功分器和耦合器的计算优选稿

功分器和耦合器的计算优选稿
功分器和耦合器的计算优选稿

功分器和耦合器的计算集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

二公分差损3.2dBm功率均分三公分差损5dBm功率三分

5dB耦合器直通端差损1.8dBm

6dB耦合器?直通端差损1.4dBm

7dB耦合器?直通端差损1.2dBm

10dB耦合器?直通端差损0.5dBm

15dB耦合器?直通端差损0.3dBm

20dB耦合器?直通端差损0.2dBm

分配量是按耦合器的大小来的,比如5dB耦合器,耦合端输出=输入-5dBm?直通端输出=输入-差损

功分器的分配损耗是可以计算的:10lgN(N为分配支路数量),其实就是能量守恒原理。插入损耗是入口功率-出口功率,一半都要比分配损耗大一点点,可以看作是期间内部的电路传输损耗。

耦合端损耗(也就是耦合度),比如NdB耦合器,就是说耦合端输出的功率比输入端功率低NdB.

依然因为能量守恒远离,入口功率被分配出去一部分,直通端输出的功率必然被降到更低。所以耦合度越大,耦合端口分配出去的功率约少,耦合器的插损越小。

比如10dB耦合器,功率分配比9:1,理论上耦合端功率为输入功率的90%,直通端输出功率占输入功率10%,3dB耦合器,相当于功率被耦合50%。所以对于耦合器的直通端口而言,耦合度越大,插损越小!

功分器,耦合器,合路器的区别

耦合器与合路器作用正好相反。耦合器用于接收端,合路器用于发射端。耦合器将接收到的无线信号分为几路给不同的接收机,合路器则将几路从不同发射机过来的射频信号合为一路到天线发射。 耦合器有4端口的,也有3端口的。其实这两个在原理上和结构上是一样的,之所以出现3端口的耦合器是因为在4端口耦合器的其中一个耦合端加了个负载,这样就变成三端口了。 以4端口耦合器为例,每个端口的名称为:RF-INPUT射频信号输入端,RF-OUTPUT 射频信号输出端,COUPLED FORWARD前向耦合端,COUPLED ERVERSE后向耦合端。 再以15dB四端口耦合器为例: 0dBm信号从RF-INPUT输入,其它每个端口得到的功率为: RF-OUTPUT -1.2dBm COUPLED FORWARD -15dBm COUPLED ERVERSE -35dBm 0dBm信号从RF-OUTPUT输入,其它每个端口得到的功率为: RF-INPUT -1.2dBm COUPLED FORWARD -35dBm COUPLED ERVERSE -15dBm 0dBm信号从COUPLED FORWARD输入,其它每个端口得到的功率为:COUPLED ERVERSE -1.2dBm RF-INPUT -15dBm RF-OUTPUT -35dBm 0dBm信号从COUPLED ERVERSE输入,其它每个端口得到的功率为:COUPLED FORWARD -1.2dBm RF-OUTPUT -15dBm RF-INPUT -35dBm 在通信系统中: 合路器主要用作将多系统信号合路到一套室内分布系统。 在工程应用中,需要将800MHZ的C网和900MHz的G 网两种频率合路输出。采用合路器,可使一套室内分布系统同时工作于CDMA频段和GSM频段。 又如在无线电天线系统中,将几种不同频段的(如145MHZ与435MHZ)输入输出信号通过合路器合路后,用一根馈线与电台连接,这不仅节约了一根馈线,还避免了切换不同天线的麻烦。

等分威尔金森功分器的设计与仿真

摘要 摘要 本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端 口的回波损耗:C 11>20dB,频带内的插入损耗:C 21 <3.1dB,C 31 <3.1dB,两个输出端 口间的隔离度:C 23 >25dB为设计指标的等分威尔金森功分器。先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。 关键词:仿真,威尔金森功分器,ADS,优化

ABSTRACT ABSTRACT In this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required. Key words:Simulation Wilkinson Power dividers ADS optimization

T型功分器的设计与仿真.

