunediseases.Inthephysiologicalstate,clockgenesplayanimportantroleinmaintainingthebalanceofosteoimmunologybyregulatingthecircadianrhythmofskeletalsystemandimmunesystem.However,inthepathologicalstate,clockgenesmalfunctionnotonlycausesthedisordersofcircadianrhythmoftheskeletalsystemandtheimmunesystem,itfurtherleadstolossofbonemassandimmuno?inflammatoryreactions.ItalsoexertseffectsonbonemetabolismthroughosteoimmunologyrelatedfactorssuchasIL?1,IL?6,TNF?αandRANKL.Theimmuno?inflammatoryreactionsalsoaffectthenormalfunctionofclockgenes,whichinturnaffectsbonemetabolism.Accordingtothecharacteristicsofclockgenesandbonemetabolism,understandingtheinteractionbetweenclockgenesandosteoimmunologyunderphysiologicalandpathologicalconditionswillhavecertainguidingsignificanceforthepreventionandtreatmentofskeletalsystemdiseasesandimmunesystemdiseases.Keywords:clockgenes;osteoimmunology;bonemetabolism;immunologicalcytokines 一一生物体的生命活动受到生物钟的调控,包括睡眠?觉醒周期二体温二心率二血压二激素水平和认知的 变化等三哺乳动物生物钟的中枢起搏器位于下丘脑 视交叉上核,外周的器官二组织二细胞的生物钟同步 于中枢生物钟节律三生物钟的形成需要钟基因的参 与三首先,Bmal1(brainandmuscleARNT?like?1,Bmal1)基因与Clock基因形成异二聚体,与周期基因(Period,per1?3)和隐花色素基因(Cryptochrome,cry1?2)启动子的E?box结合,驱动PERs和CRYs基因的表达,同时形成PER/CRY蛋白复合物三PER/9 631中国骨质疏松杂志一2018年10月第24卷第10期一ChinJOsteoporos,October2018,Vol24,No.10Publishedonlinewww.wanfangdate.com.cn一doi:10 3969/j.issn.1006?7108 2018 10 021

探索人体生物钟之谜

探索人体生物钟之谜 人体是个奇妙的生物体,在没有时间的日子里,我们体内有一个自然的生物钟在工作。人体的很多疾病发生发展,心理变化等都与之相关,那么到底人体的生物钟是什么?它是如何工作的?科学家在不断的探索。最新的《科学》(sciances)《自然》(nature)杂志刊登两篇报道对我们理解生物钟会有新的思路。 人类早已知道,某些生物的活动是按照时间的变化(昼夜交替、四季变更或潮汐涨落等)来进行的,具有周期性的节律,这种规律被称为生物钟(Circadian Clock)。由于生物钟在生物学的基础理论研究,以及治疗学等方面占据了独特的位置,因此一直以来都是科学家们研究的一个重点,本期《科学》和《自然》有两个独立的研究小组分别在这一方面获得了重要的研究结果。 第一篇文章来自英国剑桥大学植物学系以及英国约克大学生物系,这里的研究人员发现了植物应答环境改变的一个关键生物钟分子。 植物和动物的细胞生物钟都包含了基因表达的许多反馈环,其中一系列的基因能相互激活或者相互抑制,从而形成生物钟模式,然而在这篇文章中,研究人员惊讶的发现,不是一个蛋白或者基因,而是一个称为环腺苷二磷酸核糖(cyclic adenosine diphosphate ribose,cADPR)在其中扮演了重要的角色。这一发现改变了我们目前对于生物钟构架的概念——认为仅仅只需要细胞核中基因表达loops,实际上这个过程需要整个细胞中的组分形成的信号网络。 研究人员发现干扰cADPR信号会导致生物钟的时间紊乱,比如说,消除cADPR会让生物钟失准,走慢,因此研究人员认为cADPR信号是帮助优化植物生长的时间系统中的一个重要组成部分。

