EPU_EP弹性体的力学及水声吸声性能_孙卫红

EPU_EP弹性体的力学及水声吸声性能_孙卫红
EPU_EP弹性体的力学及水声吸声性能_孙卫红

数字通信系统结构

潜艇声纳的原理? 声纳是利用水中声波进行探测、定位和通信的电子设备。声学(声纳)是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声纳技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。声纳可按工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声纳。例如按工作方式可分为主动声纳和被动声纳;按装备对象可分为水面舰艇声纳、潜艇声纳、航空声纳、便携式声纳和海岸声纳,等等。声纳装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声纳基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声纳导流罩等。主动声纳技术是指声纳主动发射声波"照射"目标,而后接收水中目标反射的回波以

测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。被动声纳技术是指声纳被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位。影响声纳工作性能的因素除声纳本身的技术状况外,外界条件的影响很严重。比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。例如,声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声纳的作用距离和测量精度。现代声纳根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声纳探测距离。又如,运载平台的自噪声主要与航速有关,航速越大自噪声越大,声纳作用距离就越近,反之则越远;目标反射本领越大,被对方主动声纳发现的距离就越远;目标辐射噪声强度越大,被对方被动声纳发现的距离就越远。

吸声材料及做法

吸声材料及吸声结构归纳为五大类加以介绍。 1、多孔吸声材料 (1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。 ?;;(2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。微孔向外敞开,使声波易于进入微孔内。 (3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。 a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。常用的多孔材料的厚度为: 玻璃棉,矿棉50—150mm 毛毡4---5mm 泡沫塑料25—50mm b.材料容重的影响 改变材料的容重可以间接控制材料内部微空尺寸。一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。 c.背后空气层的影响 多空材料背后有无空气层,对于吸声特性有重要影响。大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。 d.材料表面装饰处理的影响大多数吸声材料在使用时常常需要进行表面装饰处理.常见的 方法有:表面钻孔开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。这些方法都将影响材料的吸声特性。 半穿孔的矿棉吸声板增加了材料暴露在声波中的面积,既增加了有效吸声面积,因此提高了材料的吸声特性。 粉刷油漆等于在材料表面上加了一层高流阻的材料,将会影响材料的吸声特性,特别是在高频段影响更显著。

水声通信技术研究进展及应用

水声通信技术研究进展及应用 摘要:水声通信是当前唯一可在水下进行远程信息传输的通信形式,由于其在民用和军事上都有重大意义,水声通信的研究一直是国内外研究的热点。文章介绍了水声 通信的历史,分析了水声通信发展的关键技术,讨论了水声信道的特点、系统组 成和国内外的发展现状。最后对未来的水声通信技术作了预测。 关键词:水声通信,通信信道,声纳,正交频分复用,声纳信号处理 1 引言 当今世界已进入了飞速发展的信息时代,通信是这一进程中发展最为迅速、进歩最快的行业。陆地和空中通信领域包括的两个最积极、最活跃和发展最快的分支--Internet网和移动通信网日臻完善,而海中通信的发展刚刚崭露头角。有缆方式的信息传输由于目标活动范围受限制、通信缆道的安装和维护费用高昂以及对其他海洋活动(如正常航运)可能存在影响等缺点,极大地限制了它在海洋环境中的应用。另外由于在浑浊、含盐的海水中,光波、电磁波的传播衰减都非常大,即使是衰减最小的蓝绿光的衰减也达到了40dB/km,因而它们在海水中的传播距离十分有限,远不能满足人类海洋活动的需要。在非常低的频率(200Hz以下),声波在海洋中却能传播几百公里,即使20 Hz的声波在水中的衰减也只有2—3dB/km,因此水下通信一般都使用声波来进行通信。而在这个频率范围内,声波在水中(包括海水)的衰减与频率的平方成正比,声波的这个特性导致了水下声信道是带宽受限的。采用声波作为信息传送的载体是目前海中实现中、远距离无线通信的唯一手段。 海洋水下信道是一个极其复杂的时间-空间-频率变化、强多径干扰、有限频带和高噪声的信道,这是至今还存在的难度最大的无线通信信道。研究水声通信必须综合物理海洋学、声学、电子技术和信号处理等多种学科和技术的知识,现在水声通信的研究已经成为各国科学和工程技术人员研究的热点之一。另外,海洋声学技术尤其是水声通信技术是国际发达国家对我国实行封锁的领域,因此研制具有自主知识产权的水声通信技术意义深远。 2 水声通信的历史 水声通信的历史可以追溯到1914年,在这一年水声电报系统研制成功可以看作是水下无线通信的雏形。世界上第一个具有实际意义的水声通信系统是美国海军水声实验室于1945年研制的水下电话,该系统使用单边带调制技术,载波频率8。33kHz,主要用干潜艇之间