T型功分器的设计与仿真 1.改进型威尔金森功分器的工作原理 功率分配器属于无源微波器件,它的作用是将一个输入信号分成两个(或多个)较小功率的信号,工程上常用的功分器有T型结和威尔金森功分器。 威尔金森功分器是最常用的一种功率分配器。图1所示的为标准的二路威尔 金森等功率分配器。从合路端口输入的射频信号被分成幅度和相位都相等的两路信号,分别经过传输线Bl和BZ,到达隔离电阻两端,然后从两个分路端口输出,离电阻R两端的信号幅度和相位都相等,R上不存在差模信号,所以它不会消耗功率,如果我们不考虑传输线的损耗,则每路分路端口将输出二分之一功率的信号。 图1威尔金森功分器 但是这种经典威尔金森等功率分配器有几个缺点: 1、大功率应用的时候,要求隔离电阻的耗散功率大因此电阻的体积也会比较大 2、如果功分器应用于较高的频段,波长就会与大功率电阻的尺寸相比拟,这样就需要考虑电阻的分布参数。 3、为了提高功分器性能,就要尽量减小Bl和BZ这两段传输线之间的藕合,因此在实际设计时,要求四分之一波长传输线Bl、BZ之间的距离较大,在低频应用时,由于四分之一波长较长,占用面积还是太大了,此外,四分之一波长传输线Bl、BZ的阻抗较高,因此线宽较细,制板的相对误差更大[24]。为克服这些缺点,本文采用了一种改进型的威尔金森等功率分配器,如图2所示

图2 改进型威尔金森功分器 可以看到,它仅由四段传输线组成,没有隔离电阻。传输线A 、Cl 、CZ 的特 征阻抗均为Z0。传输线B 位于A 和Cl 、CZ 之间,它的电长度为四分之一波长, 特征阻抗为Z0/2。从合路端输入的信号,通过传输线B ,被分成幅度和相位相等的的两路信号,分别经过传输线Cl 和C2到达分路端口一和二,在整个结构中,传输线B 起到了阻抗变换的作用。从传输线A 、B 相接处向左看,输入阻抗为Z0。从传输线B 与C1、C2相接处向右看,输入阻抗为Z0/2。利用四分之一阻抗变换器的原理我们知道,传输线的特征阻抗为2/00Z Z ?,即Z0/2。因此,整个电路处于功率分配与合成时,在中心频点处,三个端口都能匹配良好,没有反射。这种改进型的结构克服了标准威尔金森功分器的一系列缺点,同时由于省略了隔离电阻,所以成本降低,也不存在电阻分布参数的问题,与传统威尔金森功分器相比,减少了一段四分之一波长传输线,另外,构成变换器的四分之一波长传输线B 的特征阻抗较低,线宽较宽,能有效降低制板误差。 2功分器的设计与仿真 通过前面的分析,我们知道改进型威尔金森功分器四段传输线特征阻抗之间 的比例关系。由此可得,传输线A 、C1和C2的特征阻抗均为50Ω,而传输线B 的特征阻抗为352/0=Z Ω 为了实现右旋圆极化,经过C2输出的信号要比经过Cl 的相位超前?90,即Cl 要比C2长λ4/1g (λg 为中心频率所对应的介质波长)。设计的功率分配器 如图3所示,传输线段B 的长度约为λ4/1g ,起阻抗变换的作用。传输线段

微带线定向耦合器的设计word文档

微带线定向耦合器的设计 一、数学模型 1、耦合度和传输系数 图12所示,是平行耦合微带线定向耦合器的示意图。当①端口信号激励时,③端口为隔离端无输出、而耦合端口②及直通端口④有输出。根据奇、偶模分析方法可知,耦合端口②及直通端口④的输出电压分别为, θ θ θθθ θθ θsin )(cos 2sin cos sin )(cos 2sin cos 2020000002 0000002020000200002Z Z j Z Z jZ Z Z Z Z j Z Z jZ Z Z U e e e e +++-+++= θ θθ θsin )(cos 2sin )(cos 22020000000 0020200000 02Z Z j Z Z Z Z Z Z j Z Z Z Z U e e e ++-++= 式中:e Z 0和00Z 分别为耦合微带线的偶模和奇模特性阻抗,e θ和0θ分别是耦合微带线的 偶模和奇模的电长度,0Z 是端口的端接阻抗。 根据(1)式可知定向耦合器的耦合度为, )dB (| |lg 202U C =' 而根据(2)式可得传输系数为, )dB (| |lg 204U T = 但需要满足以下条件,即: ) 1() 2() 3() 4(