人体生物钟时间表 5

人体生物钟时间表5:00——7:00大肠的排毒血压上升,心跳加快,即使我们想睡觉,但此时肌体已经苏醒,大肠排毒活跃,此时最好上厕所排便。7:00——9:00 小肠活跃时期应吃早餐,这是小肠大量吸收营养的时段,疗病者最好是在7点进餐;养生者最好是在7点半前吃早餐;不吃早餐者应改变饮食习惯,即使拖到9点、10点吃都比不吃好。为保护肝脏,此时最好不要饮酒。10:00——12:00心脏运作的黄金时段心脏开始加大马力投入工作,人的精力被积极调动起来,人体精神活动最强,身体的痛感降低,此时几乎感觉不到紧张的工作压力。如果谁在此时喝茶聊天,那他将虚度一天中最清醒的时刻。12:00——13:00全身器官总动员12点基本上是上午工作的最后冲刺阶段,此时在人体生物钟的作用下全身器官进入总动员,这个时候最好不要马上吃午餐,最好将用餐时间推迟到下午1点左右。13:00——14:00人体的第二个低潮阶段血压及荷尔蒙分泌降低,身体逐渐产生倦怠感,精力消退,血液中溶入一些糖原,反应迟缓。我们感觉有些疲劳,最好适当休息一下。14:00——16:00感觉器官很敏锐人体在生物钟的控制下开始逐渐恢复工作能力,人体重新步入正轨,下午3点人体感觉器官尤其敏感,特别是嗅觉和味觉。下午4 点血液中的糖分含量达到最高。17:00——18:00运动的最佳时段人体疼痛感觉减弱,神经的活动能力降低,想多运动的渴望上升,此时最好离开工作岗位,进行一些户外活动,使精神重新振作起来,运动员此时应加倍努力训练。18:00——20:00情绪极不稳定晚上7点左右是一天中情绪最不稳定的时刻,此时人的心理稳定性降到最低点,很容易激动,常会因一些小事而争吵。吃完了晚餐到晚上8点,身体反应又得以恢复。20:00——21:00反应很敏捷晚上8点是人体体重最重、反应最敏捷的时间,司机此时处于最佳状态,几乎不会出事故。晚上9点时人的记忆力会特别好,是学习的好时间。21:00——23:00免疫系统(淋巴)排毒时间血液中充满白血球,白血球的数量增加一倍,体温开始下降。此段时间应安静或听音乐。23:00——1:00肝排毒时间除肝脏外,大部分人体器官运作缓慢。肝脏利用这段空闲时间紧张工作,为人体排除毒素,但这一排毒过程必须在熟睡中进行。24:00——4:00脊椎造血时段必须熟睡,不宜熬夜,否则影响脊椎的造血过程。凌晨4点左右血压降到了一天中最低点,但此时听觉变的异常灵敏,极易被微小的动静所惊醒。1:00——3:00胆的排毒凌晨1点,人进入了易醒的浅睡阶段。到了凌晨2点,胆的排毒有条不紊的进行。凌晨3点左右整个人都会得到休息。3:00——5:00肺的排毒此时咳嗽的人在这段时间咳得最剧烈,因为排毒运作已走到肺,有咳嗽症的人此时不宜用止咳药,以免抑制废积物的排除。专家建议:晚上十点到早晨六点,是最佳的睡眠时段,

