解析几何解答题(压轴题)

解析几何解答题(压轴题)
解析几何解答题(压轴题)

7.3解析几何解答题(压轴题)

高考命题规律

1.高考必考考题,压轴题.

2.解答题,12分,中高档难度.

3.全国高考有5种命题角度,分布如下表.

命题角度1曲线与轨迹问题

高考真题体验·对方向

1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P

满足.

(1)求点P的轨迹方程;

(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).

由得x0=x,y0=y.

因为M(x0,y0)在C上,所以=1.

因此点P的轨迹方程为x2+y2=2.

F(-1,0).设Q(-3,t),P(m,n),

则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).

由=1得-3m-m2+tn-n2=1.

又由(1)知m2+n2=2,故3+3m-tn=0.

所以=0,即.

又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.

2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.

(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;

(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

F.

设l1:y=a,l2:y=b,则ab≠0,

且A,B,P-,Q-,R-.

记过A,B两点的直线为l,

则l的方程为2x-(a+b)y+ab=0.

由于F在线段AB上,故1+ab=0.

记AR的斜率为k1,FQ的斜率为k2,

则k1=--

--=-b=k

2

.

所以AR∥FQ.

l与x轴的交点为D(x1,0),

则S△ABF=|b-a||FD|=|b-a|-,S△PQF=-.

由题设可得|b-a|--,

所以x1=0(舍去),x1=1.

设满足条件的AB的中点为E(x,y).

当AB与x轴不垂直时,由k AB=k DE可得

-

(x≠1).

而=y,所以y2=x-1(x≠1).

当AB与x轴垂直时,E与D重合.

所以所求轨迹方程为y2=x-1.

新题演练提能·刷高分

1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.

(1)求点B的轨迹E的方程;

(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点.

B(x,y),则AB的中点D,y>0.

∵C(0,1),则-,

在☉C中,∵DC⊥DB,

∴=0,∵-+y=0,

即x2=4y(y>0).

∴点B的轨迹E的方程为x2=4y(y>0).

E的方程为x2=4y,

设点P(t,-1),M(x1,y1),N(x2,y2).

∵y=,∴y'=,

∴过点M、N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2).

由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x.∵点P在这两条切线上, ∴2(y1-1)=tx1,2(y2-1)=tx2,

即直线MN的方程为2(y-1)=tx,

故直线2(y-1)=tx过定点C(0,1).

2.(2018广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.

(1)求点P的轨迹C的方程;

(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.

设P(x,y),∵A(-2,0),B(2,0),

∴k1=,k2=

,

-

=-,

又k1k2=-,∴

-

∴=1(x≠±2),

∴轨迹C的方程为=1(x≠±2).

(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故

△ ,S=△△ =S△PQO,

当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×--;

当直线PQ的斜率存在时,设其方程为y=k(x+1),

设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0,

Δ=144(k2+1)>0,--

故|PQ|=|x1-x2|=-, 点O到直线PQ的距离d=,

S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6-

--,故S的最大

值为.

3.(2018甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.

(1)求点P的轨迹E的方程;

(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为

W(Q,R,S,T为不同的四个点).

①设W(x0,y0),证明:<1;

②求四边形QRST的面积的最小值.

r,由于D在圆内,圆P与圆C内切,则|PC|=2-r,|PD|=r,|PC|+|PD|=2>|CD|=2, 由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b=-=1,

E的方程为+y2=1.

(2),垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的

四个点,<1.

l1或l2的斜率不存在,四边形QRST的面积为2.

若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),

解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,

同理得|RT|=2,

∴S QSRT=|QS|·|RT|=,

当且仅当2k2+1=k2+2,即k=±1时等号成立.

综上所述,当k=±1时,四边形QRST的面积取得最小值.

4.(2018福建福州3月质检)设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.

(1)求E的方程;

(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.

设点M(x,y),A(x1,y1),则Q(x1,0),

因为2,

所以2(x1-x,-y)=(0,-y1),

所以

-

--

解得

由于点A在圆C:x2+y2=4上,所以x2+4y2=4,所以点M的轨迹E的方程为+y2=1.

(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).

由得(1+4k2)x2+8kx=0.