e O e e e e Z Z Z Z Z Z Z θθθθsin sin sin sin 0000 00000020 ++== 如果假设耦合微带线中传输的是TEM 波(而不是准TEM 波),则可忽略奇、偶模相速的差别而认为:θθθ==0e ,此时(1)~(4)式可以改写成以下形式,即: θ θθsin cos 1sin 2002j C jC U +-= θ θsin cos 11202 04j C C U +--= 式中: 00 000 00Z Z Z Z C e e +-= 2f f ? =πθ 但需要满足以下条件,即: 00020Z Z Z e = 根据(5)~(9)式可知,此时的耦合度和传输系数分别变为, )dB ()cos 1sin lg(102 20220θ θ C C C -=' )dB ()cos 11lg(102 202 0θ C C T --= 而中心频率的耦合度为, ) dB () lg(20lg 2000 000 00Z Z Z Z C C e e +-==') 5() 6() 7()8() 9() 10()11() 12() 13(

功分器耦合器电桥原理与分析

功分器、耦合器、电桥原理与分析 2010-05-21 13:00 本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。 1功分器 1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。 2)种类:功分器一般有二功分、三功分和四功分3种。 功分器从结构上分一般分为:微带和腔体2种。腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是 几条微带线和几个电阻组成,从而实现阻抗变换. 主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。 以下对各项指标进行说明: l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。 (因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测 得与理论值接近的分配损耗) 耦合器和三功分器图示 分配损耗的理论计算方法:如上图所示。比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话, 每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm= 10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30- 25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dB l 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率

通过实际功分器后输出的功率和原输入信号相比所减小的量)。插入损 耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分 器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。 插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D 的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗= 5.3dB-4.8dB=0.5dB. 微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为 0.1dB左右。由于插损不能使用网络分析仪直接测出,所以一般都以整 个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等 来表示二/三/四功分器的插损。 l 隔离度:指的是功分器输出各端口之间的隔离,通常也会根据二、三、四功分器不同而不同约为:18~22dB、19~23dB、20~25dB。 隔离度可通过网络分析仪测,直接测出各个输出端口之间的损耗,如上图淡蓝色曲线所示,BC间,及 CD间的损耗。 l 输入/输出驻波比:指的是输入/输出端口的匹配情况,由于腔体功分器的输出端口不是50欧姆,所有对于腔体功分器没有输出端口的驻波要求,输入端口要求则一般为:1.3~1.4 甚至有1.15的;微带功分器则每个端 口都有要求,一般范围为输入:1.2~1.3 输出:1.3~1.4。 l 功率容限:指的是可以在此功分器上长期(不损坏的)通过的最大工作功率容限,一般微带功分器为:30~70W平均功率,腔体的则为:100~500W 平均功率。 l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。有些功分器还存在800~ 2000MHz和800~2500MHz频段 l 带内平坦度:指的是在整个可用频段内插损含分配损耗的最大值和最小值之间的差值,一般为:0.2~0.5dB。 2耦合器 1) 耦合器的作用是将信号不均匀地分成2分(称为主干端和耦合端,也有的 称为直通端和耦合端) 2)种类:耦合器型号较多如5 dB、10 dB、15 dB、20 dB、25 dB、30 dB等。

HFSS中功分器的仿真与版图

前段时间仿了一下8GHz的wilkison的3dB等功分器,写下一些小心得。 一、切记要将贴片的高度设计在Z=0的高度,否则你转为.dxf时文件并不能打开。 二、功分器的关键参数是1/4波长匹配器,在仿真高度的过程中要通过改变它的长度,来取得合适的S参数。 三、首先要将S12,S13参数基本确定下来,使其位于(-3,-3.3)dB之间; 四、其次将S11,S22,S33调节到S参数在-25dB以下; 五、最后将S23参数调节到-25dB以下即可投入工程应用。 在使用HFSS设计的过程中,如果使用波端口激励,那么端口应该在空气腔的边缘处。如果使用集总参数激励,那么端口应该在空气腔的内部。 第一步:定义变量 第二步:建模 空气腔:airbox 介质:substrate,Rogers4003, 0.508mm 微带线:patch 电阻:R 波端口激励:port1, port2, port3

