浅析沥青流变性及其影响因素

浅析沥青流变性及其影响因素
浅析沥青流变性及其影响因素

在高速公路建设如火如荼的今天,沥青路面里程与日俱增,沥青在高速公路的路面使用性能、服务寿命中起着举足轻重的作用。沥青是一种粘弹性物质,具有一定的流变性质,尤其是在高温季节,加之行车荷载的作用,沥青的流变性对沥青路面的性能具有重大影响。抗流变性能差的沥青路面将很容易形成车辙、推移等病害,严重缩短高速公路的使用寿命。

2沥青及改性沥青的流变性

2.1沥青流变性

沥青具有强烈依赖温度的流变性能,其流变性受沥青各个组分(饱和分、芳香分、胶质、沥青质)之间物理—化学相互作用的制约。饱和分主要由正构烷烃、异构烷烃和环烷烃组成,其平均相对分子质量在500~800之间,芳香分主要是一些带环烷和长链烷基的芳香烃,平均相对分子质量在800~1000之间,胶质也称极性芳烃,平均相对分子质量在1300~1800之间,沥青质是沥青胶体体系的核心,平均相对分子质量在数千到一万之间,是高度缩合的芳香烃。沥青中高分子量的成分比重越大,则流变性越差。

2.2 改性沥青流变性

SBS改性沥青是目前国内外应用最广泛的聚合物改性沥青,由于能同时改善沥青的高低温性能且价格便宜,因此在道路改性沥青中占有很大的份额。但SBS 改性沥青在流变性质方面存在非常复杂的变化,其粘度和软化点的变化幅度较大,这种现象在其它改性沥青(如PE、EVA、SBR改性沥青)中很少见。对其中一些现象国外已有所报道,但并未作深入研究,由此导致了许多不同的观点,阻碍了对SBS改性沥青的深入研究和正确评价。改性沥青的流变性具有两个显著特点,一是变化复杂,二是影响因素众多。

(1)SBS改性沥青流变性质的复杂变化

SBS改性沥青的流变性质易受到各种因素的影响,如基质沥青、改性剂种类、改性剂掺量(为改性剂质量与沥青质量之比)、SBS的性质、改性沥青制作的混合时间、温度及存贮过程等,并且这些因素对改性沥青的软化点会产生20~30℃的影响,而这些因素对其它聚合物改性沥青软化点的影响则要小得多,基本在5℃以下,一般不超过10℃。通过试验发现,SBS改性沥青的软化点的复杂变化主要有以下现象:

①改性沥青的软化点提高程度随SBS掺量增加呈现加速上升的趋势,如图1所示。从图中可以看出,掺量从3%增加到5%时,软化点的上升比较平稳,基本呈线性关系;掺量从5%增加到7%时,软化点迅速上升,5%可看作软化点转变的拐点。

②不同种类的SBS对沥青的流变性质的改变相差很大。将线型SBS与星型SBS在完全相同的条件下制成改性沥青(掺量为5%),线型SBS改性沥青的软化点为59℃,而星型SBS改性沥青的软化点则高达95℃。

③同一种改性沥青在不同时间显现出完全不同的流变性质,这包括:经过不同的混合时间后其流变性质变化相差很大,如将5%的SBS掺入沥青中后,混合时间t对软化点的影响如图2所示。从图中可以看出,改性沥青随着混合时间的增加,虽然软化点开始会从48℃升到最高95℃,但随着混合时间的继续增加时,软化点又会降低到66℃,并无明显规律。

(2)SBS改性沥青流变性质的主要影响因素

SBS改性沥青的流变性质受多种因素影响,变化幅度较大。除了基质沥青和改性剂原材料本身的性质之外,根据其本质是结构决定物质的力学性能,因此聚合物相在改性沥青中的形态与结构将对改性沥青的流变性质起决定作用,主要影响因素有三[1]。

①聚合物相在改性沥青中所占的面积百分率。聚合物所占的面积百分率大,则相应的改性沥青软化点高,反之亦然。

②聚合物相在改性沥青中的粒径大小。粒径大的软化点高,粒径小的软化点低。

③聚合物相在改性沥青中的形状。相关显微研究表明,经过高温剪切后,星型SBS在沥青中的分布基本为条形结构,而线型SBS在沥青中的分布基本为球形结构,由此造成星型SBS普遍比线型SBS改性沥青的软化点高很多。

此外,沥青作为典型的粘弹性体,温度对其流变性影响巨大,随着温度的升高,沥青由弹性体向牛顿流体转变,粘度急剧下降,经试验证明,粘度与温度呈双曲线关系,粘度的双对数与温度对数呈负线性关系,SBS改性沥青的粘温关系据如图3所示。

3沥青混合料的流变性

沥青混合料是沥青和石料的混合材料,沥青是一种均质的粘弹性材料,而沥青混合料是一种颗粒性的粘弹性材料。二者的力学特性既存在一些相似性,又有许多差异性。

(1)均质性和颗粒性

一般说来,所有的颗粒性材料在宏观上都具有这样三个特征[2]:①材料由许多颗粒组成;②颗粒的自身强度远大于其联结强度;③在外力作用下,颗粒间发生相互错位移动,并存在内部摩擦。例如,土壤颗粒、就属于颗粒性材料。而在沥青混合料中,由沥青薄膜包裹着的粒料构成混合料的主骨架。因此,沥青混合料的物理结构从总体上看是松散的,可以认为它是一种典型的颗粒性材料。

相反,在纯沥青材料中不存在宏观意义上的颗粒和内摩擦,只有当沥青分子(或原子)克服了内部引力时,才会发生剪切变形。因此从宏观上来说,沥青材料属于非颗粒性材料,而从它的结构组成来说,它是一种均质性材料。事实上,根据材料的结构组成和宏观孔隙率,公路建设的所有土工材料可分为三类:①均质性材料(如钢铁、沥青);②水硬性材料(如水泥混凝土);③颗粒性材料(如土、沥青混合料)。由此可见,沥青和沥青混合料分属于两种不同的类别,依次分别代表了土工材料的均质性和颗粒性。