高分子合成材料

第十章高分子合成材料 一、1、定义:大多与一种或几种低分子化合物(单体) 集合而成,亦称高分子化合物或高聚物 2、三大合成材料:塑料、合成橡胶、合成纤维(线 型) 3、分子量:通常为10^4到10^6,虽然分子量很大, 但化学组成一般较简单 高线型:其分子为线状长链分子,大多数呈卷曲分4、状。其具有良好的弹性、塑性、柔顺性,还子分有一定的强度,但硬度小 合子支链型:其在主链上带有比主链更短的支链。成结与线型比,其密度小,抗拉强度低,而溶解 材构性增大,这是由于分子间的作用力弱 料体型:是由线形或支链型高聚物分子以化学键 教练形成,成空间网状结构。其不溶于任何 溶剂,最多只能溶胀,加热后不软化,也不 流动,只能一次塑制 5、分类:按合成材料分为塑性、合成橡胶、合成纤维 按分子结构分为线型、支链型、体型 按反应类别分为加聚反应和缩聚反应 6、老化与防老化p127页上边

二、1、塑料是以合成或天然高分子有机化合物为主要原 料,在一定的条件下塑化形成,且在常温下保持产品 形状不变的材料。常见的有合成树脂、天然树脂、纤 维素酯、沥青…… 塑2、特性:(1)密度小0.9—0.2g/㎝^3 (2)导热率低,料泡沫塑料是良好的绝热材料(3)比强度高,材料强度与表观密度的比值(4)耐腐蚀性好(5)电绝缘 性好(6)装饰性好 主要缺点:(1)耐热性低、耐火性差,易老化,刚度 差 3、组成:大多数塑料都是多成分的,除合成树脂外(基 本组成材料),尚有填料、固化剂、着色剂及其他助 剂等。 三、建筑塑料常用品种1、聚乙烯塑料 学定性和耐水性,强度虽不高,但低温柔韧性大。掺适量炭黑,可提高其抗老化性。 2、聚氯乙烯(PVC) 耐热性差,通常使用温度应在60—80度之间。 3、聚丙烯塑料(PP质轻,耐热性较高(100—120),刚性、延性和抗水性均好,抗大气性差,故事用于室内。 4、聚苯乙烯塑料(PS透光性好,易着色,化学稳定性高,耐水、耐光,成型加工方便,价格低。但耐热性低,易燃。

材料的吸声系数

材料的吸声系数 吸声系数隔振vibration isolation 材料吸收和透过的声能与入射到材料上的总声能之比,叫吸声系数(α)。 α=Eα/Ei =(Ei-Er)/Ei=1-r 式中:Ei——入射声能;Eα——被材料或结构吸收的声能; Er——被材料或结构发射的声能; r——反射系数。 名词解释 吸音系数是按照吸音材料进行分类的。说明不同材料有不同吸音质量 分贝(db),是声压级大小的单位(声音的大小)。声音压力每增加一倍,声压量级增加6分贝。1分贝是人类耳朵刚刚能听到的声音。20分贝以下,我们认为它是安静。20-40分贝相当于情人耳边的轻轻细语。40-60分贝是我们正常谈话的声音。60分贝以上属于吵闹范围。70分贝很吵,并开始损害听力神经。90分贝会使听力受损。在100-120分贝的房间内呆1分钟,如无意外,人就会失聪(聋)。 吸声原理 当入射声能被完全反射时,α=0,表示无吸声作用;当入射声波完全没有被反射时,α=1,表示完全被吸收。一般材料或结构的吸声系数α=0~1,α值越大,表示吸声能越好,它是目前表征吸声性能最常用的参数。 吸声是声波撞击到材料表面后能量损失的现象,吸声可以降低室内声压级。描述吸声的指标是吸声系数a,代表被材料吸收的声能与入射声能的比值。理论上,如果某种材料完全反射声音,那么它的a=0;如果某种材料将入射声能全部吸收,那么它的a=1。事实上,所有材料的a介于0和1之间,也就是不可能全部反射,也不可能全部吸收。 不同频率上会有不同的吸声系数。人们使用吸声系数频率特性曲线描述材料在不同频率上的吸声性能。按照ISO标准和国家标准,吸声测试报告中吸声系数的频率范围是100-5KHz。将 100-5KHz的吸声系数取平均得到的数值是平均吸声系数,平均吸声系数反映了材料总体的吸声性能。在工程中常使用降噪系数NRC粗略地评价在语言频率范围内的吸声性能,这一数值是材料在250、500、1K、2K四个频率的吸声系数的算术平均值,四舍五入取整到0.05。一般认为NRC小于0.2的材料是反射材料,NRC大于等0.2的材料才被认为是吸声材料。当需要吸收大量声能降低室内混响及噪声时,常常需要使用高吸声系数的材料。如离心玻璃棉、岩棉等属于高NRC吸声材料,5cm厚的24kg/m3的离心玻璃棉的NRC可达到0.95。 分贝、声功率、声强和声压 分贝 人们日常生活中遇到的声音,若以声压值表示,由于变化范围非常大,可以达六个数量级以上,同时声音功率由于人体听觉对声信号强弱刺激反应不是线形的,而是成对数比例关系。所以采用分贝来表达声学量值。所谓分贝是指两个相同的物理量(例A1和A0)之比取以10为底的对数并乘以10(或20)。N = 10lg(A1/A0) 分贝符号为"dB",它是无量纲的。式中A0是基准量(或参考量),A是被量度量。被量度量和基准量之比取对数,这对数值称为被量度量的"级"。亦即用对数标度时,所得到的是比值,它代表被量度量比基准量高出多少"级"。 声功率(W) 声功率是指单位时间内,声波通过垂直于传播方向某指定面积的声能量。在噪声监测中,声功率是指声源总声功率。单位为W。 声功率级: Lw =10lg(W/W0) 式中:Lw——声功率级(dB); W——声功率(W);