注意:在直角处要切一刀,否则的话损耗会比较大。 第三步:设置边界及波端口激励 一、边界的顺序是很重要的,在这里,电阻R会与微带线patch重叠,所以应该会设置微带线为perfectE, 之后再设计电阻为RLC。Substrate的底面应该要设为perfectE。Airbox的不与波端口和substrate接触的面应该要设为radiation。 二、波端口积分方向为从Z=-H到Z=7*H,正中间。 第四步:设置求解频率以及扫描频率

第五步:检查是否设计正确 由于我们是预先设定微带线的,所以可以忽略此警告。开始仿真。 第六步:查看仿真结果,若结果不理想,再进行参数扫描。如下图所示: 添加参数扫描范围parametric,查看它的变化规律,仿真出最好的实验结果。得到扫描范围后,可对其进行优化,optimization,得出理想的结果。 第七步:仿真结果如下图所示

定向耦合器方向性的分析

定向耦合器方向性的分析 目前公司许多产品都用到定向耦合器,但在应用过程中都需要大量调试其方向性来满足指标要求,为了减小调试时间以及调试过程中产生的一些不稳定因素,让产品在设计时就能满足指标要求或在产品中增加一些可调器件来降低调试时间和增加产品的可靠性。 一、定向耦合器为什么会有方向性 上图为一段平行耦合传输线,当传输线1-4中有交变电流i I流过时,由于2-3线与1-4线靠得很近,所以2-3线中就有耦合来的能量,这个能量可通过电场(以耦合电容表示)又通过磁耦合(以耦合电感表示)耦合过来的。通过C m的耦合在2-3线中产生的电流i c2和i c3,同时由于i I的交变磁场作用,在2-3线上有感应电流i L,根据电磁感应定律,感应电流i L的方向与i I相反。 由上图可以看到,若有能量从端口1口输入,端口2是耦合口,端口4是输出端,端口3上有电耦合电流i c3和磁耦合电流i L,这两个电流是方向相反能量相同,相互抵消了,故端口3为隔离端,也使得定向耦合器变得有方向性了。

二、如何改善耦合器的方向性 图二

图三 图一是一段耦合微带线,上面什么也没有,仿真的结果为图二,可以看出这时耦合器的方向性很差,就个2dB,但在这段耦合微带上覆盖一层与基片相同厚度的介质后,得到的仿真结果为图三,这时方向性有很大的改善,有20dB左右。这个在我们实际的设计时已经应用到了,就是在主杆旁边直接用微带线来进行耦合,在调试时去改变腔深对方向性变化很明显,这是因为耦合微带的电场分别处在空气和介质中,所以它的奇模和耦模的相速不相同的,在隔离端的信号就不能相互抵消,方向就会变差,当覆盖一层介质后,电场就只在介质中传输,奇模和耦模的相速就变得相同了,方向就会得到很大的改善。 2、旋转耦合附杆,使之与传输主杆形成一个角度,这在实际应用中很多例子,这和第一种方法是同种道理,改变奇、耦模的电角度来改变它的相速,使方向性变好。

一分四功分器 仿真案例

一分四功分器的设计 这个例子教你如何在HFSS设计环境下创建、仿真、分析一个一分四的微带功分器. 图1 一、开始 1。启动Ansoft HFSS 点击微软的开始按钮,选择程序,然后选择Ansoft,HFSS13程序组,点击HFSS13, 进入Ansoft HFSS。 2。设置工具选项 1、设置工具选项 注意:为了与这个例子的后续步骤一致,要对工具选项进行如下设置: 2、选择菜单:Tools > Options 〉HFSS Options 3、HFSS选项窗口 a、点击常规(General)标签 创建边界时使用数据输入条(Use Wizards for data entry when creating new boundaries):选勾 复制几何图形的边界(Duplicate boundaries with geometry):选勾 b、点击确定键。 4、选择菜单Tools > Options 〉Modeler Options 。 5、3D Modeler Options模块选项窗口 a、点击Operation 键 曲线自动封闭(Automatically cover closed polylines):选勾 b、点击Drawing 键 新的原始模型编辑属性(Edit property of new primitives):选勾

c、点击确定。 3. 打开新工程 1、在HFSS窗口,点击工具条上的,或者选择菜单File > New . 2、从Project菜单选择Insert HFSS Design。 图2 4. 设置求解类型 1. 选择菜单HFSS 〉Solution Type。 2。Solution Type窗口: 1)选择模式驱动(Driven Modal) 2)点击OK按钮。 图3 二、建立3D模型 1。设置模型单位 1。选择菜单Modeler 〉Units 。 2. 设置单位: a。选择单位毫米(mm) b. 点击确定

定向耦合器.