生物钟基因与睡眠障碍的相关进展

生物钟基因与睡眠障碍的相关进展 发表时间:2018-04-13T13:28:19.047Z 来源:《中国误诊学杂志》2018年第2期作者:钟洁 [导读] 本次研究对生物钟基因与睡眠障碍的相关进展进行探讨,以期为临床上睡眠障碍的治疗提供参考。广西中医药大学第一附属医院 530023 摘要:睡眠障碍为睡眠-觉醒过程中存在的多种功能障碍情况,临床上广义的认为该症主要为失眠、过度嗜睡以及睡眠呼吸障碍与睡眠行为异常等方面情况,并指出主要是因为睡眠调节中枢病变引发的睡眠-觉醒周期紊乱。而人体生物钟正常运行时可确保细胞、组织活性及其功能顺利进行,经此保证机体各功能充分适应环境变化,可见生物钟基因与睡眠障碍情况息息相关,故而本次研究对生物钟基因与睡眠障碍的相关进展进行探讨,以期为临床上睡眠障碍的治疗提供参考。 关键词:生物钟基因;睡眠障碍;相关进展 昼夜节律属内源性生物钟基因以自身转录及翻译、调控而呈现为24h变动周期性生理现象,而通常人体正常生理性睡眠与睡眠稳态系统、生物钟系统息息相关,如果生物钟系统功能发生异常,则睡眠结构便随之破坏[1]。机体生理及行为均需生物钟基因调节而正常进行,生物钟基因的突变便会引起睡眠障碍,可见临床上治疗睡眠障碍时可着眼于生物钟基因方面。 1、昼夜节律 昼夜节律为一种自然现象,其确保着生物体生理及生化、行为等类生命现象呈24h周期性震荡。昼夜节律产生的物质基础为分子计时器,经一组特异核心元件构成,主要是CLOCK、BMALL、PERS、CRYS、TIM等基因与其蛋白产物。已知生物节律基本分子机制为上述核心元件构成转录-翻译负反馈环,该机制本质虽属内源性,但其仍会被环境信号影响,其中光信号导引尤为显著。医学界将哺乳动物主生物钟定位于下丘脑视交叉上核位置,其被异常情况刺激时便会导致机体昼夜节律变化,情况严重时便引发相关疾病[2]。 2、生物钟基因与睡眠障碍相关性 2.1生物钟基因-CLOCK基因及睡眠障碍的关系 CLOCK基因对生物体生理、行为昼夜节律起着维持作用,与生物钟节律正向反馈调节息息相关。已知生理及行为昼夜节律是因外源性CLOCK基因里的mRNA量增加呈加快状态。如果CLOCK基因缺失,则昼夜节律变化状态会呈现为紊乱状态;通常CLOCK基因突变后便会出现睡眠时间缩减的情况,故提示CLOCK基因的突变能够显著调节睡眠。 有研究结果显示:小儿注意缺陷多动障碍伴随睡眠障碍的情况与CLOCK基因上的T3111c点位C等位基因存在很大的关系。并已知纯合子具有显著的失眠率,故而CLOCK基因多态性及早晚偏好相关,可得带有CLOCK3111C位点个体的晚偏好表现显著,但带有CLOCK3111T/T位点个体的早偏好表现更为显著[3]。并有研究结果指出:重度抑郁症及双相障碍伴随睡眠障碍者的C变异纯合子抑郁症患者存在极高的早醒再发率,且不同生活压力背景的女性睡眠情况随其压力不同而改变。故可得3111T/C多态性及抑郁症并无关系,而个体生活经历的紧张会导致睡眠发生改变。 2.2生物钟基因-PER基因及睡眠障碍的关系 PER基因属生物钟中心部位,该基因可与CRY结合而进入细胞核中,随之起到抑制正向调节CLOCK而呈现为昼夜节律。已知不同PER基因均存在显著的昼夜节律性,若为PER1纯合突变体时便会出现昼夜节律周期缩短的情况;PER1及2若呈全部缺失状态,则昼夜节律性均无[4]。故提示PER基因对人体昼夜节律正常运行的作用极大,如果PER基因失常则会出现睡眠障碍。 人睡眠时PER1基因会呈兴奋状态,若该基因安静时便会清醒;并有资料显示:PER1基因与生理节律调节作用息息相关,尤其是对快速眼动睡眠具有显著的监管作用。PER2基因多态性表现为日偏好状态,而已知日偏好及PER2基因5相关,同时与-非翻译区单核苷酸多态位点有关;如果PER2基因磷酸化位点突变时会出现家族性睡眠时提前的问题,故而PER2基因蛋白改变后,会导致睡眠稳定性发生变化,同时睡眠不充足时会导致PER2基因表达不同。PER3基因为PER3基因4/4及5/5、4/5这三种,其中PER3基因4/4具有极为明显的纯合子特征;已知个体呈睡眠状态时PER3基因5/5大多为深度睡眠状态,而该基因与个体早晨偏好相关。但PER4基因4/4一般与晚间偏好相关,同时入睡前个体等待时间会被延长;亦有研究结果显示:PER3基因5/5纯合子个体睡眠结构与基因多态性影响相关,纯PER3基因5/5等位基因可极为敏感的感知NIF光效应,睡眠个体NIF光反应差异与参与睡眠的生物钟基因多态性监管情况相关;且该基因多态性及睡眠时延迟症相关,其长度与睡眠障碍出现年龄相关;已知慢波睡眠增加和睡眠时褪黑素、昼夜节律并无差别。 2.3生物钟基因-CRY基因及睡眠障碍的关系 CRY基因亦为生物钟系统的构成部分,其为CRY1基因及CRY2基因,对生物钟系统起着调节作用,并与PER基因结合为异二聚体,随之倒过来对CLOCK等基因表达起到抑制作用。有资料显示:参与生物钟节律调节的主要是CRY1基因[5]。 3、结束语 医学界对生物钟基因作用于睡眠的各方面情况并未明确阐述,对其作用机制、睡眠障碍发病机理等方面情况均所知不多,随着更多领域对昼夜节律生物钟基因研究的深化,诸多资料显示:昼夜节律生物钟基因及相关环境因素、睡眠障碍情况息息相关,故而治疗睡眠障碍时可着眼于生物钟基因方面,使患者病情得以彻底治疗与控制。 参考文献: [1]张婉菁,陆平,吴涛,等.抑郁症与生物节律紊乱的相关性研究进展[J].生命科学,2017,29(08):779-784. [2]邢陈,顾晔,宋伦.昼夜节律在代谢调控中的作用[J].军事医学,2017,41(07):618-622. [3].研究发现光照有助恢复作息人类睡眠障碍有望解决[J].黑龙江科学,2014,5(02):284. [4]朱菊媚.脑卒中患者生物钟颠倒的原因分析与对策[J].中国医药指南,2012,10(32):533-534. [5]李娟,江文.睡眠分子机制研究进展[J].国际神经病学神经外科学杂志,2012,39(03):295-297.