(2)粘弹性特征

沥青混合料被认为是一种典型的颗粒性材料,它的颗粒骨架空隙被具有粘弹性的沥青浆体不完全填充。在通常的工作条件下,这种混合料的流变特性也表现为粘弹性,并具有这样两个根本特征:①它的力学特性与激励时间(如应变速率ε,频率f)和实验温度密切相关;②具有十分明显的蠕变和松弛现象。也就是说,如果材料符合上述两个特征,就可以认为这种材料具有粘弹性。

沥青和沥青混合料是典型的粘弹塑性材料,具有明显的时温等效效应,其弹性模量、抗压强度随着应变速率的增大而增大,随着实验温度的降低而增大。另一方面,蠕变和松弛实验现象也是粘弹性材料非常重要的流变特征。大量的实验研究已经证实,沥青和沥青混合料表现出完全相同的蠕变和松弛现象。

⑶流变模型研究

研究认识沥青和沥青混合料粘弹性的另一种方法就是建立流变模型。对于沥青材料,传统上均采用伯格斯模型(Burgers' model)来分析其流变特性,模型构成如图4所示。

对于沥青混合料,扈惠敏等[3-4]利用伯格斯模型和Hook- Jeeves的模式搜索法进行了大量的数值模拟,效果良好。模拟结果与加卸载循环时的实验数据非常接近,这说明伯格斯模型也能有效地反映沥青混合料的粘弹性。同时也表明,沥青和沥青混合料不仅具有相同的粘弹实验特性,而且具有相同的流变分析模型。

通过对沥青和沥青混合料的材料特性和流变特性进行比较研究,首先可以发现它们二者之间存在许多相似性,如相同的粘弹性实验特性和相同的流变分析模型。其次,它们之间唯一的差异性在于材料的结构组成不同,沥青属于均质性材料,沥青混合料属于颗粒性材料。

4 结论

通过对沥青及沥青混合料流变性质的比较研究,得出主要结论如下:

⑴沥青的流变性质主要受其构成组分的影响,改性沥青的流变性质则与原材料属性、改性剂掺量、聚合物相粒径和形状、与沥青的混合时间、温度及存贮过程等因素相关。

⑵SBS改性沥青软化点提高程度随SBS掺量增加呈现加速上升的趋势,5%为曲线拐点。

⑶SBS改性沥青粘度的双对数与温度对数呈负线性关系。

⑷沥青混合料和沥青具有相同的粘弹性和流变性,区别在于材料的结构组成不同,沥青属于均质性材料,沥青混合料属于颗粒性材料。

改性沥青生产工艺

改性沥青生产工艺 影响改性沥青的质量因素众多,基质沥青与改性剂的剂量比是生产合格改性沥青的基础,恰当的工艺路线及技术参数的确定是关键,稳定的改性沥青设备是生产合格改性沥青的保障。基质 沥青种类繁多,不同型号、不同产地的基质沥青,其组成成分略有差异,而改性剂的种类也比较多,如何结合实际需要,使基质沥青与改性剂得到最佳匹配,如何使工艺路线及技术参数得到最佳设置,如何确保生产稳定的改性沥青,等等一系列问题。一般通过小试、中试,最终确定大生产的各项技术参数。 一、小试,根据样品,按照改性沥青指标,初步确定配方、工艺路线,技术参数,其过程一般为以下几步: 1根据样品性能、改性沥青指标要求,初步确定配方、制定工艺路线、技术参数等; 2、通过小试,模拟大生产,制备试样,并检测试样性能,根据检测结果,调整改性剂与沥青的配伍,或改变某些技术参数。经过反复试验使各项指标达到最优化;

改性沥青小试配方检测 3、初步确定配伍、工艺路线、技术参数。 二、中试,工艺转化的过渡阶段,小试的放大试验,基本接近大生产。采用正常生产改性沥青的成套设备,实现试验和生产 的完全接轨。其过程一般为: 1检查设备,确定设备处于安全、可用状态,如:改性系统、恒温

加热系统、控制系统,上料系统等;设定各部位的技术参数,如:温 度、配比、加工量等;沥青泵、高剪切均化机、高性能磨机转动是否灵活;调整磨机磨盘间隙;开启空压机,并调至合适压力;预热所有需要加热的部位。 2、严格按照设备的操作规程,输入规定的基质沥青(2-3 吨)、改性剂,经过溶胀、剪切、研磨、孕育生产出合格的改性沥青,其试验过程,应注意观察剪切机、磨机的电流;检查沥青 温度是否在工艺规定的范围内,遇到报警,应立即查明原因;改性沥青试验结束后,注意停机顺序。 3、跟踪检测改性沥青的质量,根据检测结果及时调整配伍、技术参数等。 4、基本确定配比、技术参数。 三、大生产,实现理论与实践的完全接轨,充分检验小试、中试所确定的配方、技术参数的准确性,其操作过程和中试基本相同,但由于大生产具有生产连续性、质量具有稳定性,又有其不同于中试之处。其过程主要为: 1检查设备,确定设备处于安全、可用状态,如:改性系统、恒温加热系统、控制系统,上料系统等;按照中试的结果,设定各部位的技术参数;如:温度、配比、加工量等;检查沥青泵、高剪切均化机、高性能磨机转动是否灵活;磨机磨盘保持中试调整的间隙;开启空压机, 并调至合适压力;预热所有需要加 热的部位。