单位代码: 10293 密 级: 硕 士 学 位 论 文 论文题目:带短路支节的高隔离度分支线定向耦合器设计研究 电磁场与微波技术 移动通信与射频技术 工学硕士 二零一五年三月 学 科 专 业 研 究 方 向 申请学位类别 论文提交日期

摘要 定向耦合器是一种常用微波无源元件,在无线系统的射频前端中有着广泛的应用。特别在收发同频的无线系统中定向耦合器常常被用作隔离收发信号的一种关键部件。但是传统的定向耦合器隔离度偏低且工作带宽较窄,无法满足系统的要求。本文以分支线定向耦合器为研究对象,主要围绕如何提高其隔离度和增加工作带宽来进行深入研究。论文的主要工作和创新点包括: (1)根据功率相消原理在其耦合端口增加一条微带短路支节,设计出一款3dB带短路支节双分支线定向耦合器。这种方法结构简单,易于实现,且能够大幅提高耦合器隔离度。 (2)完成了一款实验样品的加工、测量工作,验证了短路支节线用于提高双分支线定向耦合器隔离度的效果,以及工作带宽提高不明显的缺点。 (3)在双分支线定向耦合器基础上,总结出一种有效提高其工作带宽的方法:增加耦合路径,并设计出一款3dB三分支线定向耦合器,该耦合器能够大幅拓宽工作带宽。在3dB带短路支节双分支线定向耦合器的基础上设计出一款3dB带短路支节三分支线定向耦合器,该款改进型定向耦合器在很大程度上拓宽了工作带宽,且提高了隔离度。 关键词: 定向耦合器,隔离度,短路支节,工作带宽

Abstract Reader is an important part of the RFID system, and the reader send and receive isolation is one of the key performance of RFID system. At present, the most common methods to improve the reader transceiver isolation degree is to add directional coupler in front of the reader antenna feed network.The traditional directional coupler isolation and working bandwidth is narrow,and can not meet the requirements if the RFID system. In this paper,we focus on the branch line of directional coupler and research on how to improve the isolation and increase bandwidth. The main work and innovation of this paper include: (1)We use method of old-even mode to analyze the double branch line directional coupler,and use the HFSS simulation software to model and simulation,find the directional has a low degree isolation shortcoming. In order to increase isolation of the directional coupler,according to the theory of destructive power we increase a short branch section in the port, and design a 3dB dual-branch directional coupler with a short branch section.This method is simple in structure, easy to implement, and can greatly improve the coupler isolation. (2) We process the 3dB dual-branch directional coupler with a short branch section into objects, using a vector network analyzer to measure it,finally compare the simulation results and measurement results and found the isolation has been improved in the very great degree but the bandwith is not obvious increased. (3) Base on the dual branch line directional coupler,we sum an effective operating to improve its bandwidth approach:increase the coupling path,and design a 3dB three-branch line directional coupler, the coupler can greatly expand the bandwidth.Base on the dual-branch line directional coupler with a short branch section we design a 3dB three-branch directional coupler with a short branch section,The directional coupler significantly increases the operating bandwidth, and improve the isolation. Key words: the RFID system, isolation , short branch section, directional coupler

功分器、耦合器、电桥、双工器 原理与分析

功分器、耦合器、电桥、双工器原理与分析 本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。 1功分器 1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。 2)种类:功分器一般有二功分、三功分和四功分3种。 功分器从结构上分一般分为:微带和腔体2种。腔体功分器内部是一条直径 由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是 几条微带线和几个电阻组成,从而实现阻抗变换. 3)主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。 以下对各项指标进行说明: l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。 (因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测 得与理论值接近的分配损耗) 耦合器和三功分器图示 分配损耗的理论计算方法:如上图所示。比如有一个30dBm的信号,转换 成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功 率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm= 10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30- 25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dB l 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率 通过实际功分器后输出的功率和原输入信号相比所减小的量)。插入损

耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分 器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。 插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D 的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗= 5.3dB-4.8dB=0.5dB. 微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为 0.1dB左右。由于插损不能使用网络分析仪直接测出,所以一般都以整 个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等 来表示二/三/四功分器的插损。 l 隔离度:指的是功分器输出各端口之间的隔离,通常也会根据二、三、四功分器不同而不同约为:18~22dB、19~23dB、20~25dB。 隔离度可通过网络分析仪测,直接测出各个输出端口之间的损耗,如上图淡蓝色曲线所示,BC间,及 CD间的损耗。 l 输入/输出驻波比:指的是输入/输出端口的匹配情况,由于腔体功分器的输出端口不是50欧姆,所有对于腔体功分器没有输出端口的驻波要求,输入端口要求则一般为:1.3~1.4 甚至有1.15的;微带功分器则每个端 口都有要求,一般范围为输入:1.2~1.3 输出:1.3~1.4。 l 功率容限:指的是可以在此功分器上长期(不损坏的)通过的最大工作功率容限,一般微带功分器为:30~70W平均功率,腔体的则为:100~500W 平均功率。 l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。有些功分器还存在800~ 2000MHz和800~2500MHz频段 l 带内平坦度:指的是在整个可用频段内插损含分配损耗的最大值和最小值之间的差值,一般为:0.2~0.5dB。 2耦合器 1) 耦合器的作用是将信号不均匀地分成2分(称为主干端和耦合端,也有的 称为直通端和耦合端) 2)种类:耦合器型号较多如5 dB、10 dB、15 dB、20 dB、25 dB、30 dB等。

定向耦合器的研究

定向耦合器的研究 几种定向耦合器结构与分析 班级 XXXXXXXXXXXXXXXX 学号 XXXXXXXXXXX 姓名 XXXXXX 功率分配器是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。一个功分器的输出端口之间应保证一定的隔离度。也叫过流分配器,分有源,无源两种,可平均分配一路信号变为几路输出,一般每分一路都有几dB的衰减,信号频率不同,分配器不同衰减也不同,为了补偿衰减,在其中加了放大器后做出了无源功分器。 定向耦合器是微波系统中应用广泛的一种微波器件,它的本质是将微波信号按一定的比例进行功率分配,所以它是一种具有方向性的功率分配器。 定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。 由于微带线具有平面电路结构,用其做成的定向耦合器往往比波导型的立体结构简单的多,故在微波集成电路中获得广泛应用。下面我们将来研究几种微带定向耦合器。 微带分支线定向耦合器 微带分支线定向耦合器由两根平行导带组成,通过一些分支导带实现耦合。分支导带的长度及其间隔均为1/4线上的波长,其结构示意图如下图所示,其分支数可为两分支或更多。所谓电桥是一种将功率平分耦合的定向耦合器的特称,即3dB定向耦合器。下面着重分析二分支的情况。 在一些电桥电路及平衡混频器等元件中,常用到分支线定向耦合器,微带二分支定向耦合器如下图所示,图中的字母G、H和数字1是各线段特性导纳的归一化值(对50欧姆阻抗对应的导纳值归一化),因各端口的导纳值相同,所以又称为等阻二分支定向耦合器。