设B(x1,y1),P(x2,y2),

因此x1=0,x2=-,

|BP|=|x1-x2|=,

则点P的轨迹方程为x2+(y-1)2=,

-

得3y2+2y-5+=0(-1≤y≤1),(*)

依题意得,(*)式关于y的方程在(-1,1)有两个不同的实数解,

设f(x)=3x2+2x-5+(-1

要使函数f(x)的图象在(-1,1)与x轴有两个不同的交点,

--

-

整理得

--

即-

-

所以

解得k∈----,所以k的取值范围为--

--.

命题角度2直线与圆锥曲线的位置关系

高考真题体验·对方向

1.(2017全国Ⅰ·20)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.

(1)求直线AB的斜率;

(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.

设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k=-

-

=1.

(2)由y=,得y'=.

设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).

设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.

将y=x+m代入y=得x2-4x-4m=0.

当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.从而|AB|=|x1-x2|=4.

由题设知|AB|=2|MN|,即4=2(m+1),解得m=7.

所以直线AB的方程为y=x+7.

2.(2017北京·19)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.

(1)求椭圆C的方程;

(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点

E.求证:△BDE与△BDN的面积之比为4∶5.

C的方程为=1(a>b>0).

由题意得解得c=.

所以b2=a2-c2=1.

所以椭圆C的方程为+y2=1.

M(m,n),则D(m,0),N(m,-n).

由题设知m≠±2,且n≠0.

直线AM的斜率k AM=,

故直线DE的斜率k DE=-.

所以直线DE的方程为y=-(x-m),直线BN的方程为y=

(x-2).

-

--

联立

-

-

.

解得点E的纵坐标y E=--

-

由点M在椭圆C上,得4-m2=4n2.

所以y E=-n.

又S△BDE=|BD|·|y E|=|BD|·|n|,

S△BDN=|BD|·|n|,

所以△BDE与△BDN的面积之比为4∶5.

3.(2017天津·20)已知椭圆=1(a>b>0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),△EFA 的面积为.

(1)求椭圆的离心率;

(2)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM 与直线QN间的距离为c,四边形PQNM的面积为3c.

①求直线FP的斜率;

②求椭圆的方程.

设椭圆的离心率为e.

由已知,可得(c+a)c=.

又由b2=a2-c2,可得2c2+ac-a2=0,

即2e2+e-1=0.

又因为0

所以,椭圆的离心率为.

(2)①依题意,设直线FP的方程为x=my-c(m>0),则直线FP的斜率为.

由(1)知a=2c,可得直线AE的方程为=1,即x+2y-2c=0,

与直线FP的方程联立,可解得x=-,

y=,

即点Q的坐标为-.由已知|FQ|=c,有-, 整理得3m2-4m=0,所以m=,即直线FP的斜率为.

②由a=2c,可得b=c,故椭圆方程可以表示为=1.

由①得直线FP的方程为3x-4y+3c=0,

与椭圆方程联立-

消去y,整理得7x2+6cx-13c2=0,解得x=-(舍去)或x=c.

因此可得点P,进而可得|FP|=,

所以|PQ|=|FP|-|FQ|==c.

由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.

因为QN⊥FP,所以|QN|=|FQ|·tan∠QFN=,

所以△FQN的面积为|FQ||QN|=,

同理△FPM的面积等于,

由四边形PQNM的面积为3c,得=3c,整理得c2=2c,又由c>0,得c=2.

所以,椭圆的方程为=1.

新题演练提能·刷高分

1.(2018河南郑州一模)已知圆C:x2+y2+2x-2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F 的距离为.

(1)求抛物线E的方程;

(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l的方程.

C:x2+y2+2x-2y+1=0可化为(x+1)2+(y-1)2=1,则圆心C为(-1,1).

∵F,0,

∴|CF|=-,

解得p=6.

∴抛物线的方程为y2=12x.

(2)设直线l为x=my+t(t≠0),A(x1,y1),B(x2,y2).

联立可得y2-12my-12t=0.

∴y1+y2=12m,y1y2=-12t.

∵OA⊥OB,∴x1x2+y1y2=0,

即(m2+1)y1y2+mt(y1+y2)+t2=0.