沥青胶结料

24-1-4-4 沥青胶结料(玛碲脂)粘贴油毡施工 铺贴油毡时,找平层和冷底子油必须干燥。沿屋面板端头接缝处,应空铺一层宽约200~300cm(寒冷地区宜适当加宽)油毡,与找平层部粘结(或一边粘结),以适应屋面板的变形。铺贴油毡的操作要点如下: 1、浇涂玛碲脂浇油法用带嘴油壶将玛碲脂左右来回在油毡前浇油,其宽度比油毡每边少约10~20mm,速度不宜太快。浇洒量以油毡铺贴后,中间满着玛碲脂,并使两边少有挤出,其厚度控制在1~1.5mm为宜,最厚不得超过2mm。油少了油毡不能很好粘牢,油多了油毡容易产生流淌; 涂刷法一般用长柄棕刷(或粗帆布刷等)将玛碲脂均匀涂刷,宽度比油毡稍厚,不宜在同一地方反复多次刷涂,以免玛碲脂很快冷却而影响粘结质量。 如操作熟练,浇油法比涂刷法好。 2、铺贴油毡铺贴时两手按住油毡,均匀地用力将油毡向前推滚,使油毡与下层紧密粘结。避免铺斜、扭曲和出现未粘结玛碲脂之处(如铺贴油毡经验较少,为避免铺斜等情况,可以在基层或下层油毡上预先弹出统长灰线,按灰线边推铺油毡)。 3、收边滚压在推铺油毡时,操作的其他人员应将毡边挤出的玛碲脂及时刮去,并将毡边压紧粘住,刮平、赶出气泡。如出现粘结不良的地方,可用小刀将油毡划破,再用玛碲脂贴紧、封死、赶平,最后在上面加贴一块油毡将缝盖住。 24-1-4-5 油毡湿铺法施工

当水泥砂浆找平层干燥确有困难而又需立即在潮湿基层上铺贴油毡,这种施工方法称为油毡湿铺法施工。其操作要点是:冷底子油宜在水泥砂浆找平层抹平压光后2~6h左右立即进行(表面有强度,能站人而无印痕),最好用喷涂法进行。喷涂的冷底子油要稍稠一些,待冷底子油干燥后即可进行铺贴油毡。油铺法也常常结合排气屋面进行。

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.360docs.net/doc/935810830.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.360docs.net/doc/935810830.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

沥青产品生产工艺流程培训

沥青产品生产工艺流程培训 一、原材料介绍 1、基质沥青:用于生产改性沥青,掺加改性剂进行改性的基础 沥青 2、SBS: 沥青改性剂,可提咼沥青的路用性能 3、橡胶粉: : 沥青改性剂,可提咼沥青的路用性能 4、硫磺:沥青稳疋剂,起稳疋作用,使改性剂不产生沉淀。 5、抽出油:石油馏分溶剂精制的抽出液经脱除溶剂后的油, 做道路沥青的调合组分。 二、生产流程 1、改性沥青生产流程 基质沥青通过卸油槽进入基质沥青罐,再通过基沥沥青泵进入高温罐升温至160-170 C通过快速升温罐升至180-195 C,通过阀门控制进入溶胀罐,投料并保持搅拌,溶胀30分钟后通过高速剪切机(或胶体磨)剪切到反应罐,加入硫磺搅拌30分钟通过成品泵打进成品罐,装车。 2、橡胶沥青生产流程 基质沥青通过卸油槽进入基质沥青罐,再通过基沥沥青泵进入高温罐升温至160-170 C通过快速升温罐升至180-195 C,通过阀门控制进入溶胀罐,投入橡胶粉并保持搅拌,溶胀30分钟后通过高速剪切机(或胶体磨)剪切到反应罐,通过成品泵打进成品罐,装车。 3、乳化沥青生产流程

乳化沥青主要由以下五种主要的材料组成:沥青、水、乳化剂、 酸和改性剂,为了储存稳定或者是为了满足其他的特殊用途,还会惨加少量的添加剂。 乳化沥青的生产流程可以分为以下四个过程:沥青准备,皂液准备,沥青乳化,乳液储存。 (1 )、沥青的准备 沥青是乳化沥青中的最主要组成部分,一般占到乳化沥青总质量的50%-65% 。 (2 )、皂液的准备 皂液由水、酸、乳化剂等材料组成在进入乳化设备前的温度一般控制在55-75 C之间。 (3 )、沥青的乳化 将合理配比的沥青和皂液一起放入乳化机,经过增压、剪切、研磨等机械作用,使沥青形成均匀、细小的颗粒,稳定而均匀的分散在皂液中,形成水包油的沥青乳状液。合适的乳化沥青出口温度应在85 C左右。 (4 )、乳化沥青的储存 乳化沥青从乳化机中出来,经冷却后进入储罐。大型的储罐中应配置搅拌装置,定期进行搅拌。以减缓乳化沥青的离析胶体磨