吸声材料

吸声材料 吸声材料 sound-absorbing material 具有较强的吸收声能、减低噪声性能的材料。吸声材料按吸声机理分为:①靠从表面至内部许多细小的敞开孔道使声波衰减的多孔材料,以吸收中高频声波为主,有纤维状聚集组织的各种有机或无机纤维及其制品以及多孔结构的开孔型泡沫塑料和膨胀珍珠岩制品。②靠共振作用吸声的柔性材料(如闭孔型泡沫塑料,吸收中频)、膜状材料(如塑料膜或布、帆布、漆布和人造革,吸收低中频)、板状材料(如胶合板、硬质纤维板、石棉水泥板和石膏板,吸收低频)和穿孔板(各种板状材料或金属板上打孔而制得,吸收中频)。以上材料复合使用,可扩大吸声范围,提高吸声系数。用装饰吸声板贴壁或吊顶,多孔材料和穿孔板或膜状材料组合装于墙面,甚至采用浮云式悬挂,都可改善室内音质,控制噪声。多孔材料除吸收空气声外,还能减弱固体声和空室气声所引起的振动。将多孔材料填入各种板状材料组成的复合结构内,可提高隔声能力并减轻结构重量。 对入射声能有吸收作用的材料。吸声材料主要用于控制和调整室内的混响时间,消除回声,以改善室内的听闻条件;用于降低喧闹场所的噪声,以改善生活环境和劳动条件(见吸声降噪);还广泛用于降低通风空调管道的噪声。吸声材料按其物理性能和吸声方式可分为多孔性吸声材料和共振吸声结构两大类。后者包

括单个共振器、穿孔板共振吸声结构、薄板吸声结构和柔顺材料等。 选用吸声材料,首先应从吸声特性方面来确定合乎要求的材料,同时还要结合防火、防潮、防蛀、强度、外观、建筑内部装修等要求,综合考虑进行选择。 吸声系数材料的吸声性能常用吸声系数妶表示。入射到材料表面的声波,一部分被反射,一部分透入材料内部而被吸收。被材料吸收的声能与入射声能的比值,称为吸声系数。对于全反射面,妶=0;对于全吸收面,妶=1;一般材料的吸声系数在0~1之间。材料吸声系数的大小与声波的入射角有关,随入射声波的频率而异。以频率为横坐标,吸声系数为纵坐标绘出的曲线,称为材料吸声频谱。它反映了材料对不同频率声波的吸收特性。测定吸声系数通常采用混响室法和驻波管法。混响室法测得的为声波无规则入射时的吸声系数,它的测量条件比较接近实际声场,因此常用此法测得的数据作为实际设计的依据。驻波管法测得的是声波垂直入射时的吸声系数,通常用于产品质量控制、检验和吸声材料的研制分析。混响室法测得的吸声系数,一般高于驻波管法。 多孔性吸声材料这类材料的物理结构特征是材料内部有 大量的、互相贯通的、向外敞开的微孔,即材料具有一定的透气性。工程上广泛使用的有纤维材料和灰泥材料两大类。前者包括玻璃棉和矿渣棉或以此类材料为主要原料制成的各种吸声板材或吸声构件等;后者包括微孔砖和颗粒性矿渣吸声砖等。