整理可得t2-12t=0,∵t≠0,∴t=12.

∴直线l的方程为x=my+12,故直线l过定点P(12,0).∴当CN⊥l时,即动点M经过圆心C(-1,1)时到动直线l的距离取得最大值.

=-,∴m=,

k MP=k CP=-

--

此时直线l的方程为x=y+12,

即为13x-y-156=0.

2.(2018河北唐山一模)已知椭圆Γ:=1(a>b>0)的左焦点为F,上顶点为A,长轴长为2,B为直线l:x=-3上的动点,M(m,0),AM⊥BM.当AB⊥l时,M与F重合.

(1)求椭圆Γ的方程;

(2)若直线BM交椭圆Γ于P,Q两点,若AP⊥AQ,求m的值.

依题意得A(0,b),F(-c,0),

当AB⊥l时,B(-3,b),

由AF⊥BF,得k AF·k BF=

=-1,

-

又b2+c2=6,

解得c=2,b=.

所以,椭圆Γ的方程为=1.

(2)由(1)得A(0,),依题意,显然m≠0,

所以=-,

又AM⊥BM,所以k BM=,

所以直线BM的方程为y=(x-m),

设P(x1,y1),Q(x2,y2).

-

联立

有(2+3m2)x2-6m3x+3m4-12=0,

x1+x2=,x1x2=-.

|PM|·|QM|=|(x1-m)(x2-m)|

=|x1x2-m(x1+x2)+m2|

=-

=-,|AM|2=2+m2,

由AP⊥AQ得,|AM|2=|PM|·|QM|,

所以-=1,解得m=±1.

3.(2018湖北华师附中、黄冈中学等八校第二次联考)在直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,点P在椭圆C上.

(1)求椭圆C的方程;

(2)若斜率存在,纵截距为-2的直线l与椭圆C相交于A,B两点,若直线AP,BP的斜率均存在,求证:直线AP,OP,BP的斜率依次成等差数列.

由=1知a=2,b=,c=1,故椭圆C的方程为=1.

l:y=kx-2,联立

-消元得(3+4k2)x2-16kx+4=0.∵Δ>0,∴k2>.

设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=,∵k AP+k BP=-

-

-

-

=----

--

=--

=-

-

=-

-

=3.

已知k OP=,

∴k AP+k BP=2k OP,即直线AP,OP,BP的斜率依次成等差数列.

命题角度3圆锥曲线的最值、范围问题

高考真题体验·对方向

1.(2017浙江·21)如图,已知抛物线x2=y,点A-,B,抛物线上的点P(x,y)-.过点B 作直线AP的垂线,垂足为Q.

(1)求直线AP斜率的取值范围;

(2)求|PA|·|PQ|的最大值.

设直线AP的斜率为k,k=-

=x-,

因为-

(2)联立直线AP与BQ的方程

解得点Q的横坐标是x Q=-.

因为|PA|=(k+1),

|PQ|=(x Q-x)=-,

所以|PA|·|PQ|=-(k-1)(k+1)3.

令f(k)=-(k-1)(k+1)3,

因为f'(k)=-(4k-2)(k+1)2,

所以f(k)在区间-上单调递增,上单调递减,

因此当k=时,|PA|·|PQ|取得最大值.

2.(2017山东·21)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直

线y=1所得线段的长度为2.

(1)求椭圆C的方程;

(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.

由椭圆的离心率为,得a2=2(a2-b2),

又当y=1时,x2=a2-,得a2-=2,

所以a2=4,b2=2.

因此椭圆方程为=1.

(2)设A(x1,y1),B(x2,y2).

联立方程

得(2k2+1)x2+4kmx+2m2-4=0,

由Δ>0得m2<4k2+2.(*)

且x1+x2=-,

因此y1+y2=,

所以D-,

又N(0,-m),

所以|ND|2=-,

整理得|ND|2=,

因为|NF|=|m|,

所以=1+.

令t=8k2+3,t≥3,故2k2+1=,

所以=1+=1+.

令y=t+,所以y'=1-.

当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,

由(*)得-

设∠EDF=2θ,则sin θ=.

所以θ的最小值为,

从而∠EDF的最小值为,此时直线l的斜率是0.