关于人体生物钟的调查研究

关于人体生物钟的调查研究 人体生物钟,简称"生物钟" 为什么没有闹钟的铃声,你却每天按时醒来?为什么雄鸡啼晨,蜘蛛总在半夜结网?为什么大雁成群结队深秋南飞,燕子迎春归来?为什么夜合欢叶总是迎朝阳而展放?生物体的生命过程复杂而又奇妙,生物节律时时都在奏着迷人的“节律交响曲”。 近年来,时间生物学认为,生物体乃至植物体的生命随昼夜交替、四时更迭的周期性运动,揭示出生理活动的周期性节律。古代医学视天地为大宇宙,人体为小宇宙,谓大小宇宙息息相通。健康人体的活动大多呈现24小时昼夜的生理节律,这与地球有规律自转所形成的24小时周期是相适应的,表明生理节律受外环境周期性变化(光照的强弱和气温的高低)的影响而同步。诸如人体的体温、脉搏、血压、氧耗量、激素的分泌水平,均存在昼夜节律变化。生物近似时钟的结构,被称之为“生物钟”。周期节奏近似昼夜24±4小时称“日钟”,近似29.53±5天称为“月钟”,近似周年12±2月称为“年钟”。时间生物学研究揭示了植物、动物乃至人的生命活动具有一个“持久的”、“自己上发条”和“自己调节”的生物钟。 生物钟依靠像时钟那样周期往复的振荡工作,其工作节奏是不受周围环境影响的,故认为其周期振荡节奏是内生的或在不同器官内独立进行。生物钟的存在有极重要的生物学意义,它能使生物与周期性的环境变化相适应,特别是一些对生存和繁殖关系重大的,如迁徙、觅食、交配、生育等,以至作出提前安排。如糖皮质激素在清晨起床前就已升高,为白天活动作好预先的准备。然而生物的这种适应性也是有限度的,生理周期只能在一定范围内追随外界的周期性,当偏差太大,外环境变化造成刺激过强过弱,以致使生理振荡变为越轨的自由运转,从而干扰了时钟的正常运转,造成个体不同器官内部节奏位置的紊乱,破坏有序的合作,会引起某些疾病。 近10年,生物学的研究越来越清楚地告诉我们,昼夜节律是在中枢神经系统调控下形成的。1972年研究人员证明,下丘脑前部视交叉上核担负着昼夜节律的中枢起搏点作用。临床观察到人类脑肿瘤破坏包括视交叉上核区时,可导致睡眠-觉醒周期瓦解。灵长类脑内至少有两个昼夜节律起搏点,其中一个就是视交叉上核,另一个目前尚未确定。 为何成绩一般的学生考上了名牌大学,而名列前茅的学生却名落孙山?为何一贯行为文明的青年人突然与人吵架?原来人体存在智力、情绪、体力周期分别为33天、28天和23天的生物钟,这3种“钟”存在明显的盛衰起伏,在各自的运转中都有高潮期,低潮期和临界期。如人体三节律运行在高潮时,则表现出精力充沛,思维敏捷,情绪乐观,记忆力、理解