沥青胶结料疲劳损伤机理研究

沥青胶结料疲劳损伤机理研究 发表时间:2019-09-11T15:08:20.703Z 来源:《建筑学研究前沿》2019年10期作者:常志慧 [导读] 本文系统阐述了疲劳损伤机理以及疲劳过程中的自愈与触变现象,对自愈合机理、自愈合评价方法以及自愈合影响因素进行了总结,疲劳的评价指标:初始模量的50%-50%G*、疲劳因子G*sinδ、耗散能变化率DR、累积耗散能比DER。 山东建筑大学山东省济南市 250100 摘要:疲劳破坏是沥青路面结构基础理论与设计的本源性问题,因此沥青及沥青混合料的疲劳损伤特性多年来一直倍受研究者们的关注和重视。本文系统阐述了疲劳损伤机理以及疲劳过程中的自愈与触变现象,对自愈合机理、自愈合评价方法以及自愈合影响因素进行了总结,疲劳的评价指标:初始模量的50%-50%G*、疲劳因子G*sinδ、耗散能变化率DR、累积耗散能比DER。 关键词:沥青胶结料;损伤机理;触变性;自愈性 0 引言 近年来,随着交通运输事业的快速发展,交通量迅速增加,车辆轴载不断增大,重载交通日益严重,沥青路面的设计、养护和维修面临越来越严峻的考验。路面在使用过程中,不仅受到车辆荷载的重复作用,还受到环境温度变化所产生的温度应力影响。在应力应变反复作用下,路面材料的强度逐渐衰减。本文基于触变性和自愈性对沥青胶结料的损伤机理进行研究。 1 疲劳损伤机理 损伤力学的发展为研究材料在重复荷载作用下的力学行为提供了新的手段。疲劳损伤与疲劳断裂不同,通常很难像材料内部裂纹扩展那样通过精确计算加以描述,而是更加关注研究材料内部缺陷的累积和发展,及其所表现出的宏观物理力学性能的衰变。疲劳损伤演化的程度用损伤因子D表示,损伤因子D是荷载历程的函数,称为损伤演化函数。 损伤演化本构模型是指损伤影响下的应力、应变关系。通过损伤演化函数和无损伤影响下的本构关系,建立损伤过程中材料的本构关系。损伤演化本构模型的优点是可以预测材料的实测性能,减少试验时间和试件数量。郑健龙等将Burgers模型的本构关系与连续损伤演化模型二者耦合建立了沥青的粘弹性损伤本构模型[1]。Zhu等将粘弹塑本构关系与损伤函数叠加,得出沥青混合料粘弹-粘塑性损伤本构模型,该模型可以较好描述沥青混合料三轴蠕变、三轴等应变速率压缩等加载模式下的力学行为[2]。曾国伟在叶永等提出的粘弹塑性模型的基础上,采用有效应变指数形式的损伤演化函数,建立起了形式简单、能描述不同条件下蠕变全过程的沥青混合料蠕变损伤本构模型[3]。Darabi 等人将粘弹、粘塑、损伤和愈合四部分的本构关系组合,建立了 VE-VP-VD-H 模型(粘弹-粘塑-损伤-愈合模型),粘弹部分基于广义 Maxwell 模型,粘塑部分依据 Perzyna提出的粘塑流动规律,损伤函数基于应变等效。 2 触变性自愈性 2.1 触变性 随着人们对沥青性能研究的不断深入,沥青的自愈性和触变性受到了越来越多的关注和重视,研究者们已经开始注意到沥青的疲劳不仅与损伤有关,而且与沥青的触变性直接相关[6,7]。 触变性可分为三种:正触变性、负触变性、复合触变性[8]。正触变性是指在剪切外力作用下体系的粘度随时间增加而下降,静止后又恢复,即具有时间依赖性的剪切变稀现象;负触变性,又称振凝性,正好与正触变性相反,是一种具有时间依赖性的剪切变稠现象,即在外切力作用下,体系的粘度上升,静置以后又恢复的现象;复合触变性现象是发现最晚的一种触变现象,对其进行的研究也相对较少。所谓复合触变性是指一个特定体系可先后呈现出正触变性和负触变性[9]。 单丽岩[10]将触变性引入到沥青疲劳特性的研究中,量化了触变性对疲劳过程的影响,实现了触变性从沥青疲劳全过程中的分离。Liyan Shan[11]采用触变环法、阶跃试验法和动态模量法研究了四种沥青使用温度下的触变性;根据单一剪变率剪切试验建立了指数触变模型;根据动态模量试验建立了扩展指数模型;结合稳态剪切试验结果建立了沥青的结构动力触变模型。Virginie Mouillet等人[12]采用哈克流变仪的锥-平板触变试验设备对沥青开展了时间扫描和应力扫描,采取正弦加载模式,以复合模量为触变性的评价指标,考察了试验温度(10~30℃)、加载频率(0.07、0.1、0.7 Hz)、加载持续时间(10~90 min)等对触变性的影响。 2.2 自愈性 包括裂纹表面能机理、裂缝表面润湿与分子扩散理论、毛细流动理论、相变理论。模型建立了自愈合速率与表面能的关系,通过压缩蠕变试验和表面能的测量,可以预估沥青混合料的自愈合速率,揭示了裂纹自愈合的动力来自裂缝表面能的降低,但是也存在不足之处,如假设裂缝的扩展是连续的并且裂缝的扩展速率是由基于线弹性的 Paris 法则决定的。 从材料学角度来看,沥青也属于聚合物类材料,所以关于沥青裂缝自愈合机理的研究主要是借鉴聚合物材料的相关研究成果。Kim认为高分子聚合物的自愈合过程包括:(1)表面重组;(2)表面接近;(3)润湿;(4)扩散;(5)随机重组。在荷载间歇期,沥青的自愈合机理有两个方面:一方面是由于沥青的粘弹性性质引起的应力松弛;另一方面则是裂缝两表面的化学性愈合,沥青的化学组成及其性质会影响裂缝界面分子的扩散与重排。 3 结论 本文系统阐述了沥青胶结料及沥青混合料的疲劳特性,其主要包括沥青胶结料的疲劳损伤机理以及疲劳过程中的自愈与触变现象,对自愈合机理、自愈合评价方法以及自愈合影响因素进行了总结。 参考文献 [1]郑健龙,吕松涛,田小革.基于蠕变试验的沥青粘弹性损伤特性[J].工程力学,2008,25(2):193-196 [2]Haoran Zhu,Lu Sun.A Viscoelastic-viscoplastic Damage Constitutive Model for Asphalt Mixtures Based on Thermodynamic[J].International Journal of Plasticity,2013,40:81-100. [3]曾国伟,杨新华,白凡,尹安毅.沥青砂粘弹塑蠕变损伤本构模型实验研究[J].工程力学,2013,30(4):249-253.