水下吸声覆盖层结构及吸声机理研究进展

第31卷第8期2009年8月舰 船 科 学 技 术 SH I P SC I E NCE AND TECHNOLOGY Vol .31,No .8 Aug .,2009   水下吸声覆盖层结构及吸声机理研究进展 罗 忠1 ,朱 锡1 ,林志驼2 ,王卫忠 2 (1.海军工程大学船舶与动力学院,湖北武汉430033;2.海军92143部队,海南三亚572021) 摘 要: 经过50多年的发展,尤其是近20年中,在水下目标声隐身背景需求的促进和推动下,以吸声覆盖层为主要研究对象的声隐身结构研究,已经建立了完整的理论框架。本文将目前国内外主要的吸声覆盖层结构分为粘弹性复合吸声结构、周期散射复合吸声结构、孔腔谐振吸声结构等,比较了各种吸声覆盖层的结构形式对吸声性能的影响,并从吸声机理出发,分析了各种吸声覆盖层结构的主要研究方法,最后展望了我国水下吸声覆盖层结构及吸声机理研究的趋势。 关键词: 声隐身;吸声覆盖层;粘弹性;散射;谐振 中图分类号: T N91117 文献标识码: A 文章编号: 1672-7649(2009)08-0023-08 DO I:1013404/j 1issn 11672-7649120091081002 A rev i ew of underwa ter anecho i c coa ti n g structure and absorpti on theor i es LUO Zhong 1 ,ZHU Xi 1 ,L IN Zhi 2tuo 2 ,WANG W ei 2zhong 2 (1.College of Naval A rchitecture and Power,Naval University of Engineering,W uhan 430033,China; 2.Unit 92143,P LA,Sanya 572021,China ) Abstract: The require ments of under water acoustic stealth technique had p r omoted the research on under water anechoic coating structure for recent 50years . Accordingly,a comp rehensive theoretical f oundati on had been f or med f or the passed 20years .This paper su mmarized the main structure and valuable results of under water anechoic coatin g .More s pecifically,it classified the main structure int o vis oelastic composite abs or p ti on structures,cycle scattering composite abs or p ti on structures,cavity res onant abs or p ti on structures .The effect of structure for m t o abs or p ti on p r operties was compared .The under water anechoic coating structures and abs or p ti on theories were analyzed .I n the end of this paper,it p r os pected the feature researc h trend on this t op ic in our country . Key words: acoustic stealth;anechoic coating;viscoelastic;scattering;res onant 收稿日期:2009-02-10;修回日期:2009-03-10 基金项目:国家973重大基础研究基金资助项目(51335020101);国防重点预研基金资助项目作者简介:罗忠(1982-),男,博士研究生,主要从事水下声隐身材料与结构研究工作。 0 引 言 潜艇的最大特点就在于它具有隐蔽性与突发攻 击能力,降低潜艇的声目标强度将减小敌方发现我艇的距离,提高我艇的生存能力,目前主要采用在潜艇壳体上敷设吸声覆盖层结构来降低声目标强度。经过半个多世纪的发展,水声吸声材料的研究已取得了丰硕的成果,以橡胶类和聚氨酯类为基体的水声吸声材料研究日益成熟,内耗大、阻尼性能好的高分子材 料发展为吸声覆盖层提供了更广阔的选材空间,如丁 基橡胶、聚氨酯橡胶、互穿聚合物网络等。当声波通过高分子材料覆盖层时,会将能量传递给大分子链段,引起大分子链段的相对运动,分子链间产生内摩擦将入射声能转化为热能而吸收。 随着潜艇巡航深度的增大和声呐探测技术的不断发展,对潜艇的声隐身技术提出了新的挑战,水下吸声覆盖层结构正朝着耐压、低频和宽频段吸收的方 向发展[1] 。对单一均质材料而言,由于阻抗匹配的