人体生物钟的计算

人体生物钟的计算 生物钟的每个周期,首先由周期日开始,进入高潮期,经过临界日,进入低潮期,再由周期日开始,呈进行往复式的循环。每个周期的中间日为临界日,前半个周期为高潮期,后半个周期为低潮期。 周期日时,人体正处在转换之中,新思想、新行动易在此时产生。虽思维活跃,但辨别力差,身心起伏不定,盲目易动。周期日也是每个周期的开始日,为期一天。当人体处在高潮期时,体力充沛,身体机能协调性好,有较强的抗病能力;精神饱满,乐观向上,与人相处和睦;思维敏捷,头脑反应灵敏,有较强的分析能力,记忆力强,注意力集中,即人体有利日。高潮期结束,人体进入临界日。 临界日时,人体由高潮期向低潮期转换,此时身体各部机能处于调节之中,周身无力,心情烦躁,协调性差,易出差错,易产生忿恨情绪和盲目行为,同时对疾病的低抗能力及综合分析能力均明显下降,即人体有害日。临界日前后一两天的低态反应,即是临界日的外延。过了临界日,人体进入低潮期。 人体处在低潮期时,体力不足,易疲劳,耐力下降,做事拖拉,对疾病抵抗力减弱;情绪低落,意志沮丧,喜怒无常;思维迟钝,记忆减退,反应缓慢,判断力降低,机体各方面协调性差。低潮期结束。人体进入周期日。 当两个周期的临界日或三个周期的临界日重叠在同一天或非常接近时,比单临界日对人体的危害性更大。行车事故、伤亡事故、决策失误、言行不当、竞赛失利等将会明显增多。

人体生物钟的测算方法 人体生物钟具有准确的时间性,用数学公式能准确地计算出所有人在任何一天的利害日情况。测算结果能使你知道哪天是周期日,哪些天是高潮期,哪天是临界日,哪些天是低潮期。便于你根据自己利害日的情况,合理地安排学习、工作和生活。 公式:(测定年-出生年)×365+闰年数-(1月1日至生日天数)+(1月1日至测定天数)。 所得天数即是经历总天数,再分别除以23天、38天、33天,所得余数分别为体力、情绪、智力三个节律情况。 说明:测算人体生物钟必须用公历生日,只知道农历生日者请查万年历,查出公历生日。 举例:某人生于1964年7月23日,测1993年12月3日三个节律情况。这个人1964年出生至1993年,经历了1964、1968、1972、1976、1984、1988、1992共8个闰年,因此闰年数为8。代入公式:[1993-1964]×365+8-[31天(1月)+29天(2月)+31天(3月)+30天(4月)+31天(5月)+30天(6月)+23天]+[31天(1月)+28天(2月)+31天(3月)+30天(4月)+31天(5月)+30天(6月)+31天(7月)+31天(8月)+30天(9月)+31天(10月)+30天(11月)+3天]=29×365+8-205天+337天=10725天10725天÷23天=466……7天 10725÷28天=383……1天 19725÷33天=325 0