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

改性沥青生产与技术要求

改性沥青生产与技术要 求 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

崇靖高速公路SBS(I-D)改性沥青生产与技术要求崇靖高速公路中上面层SBS(I-D)改性沥青技术要求: 崇靖高速公路中上面层SBS(I-D)改性沥青生产工艺要求: (1)制造改性沥青的基质沥青应与改性剂有良好的配伍性。供应商在提供改性沥青的质量报告时,应同时提供基质沥青的质量检验报告或沥青样品。 (2)改性沥青宜在固定式工厂或在现场设厂集中制作,改性沥青的加工温度不宜超过180℃。 (3)现场制造的改性沥青宜随配随用,需作短时间保存,或运送到附近的工地时,使用前必须搅拌均匀,在不发生离析的状态下使用。改性沥青制作设备必须设有随机采集取样口,采集的试样宜立即在现场灌模。 (4)工厂制作的成品改性沥青到达施工现场后应存储在改性沥青罐中,改性沥青罐中必须加设搅拌设备并进行搅拌,使用前必须将改性沥青搅拌均匀。在施工过程中,应定期取样检验产品质量,发现离析等质量不符合要求的改性沥青不得使用。 生产工艺流程及特点 1、改性剂 采用复合改性技术,该生产技术去年在多条高速上也进行了应用,效果非常好。本复合改性方案为: ——主改性剂SBS选用岳阳石化4303(道改Ⅱ号改进型),含量3~%; ——辅助改性剂SBR,经过我们预先改性处理,含量~2‰; ——助剂,专门为本技术配方研制,含量~2‰。 以上具体含量要在工地生产现场通过对加工后的改性沥青指标的检测来调整实际含量,其是以最佳的性能指标来决定的。

SBS是目前广泛使用的、能基本适应各种地区气候环境条件的通用改性剂,其特点是能提供良好的高低稳性能,特别是高温性能突出,能大大提高沥青的软化点,防止路面高温时的软化拥包、车辙等损坏,并与沥青有很好相溶性和稳定性。 SBR则具有突出的延展性和弹性恢复,有着非常好的低温性能,对冬季防止路面开裂等问题有非常好的效果; 由于SBS和SBR的相溶性不同,因此需要专门的助剂来促使其发生反应,更好地分散、溶和,并使其被打乱的高分子结构重新结合,形成织构态,这样就大大提高了沥青的各项性能。其反应温度在170℃以上。 由此可见,采用此复合改性技术,可以同时提高高温和低温的性能,更适合温差大的气候特点,保证路面的质量和耐久性。 2、工艺流程 A、将基质沥青从储罐或脱桶器中打入沥青升温罐中,升温至170℃; B、将升温后的基质沥青和改性剂按设计比例分别通过改性沥青设备上的计量泵和改性剂输送系统加入到改性沥青设备的搅拌罐1中,边加料边搅拌,进行溶涨,至预先设定的数量。这样搅拌罐1中就形成沥青和改性剂的混合料; C、打开并关闭改性设备控制柜面板上相应的沥青阀门开关(手动模式需人工设置,自动模式不用),启动胶体磨和变频调速泵,将搅拌罐1中的沥青混合料通过胶体磨磨一遍打入到搅拌罐2中,全部磨完停机; D、再将搅拌罐2中磨过一遍的沥青混合料通过变频调速泵和胶体磨磨一遍打入到搅拌罐1中,如此反复共磨3~6遍,即可得到加工好的改性沥青。磨的遍数是根据每磨一遍后,通过对磨后的改性沥青指标进行检验,以达到要求的遍数来决定的; E、将加工好的改性沥青泵到带有搅拌器的改性沥青储存罐中,在储存的时候进行后期发育,即成为合格的改性沥青,一般后期发育需要1~2个小时左右。 F在现场改性的情况下,发育罐和储存罐可共用一个罐。改性沥青储存罐可直接与拌和站相连,随用随抽。此时改性沥青的储存时间一般不要超过24小时,储存温度在150~160℃左右; 设备配置 此改性沥青工艺设计的生产能力为300吨/天,除去气候、设备维修等因素影响,其实际生产改性沥青能力可达到250吨/天以上。按此规模要求,其相应设备配置为: 1、改性沥青设备(12~15吨/小时)1台; 2、30万大卡导热油炉3台; 3、5~8吨/小时脱筒设备1~2个; 4、50吨沥青升温罐1个; 5、300吨改性沥青储存罐一个; 6、沥青及改性沥青实验及检验仪器一套; 7、电力:380V,三相,300KW以上,最好500KW。