综上所述,当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.

3.(2016全国Ⅱ·21)已知A是椭圆E:=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N 在E上,MA⊥NA.

(1)当|AM|=|AN|时,求△AMN的面积;

(2)当2|AM|=|AN|时,证明:

M(x1,y1),则由题意知y1>0.由已知及椭圆的对称性知,直线AM的倾斜角为.

又A(-2,0),因此直线AM的方程为y=x+2.

将x=y-2代入=1得7y2-12y=0.

解得y=0或y=,所以y1=.

因此△AMN的面积S△AMN=2×.

AM的方程y=k(x+2)(k>0)代入=1得(3+4k2)x2+16k2x+16k2-12=0.

由x1·(-2)=-得x1=-,

故|AM|=|x1+2|.

由题设,直线AN的方程为y=-(x+2),

故同理可得|AN|=.

由2|AM|=|AN|得,

即4k3-6k2+3k-8=0.

设f(t)=4t3-6t2+3t-8,则k是f(t)的零点.

f'(t)=12t2-12t+3=3(2t-1)2≥0,

所以f(t)在(0,+∞)单调递增.

又f()=15-26<0,f(2)=6>0,因此f(t)在(0,+∞)有唯一的零点,且零点k在(,2)内.

所以

新题演练提能·刷高分

1.(2018广东深圳第二次调研)直线l经过抛物线C:x2=4y的焦点F,且与抛物线C交于A,B两点,抛物线C在A,B两点处的切线分别与x轴交于点M,N.

(1)证明:AM⊥MF;

(2)记△AFM和△BFN的面积分别为S1和S2,求S1·S2的最小值.

A(x1,y1),B(x2,y2),其中y1=,y2=.

由导数知识可知,抛物线C在A点处的切线l1的斜率k1=,则切线l1的方程为y-y1=(x-x1),令y=0,可得M.∵F(0,1),

∴直线MF的斜率k MF=-

=-.

-

∴k1·k MF=-1,∴AM⊥MF.

(1)可知S1=AM·MF,

其中AM=-,MF=, ∴S1=AM·MF=(y1+1).

同理可得S2=(y2+1).

∴S1·S2=(y1+1)(y2+1)

=(y1y2+y1+y2+1).

设直线l的方程为y=kx+1,

联立方程可得x2-4kx-4=0,

∴x1·x2=-4.∴y1·y2==1.

∴S1·S2=(y1+y2+2)≥(2+2)=1,当且仅当y1=y2时,等号成立.

∴S1·S2的最小值为1.

2.(2018山东济南一模)在平面直角坐标系xOy中,抛物线C1:x2=4y,直线l与抛物线C1交于A,B两点.

(1)若直线OA,OB的斜率之积为-,证明:直线l过定点;

(2)若线段AB的中点M在曲线C2:y=4-x2(-2

A(x1,y1),B(x2,y2),

由题意可知直线l的斜率存在,设直线l的方程为y=kx+m,由得x2-4kx-4m=0,

Δ=16(k2+m)>0,x1+x2=4k,x1x2=-4m,k OA·k OB==-,

由已知:k OA·k OB=-,所以m=1,

所以直线l的方程为y=kx+1,所以直线l过定点(0,1).

M(x0,y0),

则x0==2k,y0=kx0+m=2k2+m,

将M(x0,y0)代入C2:y=4-x2(-2

∵-2

∴-

∵Δ=16(k2+m)=16(k2+4-3k2)=32(2-k2)>0,

∴-

故k的取值范围是k∈(-).

|AB|=-

=,

将m=4-3k2代入,得|AB|=4-≤4-=6,

当且仅当k2+1=2-k2,即k=±时取等号,

所以|AB|的最大值为6.

3.(2018湖北武汉调研)已知椭圆Γ:=1,过点P(1,1)作倾斜角互补的两条不同直线l1,l2,设l1与椭圆Γ交于A,B两点,l2与椭圆Γ交于C,D两点.

(1)若P(1,1)为线段AB的中点,求直线AB的方程;

(2)记λ=,求λ的取值范围.

设直线AB的斜率为k=tan α,方程为y-1=k(x-1),代入x2+2y2=4中,

∴x2+2[kx-(k-1)]2-4=0.