电桥耦合器和功分器的选择

电桥、耦合器和功分器的选择 电桥、耦合器和功分器,这三类器件在射频电路中用来分配或者合成信号。本文就三种器件的主要参数及它们之间的区别做一些描述。 三者的异同点: 1、3dB电桥和功率器都有功率分配的作用,两路输出的幅度都相等。电桥两路输出相位相差90或180度;而功分器两路输出不仅功率相等,相位也相同。 2、耦合器的耦合输出一般是6dB以上,且相位与主通道相位一致。若耦合度为3dB,则耦合端输出和主通道输出幅度相等,相位相同,这时等效于功分器。 无源器件根据实现原理分为微带型和腔体型两类。 微带型利用1/4波长的微带线,腔体型利用谐振腔。相对而言,微带型器件便宜但插入损耗达0.5dB,而腔体型贵一些但插入损耗只有0.1dB。 功分器是最常见的无源器件,用于将一路信号均分为多路信号,起着功率平均分配的作用,常见的有二功分、三功分、四功分。功分器反向应用就成了合路器。 耦合器是将一路信号分为不等的两路信号。耦合器有三个端子,分别为输入、直通和耦合端。根据输入与耦合端的功率差,分为5dB、6dB、7dB、10dB、15dB等多种型号,也可以根据直通和耦合端的比例,分为1:1,2:1,4:1等多种型号。 3dB电桥是一种特殊的耦合器,有两个输入端,直通和耦合端的比例为1:1,因此输入与耦合端的功率差为3dB。3dB电桥用于将基站的信号合路,从效果上看相当于合路+二功分。 合路器用于不同系统的信号合路,如GSM/PHS/WLAN/WCDMA等,因此可以理解为频率合路。合路器中需要有滤波器。功分器也可做合路器使用,例如二功分。 但是注意的是,二功分、3dB电桥与合路器在使用的过程中也有区别,比如从插损、功率、价格、隔离度等条件考虑使用。 1、二功分与3dB电桥:二功分与3dB的插损、隔离度差不多。二功分做合路器使用插损3.4dB,隔离度25dB,驻波较大,两端口in,一端口out。3DB桥插损是3.2,隔离度也是25,驻波一般。但是有两个输出口,比如输入两个30输出就是两个27。3dB电桥的输出口也可随意定,两进一出\一进两出\两进两出其实都可以,多的一个口接上足够功率的负载就行了。不接负载的其实也就是出厂就断接了,跟另接负载没什么两样的效果。但是,对于驻波比要求高的时候只能用3dB。另外,还要考虑器件的承受功率。那么我想不通的是:在工程选择

实验四:功分器(Power Divider)

实验四:功分器(Power Divider ) * 一、实验目的: 1、了解功分器的原理及基本设计方法。 2、用实验模组实际测量以了解功分器的特性。 3、学会使用MICROWAVE 软件对功分器设计及仿真,并分析结果。 二.预习内容: 1、熟悉功率分接的理论知识。 2、熟悉功分器的理论知识。 四.理论分析: (一)功分器的原理: 功分器是三端口网络结构(3-port network ),如图4-1所示。信号输入端(Port-1)的功率为P1,而其他两个输出端(Port-2及Port-3)的功率分别为P2及P3。由能量守恒定律可知P1=P2 + P3。 若P2=P3并以毫瓦分贝(dBm )来表示三端功率间的关系,则可写成: P2(dBm) = P3(dBm) = P in (dBm) – 3dB 图4-1 功率衰减器方框图 当然P2并不一定要等于P3,只是相等的情况在实际电路中最常用。因此,功分器在大致上可分为等分型(P2=P3)及比例型(P2=K ·P3)两种类型。其设计方法说明如下: (1)等分型: 根据电路使用元件的不同,可分为电阻式、L-C 式及传输线式。 Port-1 P1 Port-3 P3 Port-2 P2

A. 电阻式: 此类电路仅利用电阻设计。按结构可分成Δ形,Y 形,如图4-2(a)(b)所示。 图4-1(a)Δ形电阻式等功分器 图(b )Y 形电阻式等功分器 其中Zo 就是电路特性阻抗(Characteristic Impedance ),在高频电路中, 在不同的使用频段,电路中的特性阻抗不相同。在本实验中,皆以50Ω为例。此型电路的优点是频宽大、布线面积小、及设计简单,而缺点是功率衰减较大(6dB )。 理论推导如下: V0 = · ·V1 = ·V1 V 2 = V3 = ·V0 ∴V 2 = V1→20·log[ ]= -6dB B. L-C 式 此类电路可利用电感及电容进行设计。按结构可分成高通型和低通型,如图4-3(a)(b)所示。其设计公式分别为: a.低通型(Low-pass ): o o o o p o o S f Z C Z L ?=?= ?= πωωω212 其中 fo ——操作频率(operating frequency ) Zo ——电路特性阻抗(characteristic impedance ) Ls ——串联电感(series-inductor ) Cp ——并联电容(shunt-capacitor ) b.高通型(High-pass ): o o o o S o o p f Z C Z L ?=?= = πωωω 22 其中 fo ——操作频率(operating frequency ) Zo ——电路特性阻抗(characteristic impedance ) V Zo Zo 1 2 3 4 2 3 3 4 1 2 V 2 V 1 P 1 P 2 P 3 Port -2 P 1 P 2 P 3 Port -3 (a) (b)