聚合物改性沥青流变学研究

聚合物改性沥青流变学研究 发表时间:2018-06-11T17:29:04.533Z 来源:《基层建设》2018年第11期作者:毕飞 [导读] 摘要:在沥青作为道路建设材料的发展过程中,科研工作者对沥青改性剂的种类和掺量做了非常多的研究和报道,文章基于动态剪切流变仪DSR,围绕着聚合物改性沥青,针对其流变性能,通过对于动态剪切流变试验,重复蠕变恢复试验以及零剪切粘度等试验的研究,结果表明:橡胶类改性沥青、热塑性橡胶类改性沥青、树脂类改性沥青及复合改性沥青的流变学性质有相似之处,均会随着温度的升高,抗车辙能力减弱;随着改性剂的用量增加,抗车 山东建筑大学山东济南 250000 摘要:在沥青作为道路建设材料的发展过程中,科研工作者对沥青改性剂的种类和掺量做了非常多的研究和报道,文章基于动态剪切流变仪DSR,围绕着聚合物改性沥青,针对其流变性能,通过对于动态剪切流变试验,重复蠕变恢复试验以及零剪切粘度等试验的研究,结果表明:橡胶类改性沥青、热塑性橡胶类改性沥青、树脂类改性沥青及复合改性沥青的流变学性质有相似之处,均会随着温度的升高,抗车辙能力减弱;随着改性剂的用量增加,抗车辙能力增强。但是针对不同种类的聚合物改性沥青,其中的具体指标的变化又不会完全一致,因此需要根据当地气候条件,路面状况选择合适的改性沥青进行施工。并且设想通过优化改性材料和加工工艺来制作低相位角δ的聚合物改性沥青,展望了对于研究低滚阻沥青的应用前景。 关键词:聚合物改性沥青;流变学;车辙因子;相位角 前言 由于近年道路交通流量的迅猛增长, 行车荷载的大大增加以及交通渠化等因素的综合影响[1],现代交通对沥青路面的高温抗车辙能力的要求进一步加强 , 而采用高质量的改性沥青材料成为提高沥青路面质量的主要技术措施之一。所谓改性沥青是指掺加橡胶、树脂、高分子聚合物、磨细的橡胶粉或其他填料等外掺剂(改性剂),或采取对沥青轻度氧化加工等措施,使沥青或沥青混合料的性能得以改善制成的沥青结合料。 随着改性剂的加入,使沥青在高温条件下不易发生车辙现象,在低温条件下不会硬化导致路面开裂,提高了沥青的流变性能,因此通过研究改性沥青的流变特性,可以进一步的了解其改性机理,从而能够更好的适应路面环境。 1.聚合物改性沥青流变学 1.1 重复蠕变与恢复试验 重复蠕变与恢复试验的原理为通过加载 1s 的蠕变试验,卸载进行 9s 的变形恢复,完成一次蠕变恢复过程,不断重复进行 100 次蠕变恢复过程的循环[2]。 该方法较好的模拟了路面在行车荷载作用下的变形发展过程,比较全面的考虑了沥青材料的高温变形能力,克服了动态剪切流变仪的缺陷[3]。 在相同的应力条件下SBS改性沥青,胶粉改性沥青以及复合胶粉改性沥青的蠕变柔量和应变随时间逐渐增加;在不相同的应力条件时,相同那个温度下,SBS改性沥青的蠕变柔量比大于胶粉改性沥青以及复合胶粉改性沥青,并且随时时间的推移,蠕变柔量比存在着些许变化波动,说明温度的变化对于SBS改性沥青具有较大影响。由于胶粉改性沥青的蠕变柔量比相对于其他两种改性沥青是最小的,并且在不同应力条件的变化最小,说明胶粉沥青具有较好的温度稳定性[2]。 研究SBS,RET(反应型三元共聚物),PPA(多聚磷酸)三种改性沥青得到,SBS改性沥青的蠕变变形恢复能力大于RET和PPA改性沥青;相对于PPA改性沥青,RET改性沥青的抗车辙能力与SBS不相上下[4]。 重复蠕变与恢复试验研究表明:在不同温度下,应力对于沥青材料的蠕变柔量和应变的变化具有较大影响,并且普通基质沥青和改性沥青表现出的流变学特性并不相同,因此用重复蠕变与恢复试验来评价沥青的高温流变性能时,应该根据当地的气候特点和交通荷载的实际情况来选择合适的温度和应力水平[5]。 周庆华[6]通过分析对于10种沥青的车辙因子和蠕变柔量得到:对于动态剪切流变试验来说,重复蠕变与恢复试验能够弥补其不足,通过累计的应变和软便进度的粘性成分指标能更加准确的描述沥青的抗车辙能力。 1.2 零剪切粘度 零剪切粘度ZSV是欧洲国家评价沥青高温性能的常用指标,是沥青材料本身固有的性质,一般用60℃时的零剪切粘度来表征改性沥青的高温性能。沥青材料在路面温度下多属于假塑性非牛顿流体,通常对于非牛顿流体和假塑性流体来说,在剪切速率接近于零时流体处于第一牛顿流区域中其粘度值接近于常数,并达到最大值,这一粘度称之为零剪切粘度[7]。 通过比较SBS改性沥青,橡胶改性沥青,橡胶粉复合改性沥青,MAC改性沥青以及基质沥青得到,在相同的应力条件下,SBS改性沥青的ZSV最大,其次是橡胶改性沥青,胶粉复合改性沥青与MAC改性沥青差不多,最小的是基质沥青。由此可以得到,SBS改性沥青的流变性能较其他几种改性沥青较为优秀,抗车辙能力最强[5]。 虽然ZSV的测定方法较多,如在低剪切速率下进行的动力粘度测量、DSR上的频率扫描以及蠕变弹性测试等,但这些方法都较复杂,常规指标如软化点、粘度等于其有相关性,且操作简单,所以现在对于ZSV的应用较少,还需要对对其表征指标进行更高层次的研究[9; 10]。 2 各种聚合物改性沥青流变学差异 综上所述,聚合物改性沥青其流变学的性质有较为相似的趋势,其抗车辙能力都会随着温度的升高而逐渐降低;随着改性剂掺量的增加而逐渐加强,但相比之下,仍有些许差异。