∴(1+2k2)x2-4k(k-1)x+2(k-1)2-4=0.

判别式Δ=[4(k-1)k]2-4(2k2+1)[2(k-1)2-4]=8(3k2+2k+1).

设A(x1,y1),B(x2,y2),

---

∵AB中点为(1,1),

∴(x1+x2)=-=1,则k=-.

∴直线AB的方程为y-1=-(x-1),

即x+2y-3=0.

(2)由(1)知|AB|=|x1-x2|=-.

设直线CD的方程为y-1=-k(x-1)(k≠0).同理可得|CD|=-

.

∴λ=

-

(k≠0).

∴λ2=1+

-=1+

-

.

令t=3k+,则g(t)=1+

-

,t∈(-∞,-2]∪[2,+∞).

g(t)在(-∞,-2],[2,+∞)上分别单调递减,

∴2-≤g(t)<1或1

故2-≤λ2<1或1<λ2≤2+.

即λ∈-.

4.(2018辽宁大连一模)在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,点M在椭圆C上.

(1)求椭圆C的方程;

(2)已知P(-2,0)与Q(2,0)为平面内的两个定点,过点(1,0)的直线l与椭圆C交于A,B两点,求四边形APBQ面积的最大值.

由可得,a=2c,又因为b2=a2-c2,所以b2=3c2.所以椭圆C的方程为=1.

因为M在椭圆C上,所以=1.

所以c2=1,所以a2=4,b2=3,

故椭圆方程为=1.

(2)方法一:设l的方程为x=my+1,

联立

消去x得(3m2+4)y2+6my-9=0,

设点A(x1,y1),B(x2,y2),

有Δ>0,y1+y2=-,y1y2=-,

|y1-y2|=-

=---,

所以S=×4×.

令t=,t≥1,

有S=.

设函数y=3t+,t∈[1,+∞),y'=3->0,t∈[1,+∞),

故函数y=3t+在[1,+∞)上单调递增,故3t+≥4,故S=≤6,

当且仅当t=1即m=0时等号成立,

四边形APBQ面积的最大值为6.

方法二:设l的方程为x=my+1,

联立

消去x得(3m2+4)y2+6my-9=0,设点A(x1,y1),B(x2,y2),

有Δ>0,y1+y2=-,y1y2=-,

有|AB|=,

点P(-2,0)到直线l的距离为,点Q(2,0)到直线l的距离为,

从而四边形APBQ的面积S=.

令t=,t≥1,有S=,

函数y=3t+,t∈[1,+∞),y'=3->0,t∈[1,+∞),

故函数y=3t+在[1,+∞)上单调递增,有3t+≥4,故S=≤6.

当且仅当t=1即m=0时等号成立,四边形APBQ面积的最大值为6.

命题角度4圆锥曲线的定值、定点问题

高考真题体验·对方向

1.(2017全国Ⅲ·20)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:

(1)能否出现AC⊥BC的情况?说明理由;

(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.

不能出现AC⊥BC的情况,理由如下:

设A(x1,0),B(x2,0),

则x1,x2满足x2+mx-2=0,所以x1x2=-2.

又C的坐标为(0,1),故AC的斜率与BC的斜率之积为--=-,

所以不能出现AC⊥BC的情况.

(2)BC的中点坐标为,可得BC的中垂线方程为y-=x2-.

由(1)可得x1+x2=-m,

所以AB的中垂线方程为x=-.

联立

-

--

又+mx2-2=0,可得--

所以过A,B,C三点的圆的圆心坐标为--,半径r=.

故圆在y轴上截得的弦长为2-=3,

即过A,B,C三点的圆在y轴上截得的弦长为定值.

2.(2016北京·19)已知椭圆C:=1过A(2,0),B(0,1)两点.

(1)求椭圆C的方程及离心率;

(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:四边形ABNM的面积为定值.

,得a=2,b=1,

所以椭圆C的方程为+y2=1.

又c=-,所以离心率e=.

P(x0,y0)(x0<0,y0<0),则+4=4.

又A(2,0),B(0,1),

所以直线PA的方程为y=

-

(x-2).