现代水声通信技术发展探讨

现代水声通信技术发展探讨 近年来,随着各种新技术的层出不穷,对我国各行业的发展建设都起到了重要推进作用。尤其是在通信技术方面水声技术的发展也越来越成熟,国内外对其研究也越来越重视。目前水声通信主要有以下几种方式,如OFDM、扩频以及其他方式等都是比较常见的,且随着信息技术的不断创新与发展,利用网络技术进行无线电水声通信的研发已经进入比较成熟的阶段,对于实现海洋全方位监测有着不可忽视的重要影响,下面文章就其现代水声通信技术的发展现状进行详细地分析与阐述,希望可以为相关人员提供一定的参考。 标签:水声通信;相干通信;非相干通信 Abstract:In recent years,with the endless emergence of various new technologies,it has played an important role in promoting the development and construction of various industries in China. Especially in communication technology,the development of underwater acoustic technology is becoming more and more mature,and more attention has been paid to the research of underwater acoustic technology at home and abroad. At present,underwater acoustic communication mainly has the following several ways,such as OFDM,spread spectrum and other methods are relatively common,and with the continuous innovation and development of information technology,The research and development of radio underwater acoustic communication using network technology has entered a relatively mature stage,which has an important impact on the realization of marine all-directional monitoring. The following article carries on the detailed analysis and the elaboration to its modern underwater acoustic communication technology development present situation,in order to provide the certain reference for the related personnel. Keywords:underwater acoustic communication;coherent communication;incoherent communication 1 水聲通信技术的发展 早在欧美发达国家就已经将水声通信技术应用于军事和民用两方面,甚至随着计算机技术的发展,在国外一些机构组织研究中已经将计算机技术彻底融入至水声通信技术中并形成了水声通信网络化。水声技术作为海洋开发的重要技术之一,对于海洋的研究及开发有着不可忽视的重要影响。利用水声通信技术可以有效对海底各种信息的传输及数据进行精准分析,对于海洋资源的开发及运用都起到了很重要的影响。通过水声通信技术可以有规律的了解到海洋的全天候的变化和信息资料的收集,作为海洋系统之一水声通信技术的建立和水声通信网络的完善,可以为不同海洋开发客户资源提供全面的检测。甚至能够精准测出环境对海洋资源的影响和自然灾害的发生。在我国在水声通信网络计划方面还处于初级研究阶段,相信在不久的将来,同样可以结合各种先进技术,建立完善的水声通信

水声通信系统中的信道编码技术研究

水声通信系统中的信道编码技术研究 信道编码定理为人们探索信道的最佳编码方案提供了理论依据,但并没有指明如何获得好码。目前,出现了多种信道编码方案,如RS 码、卷积码、级联码等。本文简要介绍了RS 码和卷积码的基本原理,并进行了相应的计算机仿真,并给出了加入了RS 码和卷积码水声通信系统的水池实验数据,结果表明利用信道编码技术能够提高水声通信系统的误码性能。 (一)Reed -Solomon 码 1960 年I.S Reed 和G .Solomond 提出RS 码,又称Reed -Solomon 码,RS 码是一类纠错能力很强的多进制BCH 码。 RS 码是在GF(q)上长度为N=q-1的本原BCH 码。冗余根据可纠正错误确定,通常等于2t 个字符。这样,编码具有k=q-2t-1个信息字符。这种码具有N 个信息字符,可纠正t 个错误。长度为N ,设计距离为=q-k δ的RS 码的生成多项式为: )())()(()(1321-----=δααααx x x x x g (1) 本论文系统中实现的编码器按图1工作。开始编码前,向A0~A13或A0~A11单元写入信息字符(分别对应1个或2个可纠错码)。P0~P15单元记载类构造器算出的校验多项式的系数值。然后校验多项式系数和信息字相乘并相加,如图所示。运算的结果得出校验字符,存入A0(此时,信息字符向左移位)。生成过程继续,直到A15出现信息字高位元素。这样,在编码中,为纠正1个错误,必须进行2次迭代;为纠正2个错误,必须进行4次。 ∑ 图1 RS 码编码器的结构 纠错码的译码问题,一直是编码理论中最感兴趣的课题之一。RS 在短和中的码长下,具有很好的纠错性能,构造容易,故得到广泛应用。 RS 的译码基本上分为3步:第一步是由接收到的R(x)计算出伴随式;第2步由伴随式找出错误图样E(x);第3步由R(x)- E(x)得到可能发送的码字C(x)。 记q(x)为信息多项式,则发送码字C(x)=q(x)g(x),接收到的码字:

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

常用材料的吸声系数

常用材料的吸声系数: 125 250 500 1000 2000 4000 砖墙、抹光、涂漆0.01 0.01 0.02 0.02 0.02 0.03 厚地毯,铺在水泥地上0.20 0.06 0.14 0.37 0.60 0.65 混凝土墙、粗糙0.36 0.44 0.31 0.29 0.39 0.25 混凝土墙,涂漆0.10 0.05 0.06 0.07 0.09 0.08 丝绒0.30kg/m2,直接挂在墙上0.03 0.04 0.11 0.17 0.24 0.35 丝绒0.43kg/m2,折叠面积一半0.07 0.31 0.49 0.75 0.70 0.60 丝绒0.56kg/m2,折叠面积一半0.14 0.35 0.49 0.75 0.70 0.60 木地板0.15 0.11 0.10 0.07 0.06 0.07 水泥地板0.01 0.01 0.015 0.02 0.02 0.02 普通玻璃(厚3mm~4mm)0.35 0.25 0.18 0.12 0.07 0.04 石膏板, 龙骨50×100mm, 中心距40cm 0.29 0.10 0.05 0.04 0.07 0.09 开口的舞台(与设备有关)0.25 0.30 0.40 0.50 0.65 0.75 很深的包厢0.50 0.55 0.65 0.70 0.80 1.00 通风口0.15 0.22 0.30 0.40 0.45 0.50 大理石或抛光板0.01 0.01 0.01 0.01 0.02 0.02 胶合板(9mm厚)0.28 0.22 0.17 0.09 0.10 0.11 玻璃纤维(厚5cm) 0.15 0.38 0.81 0.83 0.79 0.74 超细玻璃纤维(厚5cm) 0.25 0.41 0.82 0.83 0.89 - 矿渣棉(厚6.0cm)0.25 0.55 0.79 0.75 0.88 - 石棉(厚2.5cm) 0.06 0.35 0.50 0.46 0.52 0.65 甘蔗板(厚1.3cm) 0.12 0.19 0.28 0.54 0.49 0.70 木丝板(厚3cm) 0.05 0.07 0.15 0.56 0.90 - 麻纤维板(厚2cm) 0.09 0.11 0.16 0.22 0.28 - 玻璃棉板(厚5cm) 0.06 0.17 0.48 0.81 0.95 0.90 石棉板(厚0.8cm) 0.02 0.03 0.05 0.06 0.11 0.28 青软木板(厚3.5cm) 0.05 0.06 0.29 0.35 0.34 0.50 工业毛毡(厚2.0cm) 0.07 0.26 0.42 0.40 0.55 0.56 沥青玻璃棉毡(厚3.0cm) 0.11 0.13 0.26 0.46 0.75 0.88 超细玻璃棉毡(厚4.0cm) 0.08 0.24 0.89 0.69 0.77 - 沥青矿棉毡(厚3.0cm) 0.08 0.18 0.50 0.68 0.81 0.89 泡沫玻璃(厚4.0cm) 0.11 0.27 0.35 0.31 0.43 - 树脂棉板(厚5.0cm) 0.06 0.17 0.48 0.81 - - 硬聚氯乙烯泡沫塑料板(厚2.5cm) 0.04 0.04 0.17 0.56 0.28 0.58 酚醛泡沫塑料(厚2.0cm) 0.08 0.15 0.30 0.52 0.56 0.60 聚胺甲酸脂泡沫塑料(厚2.0cm) 0.11 0.13 0.27 0.69 0.98 0.79 微孔聚脂泡沫塑料(厚4.0cm) 0.10 0.14 0.26 0.50 0.82 0.77 粗孔聚脂泡沫塑料(厚4.0cm) 0.06 0.10 0.20 0.59 0.68 0.85 聚氯乙烯塑料(厚0.41cm) 0.03 0.02 0.06 0.29 0.13 0.13 尿荃米波罗(厚3.0cm) 0.10 0.17 0.45 0.67 0.65 0.85 微孔吸声砖(厚9.5cm) 0.41 0.75 0.66 0.76 0.81 - 泡沫石膏(厚2.5cm) 0.06 0.18 0.50 0.70 0.55 0.50

五大类吸声材料及吸声结构简介

五大类吸声材料及吸声结构简介 1、多孔吸声材料 (1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。 (2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。微孔向外敞开,使声波易于进入微孔内。 (3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。 a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。常用的多孔材料的厚度为: 玻璃棉,矿棉50—150mm 毛毡4---5mm 泡沫塑料25—50mm b.材料容重的影响 改变材料的容重可以间接控制材料内部微空尺寸。一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。 c.背后空气层的影响 多空材料背后有无空气层,对于吸声特性有重要影响。大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料