功分器、耦合器、电桥_原理与分析

功分器、耦合器、电桥原理与分析 本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。 1功分器 1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。 2)种类:功分器一般有二功分、三功分和四功分3种。 功分器从结构上分一般分为:微带和腔体2种。腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是 几条微带线和几个电阻组成,从而实现阻抗变换. 主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。 以下对各项指标进行说明: l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。 (因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测 得与理论值接近的分配损耗) 耦合器和三功分器图示 分配损耗的理论计算方法:如上图所示。比如有一个30dBm的信号,转换 成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功 率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm= 10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30- 25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dB l 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率

通过实际功分器后输出的功率和原输入信号相比所减小的量)。插入损 耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分 器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。 插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D 的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗= 5.3dB-4.8dB=0.5dB. 微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为 0.1dB左右。由于插损不能使用网络分析仪直接测出,所以一般都以整 个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等 来表示二/三/四功分器的插损。 l 隔离度:指的是功分器输出各端口之间的隔离,通常也会根据二、三、四功分器不同而不同约为:18~22dB、19~23dB、20~25dB。 隔离度可通过网络分析仪测,直接测出各个输出端口之间的损耗,如上图淡蓝色曲线所示,BC间,及 CD间的损耗。 l 输入/输出驻波比:指的是输入/输出端口的匹配情况,由于腔体功分器的输出端口不是50欧姆,所有对于腔体功分器没有输出端口的驻波要求,输入端口要求则一般为:1.3~1.4 甚至有1.15的;微带功分器则每个端 口都有要求,一般范围为输入:1.2~1.3 输出:1.3~1.4。 l 功率容限:指的是可以在此功分器上长期(不损坏的)通过的最大工作功率容限,一般微带功分器为:30~70W平均功率,腔体的则为:100~500W 平均功率。 l 频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。有些功分器还存在800~ 2000MHz和800~2500MHz频段 l 带内平坦度:指的是在整个可用频段内插损含分配损耗的最大值和最小值之间的差值,一般为:0.2~0.5dB。 2耦合器 1) 耦合器的作用是将信号不均匀地分成2分(称为主干端和耦合端,也有的 称为直通端和耦合端) 2)种类:耦合器型号较多如5 dB、10 dB、15 dB、20 dB、25 dB、30 dB等。

功分器的内部结构

功分器的内部结构、工作原理及应用: 功分器是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器,一个功分器的输出端口之间应保证一定的隔离度。 功分器通常备为能量的等值分配,通过阻抗变换线的级联与隔离电阻的选择,具有很宽的频带特性。 参数说明: 插入损耗:器件直通损耗,其计算公式为所有的路数的输出功率之和与输入功率的比值,或单路的实际直通损耗减去理想的分配损耗,一般理想分配损耗由下式获得:理想分配损耗(dB)=10log(1/N) N为功分器路数 N=3 3.0dB N=3 4.8dB N=4 6.0dB N=8 9.0dB N=16 12.0dB 隔离度:当主路接匹配负载时,各分配支路之间的衰减量。 幅度平衡:指频带内所有输出端口之间的幅度误差最大值。 相位平衡:指频带内各输出端口之间相对于输入端口相移量的起伏程度。 定向耦合器内部结构、工作原理及应用:

定向耦合器常用于对规定流向波信号进行取样,在无内负载时,定向耦合器往往是一四端口网络。 定向耦合器常有两种方法实现,一为耦合定向耦合器,其耦合区长度为四分之一波长的整数倍,其直接输出和耦合输出端口在结构上不相邻,输出相位差往往是90度或180度。 参数说明: 耦合度:当其余端口接匹配负载时,耦合端输出功率与主线输入功率之比。 耦合损耗:由于耦合能量的存在而导致输出功率的减小,它等于主线插入损耗的理论值,主线插入损耗的最小理论值与耦合度的关系如下: 耦合度主线理论损耗 3dB 3.0dB 6dB 1.26dB 10dB 0.46dB 15dB 0.14dB 20dB 0.04dB 30dB 0.004dB 主线损耗:当匹配负载接主线外各端口时,在传输系统中由于耦合器的插入而引起的负载获得功率的变化,主线插入损耗包括耦合损耗和端口反射损耗。 方向性:当功率在指定方向上传输时,耦合端口的输出功率与同样的功率在相反方向传输时同一耦合端口的输出功率之差,对双向定向耦合器而言,定义为两个耦合端输出功率之差。

相关文档
最新文档