令x=0,得y M=-

-

,

从而|BM|=1-y M=1+

-

.

直线PB的方程为y=-

x+1.

令y=0,得x N=-

-

,

从而|AN|=2-x N=2+

-

.

所以四边形ABNM的面积

S=|AN|·|BM|

=

--

=--

--

=--

--

=2.

从而四边形ABNM的面积为定值.

3.(2015全国Ⅱ·20)已知椭圆C:=1(a>b>0)的离心率为,点(2,)在C上.

(1)求C的方程;

(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与直线l的斜率的乘积为定值.

由题意有-

=1,

解得a2=8,b2=4.

所以C的方程为=1.

l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入=1,

得(2k2+1)x2+4kbx+2b2-8=0.

故x M=-,y M=k·x M+b=.

于是直线OM的斜率k OM==-,

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

平面解析几何 经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角α的范围0 0180α≤< (2 )经过两点 的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ?=。特别地,当直线 12,l l 的斜率都不存在时,12l l 与的关系为平行。 (2)两条直线垂直 如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥?=- 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。 二、直线的方程 1、直线方程的几种形式 名称 方程的形式 已知条件 局限性 点斜式 为直线上一定点,k 为斜率 不包括垂直于x 轴的直线 斜截式 k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线 两点式 是直线上两定点 不包括垂直于x 轴和y 轴的直线 截距式 a 是直线在x 轴上的非零截距, b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线

一般式 A , B , C 为系数 无限制,可表示任何位置的直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是 ,两条直线的 交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解 就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。 2.几种距离 (1)两点间的距离平面上的两点 间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线 间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 注:斜率变化分成两段,0 90是分界线,遇到斜率要谨记,存在与否需讨论。 直线的参数方程 〖例1〗已知直线的斜率k=-cos α (α∈R ).求直线的倾斜角β的取值范围。 思路解析:cos α的范围→斜率k 的范围→tan β的范围→倾斜角β的取值范围。

解析几何压轴大题专题突破

解析几何压轴大题专题突破 1. 已知命题 p :方程 x 22m + y 29?m =1 表示焦点在 y 轴上的椭圆,命题 q :双曲线 y 25 ? x 2m =1 的离心率 e ∈( √6 2 ,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围. 2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα, y =sinα,(α 为参数),以坐标 原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π 4 )=2√2. (1)写出 C 1 的普通方程和 C 2 的直角坐标方程; (2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标. 3. 在直角坐标系 xOy 中,直线 C 1:x =?2,圆 C 2:(x ?1)2+(y ?2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程; (2)若直线 C 3 的极坐标方程为 θ=π 4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △ C 2MN 的面积. 4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =?1,直线 l 与抛物线相交于不同的 A ,B 两点. (1)求抛物线的标准方程; (2)如果直线 l 过抛物线的焦点,求 OA ????? ?OB ????? 的值; (3)如果 OA ????? ?OB ????? =?4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由. 5. 已知抛物线 C:y 2=2px (p >0) 与直线 x ?√2y +4=0 相切. (1)求该抛物线的方程; (2)在 x 轴正半轴上,是否存在某个确定的点 M ,过该点的动直线 l 与抛物线 C 交于 A ,B 两点,使得 1 ∣AM∣ +1∣BM∣ 为定值.如果存在,求出点 M 坐标;如果不 存在,请说明理由. 6. 在平面直角坐标系 xOy 中,动点 A 的坐标为 (2?3sinα,3cosα?2),其中 α∈R .在极坐标系(以原点 O 为极点,以 x 轴非负半轴为极轴)中,直线 C 的方程为 ρcos (θ?π 4 )=a . (1)判断动点 A 的轨迹的形状; (2)若直线 C 与动点 A 的轨迹有且仅有一个公共点,求实数 a 的值. 7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a + y 2b =1(a >b >0) 的离心率为 √6 3 .且 过点 (3,?1). (1)求椭圆 C 的方徎; (2)动点 P 在直线 l :x =?2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得 PM =PN ,再过 P 作直线 l?⊥MN ,直线 l? 是否恒过定点,若是,请求出该定 点的坐标;若否,请说明理由. 8. 在平面直角坐标系 xOy 中,C 1:{x =t, y =k (t ?1) (t 为参数).以原点 O 为极点,x 轴 的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ?6ρsinθ+33=0. (1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