生物钟及其基因的研究

生物钟及其基因的研究综述 摘要:生物钟(biological clock),也称生物振荡器(Oscillators)。这是一种近昼夜节律,受外界因素,尤其是光的调节。当没有外界因素存在或一直处于黑暗的状态下,生物体内的各种活动仍然具有节律。由此可见,生物节律是由其内在的生物钟所控制的。从单细胞生物到多细胞生物,从原核生物到真核生物,这种昼夜节奏现象在生物界中广泛存在。因此关于它的特征、意义和机理的研究日益受到人们重视。这种节律系统包括输入机制、内在的生物钟和输出机制。三者彼此协调才能使生物的各种活动具有节律性。而内在的生物钟机制,实际上是一些生物钟基因相互作用的结果。 关键词:生物钟钟基因拟南芥 一、第一个生物钟基因 果蝇per基因是第1个被克隆的生物钟基因,第二个是tim基因。然后人们才对昼夜节律的分子机制有了较深人的了解。随着对其他的生物钟基因的相继发现,一种公认的生物钟分子调控机制——反馈调节回路凸现出来。以往的研究表明,tim 基因在此反馈回路中发挥着重要作用。且tim对行为节律的作用可能与per基因的产物有关,而tim基因对生物多种活动节律具有协同进化关系。 二、生物钟基因的表达 早期的研究已经指出,昼夜节奏的表现可能涉及到细胞内的生物化学过程。现在已经清楚,这种昼夜节奏与基因的节奏性表达有关。这些基因常常受到生物钟的调节,它们的表达量伴随着昼夜循环发生规律性变化。例如在拟南芥中编码富含甘氨酸的蛋白质基因Cc1和

CC2等等。这些基因的mRNA水平都表现出昼夜规律性起伏,表明生物钟调节的机制有可能发生在转录水平上,使基因周期性“开放”与‘关闭”,从而表现出节奏性转录的特征。然而,在许多昼夜节奏活动中,mRNA的合成并没有明显的节奏变化,可见生物钟调节反应不仅仅局限于转录水平。如果是非转录水平的调节,根据人们的研究,可能发生在RNA加工、蛋白质翻译以及翻译后的蛋白质修饰等环节上,由此可导致最终产物的量或形式的变化。 三、拟南芥生物钟分子机制 微阵实验表明至少有6% 的拟南芥基因是节律性表达的,在白天和黑夜的所有阶段都有表达峰(Harmer et al,.2000;Schaffer et al,2001) 拟南芥生物钟振荡器第一个稳定的模式(Alabadi et al. 2001)包含有3个基因: 编码与Myb 相关的转录因子的CCA1(CIRCADIAN CLOCK ASSOCIATED1)、LHY((LATE ELONGATED HYPOCOTYL)和一个伪反应调控子TOC1(TIMING OF CABEXPRESSION 1)。TOC1 的强功能缺失等位基因LHY 和CCA1的双重突变体,或是这些基因的任何一个的组成型过量表达都能引起在持续光照或持续黑暗下的无节律性(Schaffer etal.1998; Makino et al. 2002; Mizoguchi et al.2002; Mas et al.2003)。但是现在还不知道植物在光暗周期下保持节律和持续光照(或黑暗)条件下某些植物能短暂保持节律的原因。CCA1/LHY蛋白在深夜和凌晨过量表达,与TOC1 启动子的黑夜元件(AAATATCT)相结合从而抑制TOC1 的表达(Harmer et al.2000; Alabadi et al. 2001; Mizoguchi et al.2002)。当傍晚CCA1/LHY 水平下降时,TOC1蛋白可能激活CCA1/LHY的转录,从而形成了转录反馈环的轮廓(Alabadi et al.2001)。这种激活可能是间接的,因为夜间至少还需要以下3种基因与TOC1共表达: ELF3(EARLYFLOWERING 3) (Schaffer et al, 1998)、GI(GIGANTEA) (Fowler et al,1999)和GIF4(EARLY-FLOWERING 4) (Doyle et al.2002)。这些基因编码的蛋白的生化功能还不是很清楚。自相矛盾的是,TOC1的过量表达,某种程度上会减弱而不是激活C C A 1 的表达(Makino et al.2002; Mas et al.2003)。

相关文档
最新文档