沥青温度敏感性的分析与评价

沥青温度敏感性的分析与评价 摘要:对比分析了多种国际品牌沥青与国产品牌沥青的感温性能之间的差异,结果表明,中国针入度指数PIpen评价沥青温度敏感性存在明显的缺陷,国际针入度指数PIpen R&B与PIpen之间无明显的相关性,PIpen R&B变化趋势更接近于针入度粘度指数PVN,进而印证了采用PIpen R&B作为评价沥青的温度敏感性更为科学合理;试验沥青蜡含量与实测软化点之间无明显的线性相关性,说明PIpen R&B与PIpen之间差异并不是由于蜡含量对软化点的影响造成,两种方法计算PI值的不同并非充分来源于软化点差异;采用指数函数评价沥青在不同温度下表现不同流变特性具有较好的适应性。 关键词:沥青温度敏感性;针入度指数;针入度粘度指数;指数回归与幂函数回归;评价 沥青路面高温抗车辙问题在我国道路使用过程中依然存在[1~3]。研究表明,沥青性能对提高路面高温抗车辙和低温抗变形的影响较为显著[4]。各国学者提出了各种评价沥青感温性的技术指标[5]。其中,1889年从Browen提出针入度试验方法,1936年Pfeiffer和J Phand Van Doormaal发现针入度对数与温度呈线性关系,假定软化点时的针入度为800,取其对数,通过25℃针入度对数与25℃和软化点之间呈线性关系获取直线斜率A值,据此定义了以25℃针入度与软化点计算沥青的针入度指数(PIpenR&B),这也是欧洲新标准中普遍用于评价沥青感温性能的技术指标;加拿大提出沥青针入度粘度指数(PVN)。[1] 1 沥青感温性评价指标回顾 1936年,Pfeiffer和J Phand Van Doormaal通过沥青试验研究,发现针入度(P25℃,100g,5s)对数与温度(T)之间存在如(1-1)线性关系,并按(1-2)和(1-3)求取针入度温度敏感性系数A值和针入度指数PIpenR&B: (1-1) A=(lg800-lg P25℃,100g,5s)/(TR&B-25)(1-2) (1-3) 此式是国际上最常用的PI计算公式,各国分别作了严格规定,西班牙和瑞士要求-1.0≤PI≤+1.0;前苏联要求-1.5≤PI≤+1.0;荷兰要求-1.2≤PI≤+1.0;欧洲标准化国际组织(Committee European de Normalization,简称CEN)要求-1.5≤PI≤+1.0。 中国20世纪90年代研究认为,国际针入度指数PIpenR&B计算方法不适用评价国产道路石油沥青的感温性能,我国针入度指数PIpen计算应通过不同试验温度组合下的针入度对数求取针入度温度系数A值,进而计算PIpen值,以绝

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

纤维改性沥青混合料研究进展

龙源期刊网 https://www.360docs.net/doc/935810830.html, 纤维改性沥青混合料研究进展 作者:刘哲 来源:《中国科技纵横》2015年第24期 【摘要】通过对纤维改性沥青混合料研究历史及现状的调研,总结了纤维改性沥青混合 料的主要影响因素以及纤维改性沥青混合料的作用机理;阐述了纤维种类、长度、添加量以及界面粘结对沥青混合料性能的影响情况,不同因素的变化会影响沥青混合料的不同性能;总结了纤维在沥青混合料中的吸附、稳定、桥接以及加筋作用。 【关键词】纤维改性沥青混合料作用机理 1 概述 纤维作为一种新型的增强材料,被广泛的用作复合材料增强体,应用于航空航天、电子机械等尖端领域[1-3],由于纤维具有高模量、高强度、高长径比以及较强的吸附能力,在道路沥青及沥青混合料中也多有应用。多年来,国内外对纤维改善沥青及其混合料性能进行了大量研究,并根据实际需求,开发出了一系列适用于道路沥青改性的路用纤维,主要包括木质素纤维、矿物纤维、聚合物纤维以及新兴的玄武岩纤维等。本文主要针对道路纤维在沥青混合料中的应用进行调研,分析了纤维对混合料性能影响的主要作用机理及影响因素,对其未来发展进行了展望。 2纤维改性沥青混合料的主要影响因素 2.1 纤维种类及性能 按处理方式划分,纤维可分为天然纤维和化学合成纤维,不同种类的纤维具有不同的性能,包括强度、模量、吸持沥青量、长径比以及表面形貌等等,而这些因素都会对沥青混合料性能产生影响。李智慧[4]等考察了聚丙烯腈纤维、聚酯纤维以及木质素纤维等三类不同的增 强体对沥青混合料性能的影响,同时分析了三类纤维的常规技术性能,建立了纤维性能与外掺纤维沥青混合料路用性能之间的关系。结果表明,掺加聚丙烯腈纤维和聚酯纤维的沥青混合料性能相当,而木质素纤维混合料性能稍差;纤维的种类还影响着其对沥青混合料的主要作用机理。对外掺纤维沥青混合料路用性能影响程度最大的纤维性质因素是抗拉强度与极限拉伸应变,其次是熔融温度,吸持沥青量也有一定程度影响,纤维直径影响最小,在纤维形状特征因素中纤维长度的影响程度大于纤维直径与长径比。T.Serkan[5]采用聚酯纤维对石油沥青进行改性处理,石油沥青混合料的马歇尔稳定度增加而流值降低,同时抗车辙及抗疲劳性能增加,表明聚酯纤维有效提高了石油沥青混合料的路用性能;F.M.Nejad等[6]使用碳纤维增强沥青混凝土,结果显示,碳纤维的加入有效提升了沥青混凝土的强度和抗老化性能。此外,有不少学者采用不同种类的纤维对沥青混合料进行混杂改性,取得了良好的效果[7-8]。