高中数学核心考点:解析几何压轴大题四大策略

解析几何压轴大题四大策略 解析几何研究的问题是几何问题,研究的手法是代数法(坐标法).因此,求解解析几何问题最大的思维难点是转化,即几何条件代数化.如何在解析几何问题中实现代数式的转化,找到常见问题的求解途径,是突破解析几何问题难点的关键所在.突破解析几何难题,先从找解题突破口入手. 策略一 利用向量转化几何条件 [典例] 如图所示,已知圆C :x 2+y 2-2x +4y -4=0,问:是否存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,请说明理由. [解题观摩] 假设存在斜率为1的直线l ,使l 与圆C 交于A ,B 两点,且以AB 为直径的圆过原点. 设直线l 的方程为y =x +b ,点A (x 1,y 1),B (x 2,y 2). 联立? ???? y =x +b ,x 2+y 2-2x +4y -4=0, 消去y 并整理得2x 2+2(b +1)x +b 2+4b -4=0, 所以x 1+x 2=-(b +1),x 1x 2=b 2+4b -42.① 因为以AB 为直径的圆过原点,所以OA ⊥OB , 即x 1x 2+y 1y 2=0. 又y 1=x 1+b ,y 2=x 2+b , 则x 1x 2+y 1y 2=x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0. 由①知,b 2+4b -4-b (b +1)+b 2=0, 即b 2+3b -4=0,解得b =-4或b =1. 当b =-4或b =1时, 均有Δ=4(b +1)2-8(b 2+4b -4)=-4b 2-24b +36>0, 即直线l 与圆C 有两个交点. 所以存在直线l ,其方程为x -y +1=0或x -y -4=0. [题后悟通] 以AB 为直径的圆过原点等价于OA ⊥OB ,而OA ⊥OB 又可以“直译”为x 1x 2+y 1y 2=0,可以看出,解此类解析几何问题的总体思路为“直译”,然后对个别难以“直译”的条件先进行“转化”,将“困难、难翻译”的条件通过平面几何知识“转化”为“简单、易翻译”的条件后再进行“直译”,最后联立“直译”的结果解决问题. [针对训练]

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

解析几何初步试题及答案

《解析几何初步》检测试题 命题人 周宗让 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12- C 、13 D 、13 - 3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( ) A .2 1 B .2 1- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y x B .032=--y x C .210x y ++= D .210x y +-= 6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( ) A .()0,4 B .()0,2 C .()2,4- D .()4,2- 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距

为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242 x y -++=的切线,则此切线段的长度为( ) A . 2 B .32 C .12 D . 2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点, 则弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 12.直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若MN ≥则k 的取值范围是( ) A. 304?? -??? ?, B. []304??-∞-+∞????U ,, C. ???? D. 203?? -????, 二填空题:(本大题共4小题,每小题4分,共16分.) 13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的

高考解析几何压轴题精选

1、 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A 、若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 、已知m >1,直线2:02 m l x my -- =,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点、 (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H 、若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围、(6分) 3已知以原点O 为中心,) 5,0F 为右焦点的双曲线C 的离心率 5 e = (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直线 222:44l x x y y +=的交点E 在双 曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分) 4、如图,已知椭圆 22 22 1(0)x y a b a b +=>>2,以该椭圆上的点与椭圆的左、右 焦点12,F F 为顶点的三角形的周长为4(21)、一等轴双曲线的顶点就是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 与2PF 与椭圆的交点分别为B A 、与 C D 、、

(Ⅰ)求椭圆与双曲线的标准方程;(Ⅱ)设直线1PF 、2 PF 的斜率分别为1k 、2k ,证明12· 1k k =;(Ⅲ)就是否存在常数λ,使得 ·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由、(7分) 5、在平面直角坐标系xoy 中,如图,已知椭圆15 92 2=+y x 的左、右顶点为A 、B,右焦点为F 。设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。 (1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设3 1 ,221= =x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。(6分) 6.如图,设抛物线2 :x y C =的焦点为F,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB,且与抛物线C 分别相切于A 、B 两点、 (1)求△APB 的重心G 的轨迹方程、 (2)证明∠PFA=∠PFB 、(6分) 7.设A 、B 就是椭圆λ=+2 2 3y x 上的两点,点N(1,3)就是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点、 (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断就是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由、 (此题不要求在答题卡上画图)(6分) 8.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