梯度聚氨酯吸声性能的优化

第28卷 第10期 2006年10月武 汉 理 工 大 学 学 报J OURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vo l .28 N o .10 O ct .2006 梯度聚氨酯吸声性能的优化 杨 雪,王源升,余红伟 (海军工程大学化学与材料系,武汉430033) 摘 要: 梯度聚氨酯能够吸收宽带声波,通过大量反复试验测量来优化设计梯度聚氨酯各层材料厚度既费时又费力。因此主要从理论上优化梯度聚氨酯各层材料厚度,使其具有最佳吸声性能。制备了梯度聚氨酯,并在声管中测试其水声吸声系数。用传递矩阵法计算其吸声系数,结果表明计算结果与试验结果一致,由此证明应用传递矩阵法计算梯度聚氨酯吸声系数是合理的。然后根据此数学模型,应用M atlab 编辑遗传算法程序优化梯度聚氨酯各层材料厚度。 关键词: 遗传算法; 优化; 吸声性能 中图分类号: O 427文献标志码: A 文章编号:1671-4431(2006)10-0035-03 Optimization of Sound Absorption Properties of Graded Polyurethanes Y ANG X ue ,W ANG Yuan -sheng ,Y U Hong -wei (Department of Chemistry and M aterials ,N av al U niversity of Engineering ,Wuhan 430033,China ) Abstract : T he graded polyurethane could be used to absorb wide frequency sound wave .However ,the work w asted time and power because of the numerous trial -and -error measurements involved .In this paper ,the sound absorption properties opti -mization of graded polyurethanes in theo ry was presented .T he g raded polyurethanes were prepared in our lab .T heir underw a -ter sound absorption coefficients were measured in sound tube and calculated by transfer matrix method .T he results showed that the ag reement between the calculated and measured results verified to be reasonable for transfer matrix method calculating sound abso rption coefficient .Then the genetic algo rithm prog ram edited by using M atlab w as used to optimize the sound absorptio n pro perties of the g raded poly urethanes . Key words :  g enetic alg orithm ; optimization ; sound absorption proper ties 收稿日期:2006-05-28. 基金项目:国防预研项目.作者简介:杨 雪yang @https://www.360docs.net/doc/97152741.html, 梯度吸声结构由于结构和施工工艺简单以及能够实现宽带吸声,从而引起了许多学者对其吸声性能的理论研究[1-4]。近年来,朱金华等[5]设计合成了多种不同配方的聚氨酯材料,并详细研究了梯度聚氨酯介质中的声吸收,根据声阻抗匹配条件设计了具有优良吸声性能的梯度聚氨酯。对于这类梯度聚氨酯吸声性能的研究发现:当各层材料性能及总厚度一定而各层材料厚度发生变化时,梯度聚氨酯的吸声性能也会发生很大的变化[6]。因此必须优化设计梯度聚氨酯各层材料的厚度才能使其具有最佳吸声性能。由于高分子材料物理性能参数与频率有关,因此要合理设计各层材料的厚度,使梯度聚氨酯在所研究的频率范围内具有最 佳吸声性能是非常复杂的优化求解问题。遗传算法(GA )[7]作为一种新的全局优化搜索算法,能够有效解决 这类最优化问题。目前对于梯度复合结构吸声性能的理论研究主要集中在声学性能预测,对其声学性能的优化设计所见文献报道较少[8,9],特别是各层材料的性能随频率变化的梯度吸声结构吸声性能的优化还未见报道。