SBS改性沥青防水卷材耐久性试验研究

SBS改性沥青防水卷材耐久性试验研究 发表时间:2018-07-13T10:09:10.310Z 来源:《建筑学研究前沿》2018年第7期作者:李景锡 [导读] 通过对相同型号,但原材料及配方不同的两种SBS改性沥青防水卷材在3种老化方式下性能变化的对比 李景锡 佛山市顺德区建设工程质量安全监督检测中心 528300 摘要:通过对相同型号,但原材料及配方不同的两种SBS改性沥青防水卷材在3种老化方式下性能变化的对比,对其耐久性进行了研究。结果表明:老化龄期相同时,自然老化对PE膜和沥青涂盖层的破坏比浸水老化和冻融循环老化更快、更严重;自然老化对卷材的厚度基本没有影响,而浸水老化和冻融循环老化会使厚度产生永久性增加;浸水老化对胎基的破坏作用高于自然老化和冻融循环老化。 关键词:SBS改性沥青防水卷材;耐久性;自然老化;浸水老化;冻融循环老化 SBS改性沥青防水卷材是指以聚酯毡、玻纤毡等为胎基,以苯乙烯-丁二烯-苯乙烯(SBS)共聚热塑性弹性体改性沥青为涂盖料,两面覆以聚乙烯膜、细砂或矿物粒料而制成的长条片状可卷曲的防水材料。其利用SBS改性后的石油沥青作涂盖材料,改善了沥青的感温性,有了良好的耐高低温性能,提高了憎水性、粘结性、延伸性、耐老化性和耐腐蚀性,具有优异的防水功能。作为建筑防水材料的主导产品,SBS改性沥青防水卷材已被广泛应用于建筑各领域。自SBS改性沥青防水卷材被广泛应用以来,其耐久性问题随之浮现。建筑防水工程中,经常将SBS改性沥青防水卷材铺在屋面最上层使用,直接经受日晒、雨淋和冰冻,在这种情况下,其将面临自然老化。SBS 改性沥青防水卷材的自然老化是光、热、水及冻融等因素共同作用于卷材的一种老化方式,本文针对自然老化方式进行试验研究,以期找到一些规律,为SBS改性沥青防水卷材的耐久性研究提供参考,为防水工程选材提供帮助。 1.试验部分 1.1原材料 本文采用两个厂家生产的SBS改性沥青防水卷材(下文简称SBS防水卷材)作为试验原材料,规格型号均为SBSIIPYPEPE3,两种卷材的配方不同,具体配方厂家严格保密。下文叙述过程中将两种卷材分别记为卷材1和卷材2。 1.2主要仪器设备 电子万能试验机。用途:防水卷材拉伸试验。 恒温恒湿培养箱。用途:防水卷材试件在试验前的标准养护。 冻融试验机。用途:防水卷材冻融循环试验。 低温箱。用途:防水卷材低温柔性试验。 烘箱。用途:防水卷材耐热性试验。 电子天平。用途:检测拉伸试件重量变化。 游标卡尺。用途:检测拉伸试件尺寸,将试件宽度控制在50±0.5mm。 测厚仪。用途:检测拉伸试件厚度变化。 1.3试验方案 本文选取SBS防水卷材的拉伸性能、耐热性和低温柔性作为检测对象,其中拉伸性能包括最大峰拉力和最大峰时延伸率两个测试项目,下文简称拉力和延伸率。各项试验均按照《弹性体改性沥青防水卷材》(GB18242-2008)标准进行。本文通过拉伸性能表征SBS防水卷材胎基的性能,通过耐热性和低温柔性表征SBS防水卷材沥青涂盖层的性能,最终通过胎基和沥青涂盖层的性能变化对SBS防水卷材在浸水和冻融循环条件下的耐久性进行研究。 浸水老化处理:将两种卷材预先制成试验试件,测试完初始性能后,将试件放入23℃±2℃的水中浸泡,每隔1个月进行一次取样测试,每次取样后将试件放入恒温恒湿培养箱中晾置24h,再进行各项试验,恒温恒湿培养箱的养护条件为温度23℃、相对湿度50%。冻融循环处理:将两种卷材预先制成试验试件,测试完初始性能后,先将试件在15℃~25℃的水中充分浸泡168h,再按-15℃冷冻4h、15℃~25℃水中融化2h的循环制度进行冻融循环。每隔90次循环进行一次取样测试,每次取样后将试件放入恒温恒湿培养箱中晾置24h,再进行各项试验,恒温恒湿培养箱的养护条件为温度23℃、相对湿度50%。 2.试验结果分析 2.1SBS改性沥青防水卷材的组成以及性能影响因素 SBS防水卷材是由胎基、浸涂材料(石油沥青、SBS改性剂、增塑剂和无机填料)以及覆面材料复合而成。胎基是SBS防水卷材的骨架,使其具有一定的形状、强度和韧性,对卷材的机械性能起关键作用。构成SBS防水卷材聚酯胎的主体材料是聚酯纤维和胶乳,聚酯纤维是影响胎基物理性能的关键因素,而胶乳的作用则是增加强度、减少热收缩以及提高聚酯胎与沥青的亲和性;浸涂材料质量决定卷材的耐高、低温等性能;覆面材料起到隔离、反射和装饰的作用。可以看出,SBS防水卷材的性能主要由胎基和浸涂材料的性能决定。本文检测的拉伸性能,主要随聚酯胎基性能的变化而变化,而耐热性和低温柔性则与浸涂材料的性能密切相关。 2.2自然老化试验分析 自然老化过程中,卷材上表面沥青涂盖层逐渐变硬、粉化。最初,表面形成一层硬皮,随后因局部收缩产生裂纹,随着老化程度加深,收缩加剧,产生裂缝,漏出内部新鲜的沥青,使得光氧反应不断进行,最终导致深层沥青逐渐被老化。加上自然环境中风雨的冲刷,上述现象会加剧。但自始至终只在卷材上表面沥青涂盖层的局部产生了浅层裂缝,并未有深入至胎基的深层裂缝。与上表面沥青涂盖层形成巨大反差的是,卷材下表面沥青涂盖层一直完好无损,只是由于卷材内部干、湿气体受热膨胀,导致表面的PE膜出现起皮、鼓包,除去PE膜后可以看到完好、光亮的下表面沥青涂盖层。在试验过程中,上、下表面沥青涂盖层最大的区别就在于上表面受到紫外线辐射,而下表面没有。试验结果强烈的反差,说明紫外线辐射对卷材沥青涂盖层有明显的破坏作用。图1为自然老化后卷材2上、下表面沥青涂盖层照

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.360docs.net/doc/935810830.html,.

相关文档
最新文档