高考数学压轴大题--解析几何

高考数学压轴大题-解析几何 1. 设双曲线C :1:)0(1222 =+>=-y x l a y a x 与直线相交于两个不同的点A 、B. (I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.12 5 PB PA =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组 ?? ???=+=-.1, 12 22y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012 24 2 ≠<-+≠-a a a a a a 且解得所以 双曲线的离心率 ).,2()2,2 6 ( 2 2 6 ,120.11122 +∞≠>∴≠<<+= += 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A . 12 5 ).1,(125 )1,(, 12 5 212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0, 13 17 ,060289 12,,.12125.1212172222 2 222 2 2= >= ----=--=a a a a x a a x a a x 所以由得消去所以 2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的

夹角余弦的最小值为3 1 . (Ⅰ)求椭圆C 的方程; (Ⅱ)过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ?(O 为原点)的面积的最大值及 相应的直线l 的方程. 解:(Ⅰ)设椭圆的长轴为2a , ∴a PF PF 221=+ 2221==c F F 2 12 22 124cos PF PF PF PF ?-+= θ = 2 12122124 2)(PF PF PF PF PF PF ?-?-+ =1244212-?-PF PF a 又 21212PF PF PF PF ?≥+ ∴2 21a PF PF ≤? 即31211244cos 2 22=-=--≥a a a θ ∴32 =a ∴椭圆方程为12 32 2=+ y x (Ⅱ) 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N ()1111212 OMN F OM F ON S S S OF y y ???=+=+=2121 y y - 22 1,32 1.x y x my ?+ =???=-? 063)1(222=-+-y my 即 044)32(22=--+my y m . 由韦达定理得: 324221+=+m m y y 324 22 1+-=?m y y ∴212212 214)(y y y y y y -+=- = 3216)32(162222+++m m m =2 22) 32() 1(48++m m 令12+=m t , 则1≥t ∴2 21y y -=4 1448)12(482++= +t t t t . 又令t t t f 1 4)(+=, 易知)(t f 在[1,+∞)上是增函数,

(完整版)解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (1) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (2) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在 抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求 的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次 项,所以直线设为或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂 直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

解析几何综合运用练习题含答案

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知直线 1:210 l ax y ++=与直线2:(3)0 l a x y a --+=,若12//l l,则a 的值为() A.1 B.2 C.6 D.1或2 2.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与 直线x+y+3=0相切,则圆C的方程为( ) A.(x+1)2+y2=2 B.(x-1)2+y2=1 C.(x+1)2+y2=4 D.(x-2)2+y2=4 3.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆 过点(0,2),则C的方程为( ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 4.双曲线x21( ) A. B. m≥1 C.m>1 D. m>2

二、填空题(题型注释) 5.经过圆x 2+2x +y 2 =0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2 =4x 的焦点F 恰好是双曲线22x a -2 2y b =1(a>0,b>0)的右顶点,且双曲线的渐近线方程为y =±3x ,则双曲线方程为________. 三、解答题(题型注释) 7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程. 8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0). (1)试求顶点P 的轨迹C 1的方程; (2)若动点C(x 1,y 1)在轨迹C 1上,试求动点Q 11,322x y ?? ??? 的轨迹C 2的方程.

解析几何大题带答案

三、解答题 26.(18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点,过坐 标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C , 连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐 标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线 . 32 21 1| 32 3432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y =代入 22221,421212x y x k k μ+==++解得记 则)0,(),,(),,(μμμμμC k A k P 于是--

故直线AB 的斜率为,20k k =++μ μμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2(32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y 因此.,11PB PA k k ⊥-=所以 28. (理19) 已知椭圆2 2:14x G y +=.过点(m,0)作圆 22 1x y +=的切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率; (II )将 AB 表示为m 的函数,并求 AB 的最大值. (19)(共14分) 解:(Ⅰ)由已知得,1,2==b a

相关文档
最新文档