木基吸声材料

木基吸声材料 Con Wassilieff 新西兰,惠灵顿,马歇尔节协会,11442邮政信箱 (95年10月6日收稿,修订稿获得于96年2月19日) 摘要 目前很少有用木材作为基础材料的实用、高效的吸声材料。本文表明,用刨花或woodJibres为媒介制成的吸声材料可以由简单的瑞利模式作出一个合理的描述,该媒介作为声音传播的平行狭缝之间的一个分层结构模型。该模型仅需要气流电阻率、孔隙度和材料的曲折作为输入。与这些参数和材料的散装密度近似关系的建立。关键词:木纤维,木刨花,吸声。 简介 但是,有关的潜在风险越来越引起普遍的关注,可以看作是由玻璃纤维或矿物纤维相关的脱落为木质材料作为基础的声音吸收提供了一个机会,(使木基材料)将在传统上应用程式中使用的玻璃纤维或矿物产品中开发。木材也是一种可再生资源。 木基(不包括在一木板充满吸水空气腔)基本上由现有穿孔纤维组成板,以亥姆霍兹共振机制为依托,与木材浸渍水泥粘合剂的地砖(木丝),在在这种情况下,依靠四分之一波长共振增加声音吸收。 在每一种情况下,无论是基材料具有非常高的,或非常低的气流电阻率。它们自己将具有非常低的声音吸收。通常软质纤维板在5000000 rayleighs/米的区域有一个气流电阻率;木丝在1000 rayleighs/米的地区也有一个气流电阻率,但这种低气流电阻率通过材料中的声速下降有所减轻,从而使木丝板出现声―厚‖。最实用的多孔玻璃矿物纤维吸声材料在10000至100000 rayleighs/米范围内对气流电阻率进行优化设计。 一种实用的多孔木质吸声(产品)可以用各种方法制备。例如,木纤维可直接用于替代矿产多孔纤维来制作棉絮或压缩的面板产品,木刨片或薄片也可以。高密度面板产品如中密度纤维板(MDF)和微粒板(纤维板)已经从纤维和薄片过时,

浅海水声网络全解

浅海水声网络 1.摘要 水声网络通常由通过水声相连的海底传感器节点,自主无人航行器及与岸基站点进行无线通信的网关海面站点构成。该网络服务质量受声传输信号低带宽,低声速导致的高延时和高环境噪声所限。其长期设计目标是能够提供基于网络链接的自组网络,通过最优化系统参数自主适应环境。本文考虑了最小化能耗约束,最优化吞吐和可靠性条件下设计浅海水声网络的诸多方面问题。 2.引言 近二十年来,水声通信技术取得了显著进步。高速可靠通信系统的实现使得海底坐地传感器与水下自主航行器等水下节点间实时点对点通信成为可能。当前研究热点主要集中在应对环境数据采集、近海探测、污染检测与军事侦察等应用的网络多链路协同领域。 海底或海监测的传统方法包括传感器布放,实验数据记录和试验设备回收。该方法存在诸多不足: 实验记录数据需在长达数周的实验任务结束后获取; 海底设备与岸基用户间无法进行信息交互,因此,当某区域出现感兴趣事件时无法进行系统重配置; 如果设备在回收前出现错误,那么数据采集过程将停止或所有数据可能丢失。 特定海域长期实时观测最理想的解决途径将诸多测量设备通过无线链路连接成网络结构。最基本的水下声学网络由类似固定节点与水下自主航行器等节点间的建立的双工水声通信所组成。该网络将与海面站点相连,并借助该站点采用RF链路与远程陆上节点如Internet 网络相连接。岸基多用户能够从远距离水下设备实时获取数据,评估已获取的数据,并可对单个设备发送控制信息。由于数据不再储存在水下设备中,因此可以避免数据丢失,也能通过网络重配置得以绕开失效节点 水声网络的最大约束是有限能源支持。对陆上系统而言,无线调制解调器电池的替换非常简单,但水下无线调制解调器电池替换受航行时间和调制解调器回收时间的制约而显得费时费钱。因此,对水下应用而言,传输能量显得异常昂贵。网络协议应通过减少重传次数,降低传输间隔的功耗以及最小化每次传输需求来节省能耗。 在救援与探测任务等水下应用中,需要网络能够不经大规模规划而快速布放。因此,网络应当能自主决定节点位置,通过自主组网提供高效的数据通信环境。另外,若信道条件发生改变或者某些节点在任务过程中失效,该网络应当能够通过动态重配置继续履行使命。 3.水声通信 不同于数字无线通信采用电磁波进行数据传输,水声信道中主要采用声波进行通信。在水声通信网络中声波传播速率比无线电波传播速率小五个量级。如此低的传播速率增大了网络数据包的传输时延。如果在UWA应用中网络协议设计忽略高时延,将导致网络吞吐减少。 UW A信号的可利用带宽关键取决于传播损失,由于传播损失随着距离和频率的增大而增大,严重制约了可利用带宽。在有限带宽内,特别是在浅海水声信道中,相对于无线电信道而言,声信号受时变多径的影响,会导致的严重码间串扰以及多普勒频移与拓展。多径传播以及多普勒的影响削弱了水声信号,限制了数据吞吐。因此需要特殊的信号处理手段去克服这些不利因素。

相关文档
最新文档