深沟球轴承设计proe画法步骤

深沟球轴承设计proe画法步骤
深沟球轴承设计proe画法步骤

1.内圈绘制

使用旋转命令:单击旋转命令进入草绘界面,按照CAD图纸绘制出内圈的的截面图并编辑尺寸,草绘图如图所示:

单击草绘完成或鼠标中键,即完成草绘,接着单击完成按钮,即完成了对内圈的绘制。如图所示:

2.绘制外圈

使用旋转命令:单击旋转命令进入草绘界面,按照CAD图纸画出外圈的截面的轮廓并用中心线绘制一条旋转轴,编辑相应的尺寸后如图所示

3.保持架绘制

a.使用拉伸命令:单击拉伸命令进入草绘界面,绘制两个同心圆,如图所示:

然后单击草绘完成或鼠标中键,完成草绘。接着输入拉伸深度,单击完成按钮,完成拉伸,如图:

b.使用旋转命令:单击旋转命令进入草绘界面,绘制出如下图所示的圆弧

然后单击草绘完成或鼠标中键,旋转角度设为180,完成草绘。接着单击完成按钮,即完成了对该次旋转的绘制。如图所示

c. 使用旋转命令:单击旋转命令进入草绘界面,绘制出如下图所示的圆弧

然后单击草绘完成或鼠标中键,完成草绘。选择去除内部材料,接着单击完成按钮,即完成了对该次旋转的绘制。

e.使用拉伸命令:单击拉伸命令进入草绘界面,选择去除材料,绘

制如图的圆:

然后单击草绘完成或鼠标中键,完成草绘。接着单击完成按钮,即完成了对该次旋转的绘制。如图所示

f.阵列:选中b、c、d、e四步得到的基础特征为一个组,并选择饶

轴阵列得下图:

.拉伸:单击拉伸命令进入草绘界面,绘制出如图所示的圆

选择去除内部材料,接着单击完成按钮,即如图所示图形

绘制球使用旋转命令:绘制如下图:

4.装配

a.装配保持架:

b.装配钢球:

c.将钢球阵列:

d.装配保持架

e.添加内圈:

f.转配外圈:

分解图:

装配结束。

proe三十则设计技巧

pro/e数据共享方法详解 pro/e数据共享方法详解:proe Top-Down设计方法系列教程(一) 概述: 在真正的产品设计过程中,不同零件或装配之见的数据共享是不可避免的,如何有效地管理这些数据的参考和传递是一个产品设计在软件层面上的关键所在,本教程详细讲解了在WildFire3.0(野火3.0)中不同零件和装配间的数据传递方法,通过分析它们之间的不同和各自的优缺点帮助新手理解它们之间的不用用途从而在实际的工作中正确地使用它们,同时也为我们将来使用Top Down自顶而下设计方法打下良好的基础 Top_down设计方法严格来说只是一个概念,在不同的软件上有不同的实现方式,只要能实现数据从顶部模型传递到底部模型的参数化过程都可以称之为Top Down设计方法,从这点来说实现的方法也可以多种多样。不过从数据管理和条理性上来衡量,对于某一特定类型都有一个相对合适的方法,当产品结构的装配关系很简单时这点不太明显,当产品的结构很复杂或数据很大时数据的管理就很重要了。下面我们就WildFire来讨论一下一般的Top Down的实现过程。不过在讨论之前我们有必要先弄清楚WildFire中各种数据共享方法,因为top down的过程其实就是一个数据传递和管理的过程。弄清楚不同的几何传递方法才能根据不同的情况使用不同的数据共享方法 在WildFire中,数据的共享方法有下面几种: λFrom File...(来自文件….) Copy Geometry…(复制几何…)λ Shrinkwrap…(收缩几何..)λ Merge…(合并)λ Cutout…(切除)λ Publish Geometry…(发布几何…)λ Inheritance…(继承…)λ Copy Geometry from other Model…(自外部零件复制几何…)λ Shrinkwrap from Other Model…(自外部零件收缩几何..)λ Merge from Other Model…(自外部模型合并…)λ Cutout from Other Model..(自外部模型切除…)λ Inheritance from Other Model…(自外部模型继承…)λ From File…(来自文件…) 实际就是输入外部数据。Wildfire可以支持输入一般常见的图形格式,包括igs,step,parasolid,catia,dwg,dxf,asc等等,自己试试就可以看到支持的文件类型列表。在同一个文件内你可以任意输入各种不同的格式文件。输入的数据的对齐方式是用坐标对齐的方法,所以你要指定一个坐标系统。当然你也可以直接用缺省的座标系。 使用共享数据(Shared Data)的方法有两种: 第一种就是在装配图内通过激活(activate)相应的模型然后进行共享数据的操作。也是在进行结构设计时常用的共享方法,这种方法用于要进行数据共享的两个零件之间有显式的装配关系的时候采用。这种共享方法的复制几何不受原来的默认坐标系的影响,完全依照不同的零件在装配中的定位或装配位置而定,具有更大的灵活性。

ProE现代电风扇产品设计及制造

目录 第1章绪论 (3) 1.1三维造型设计的现状和发展 (3) 1.2常用三维造型软件介绍 (3) 1.3Pro/E软件的简介 (4) 1.4本文主要研究的内容 (4) 第2章现代电风扇产品设计与功能的发展 (5) 2.1设计的突破 (5) 2.2功能彰显人性 (5) 第3章 Pro/E设计落地电风扇的步骤 (6) 3.1设计思路 (6) 3.2 实体建模 (8) 3.2.1电风扇前盖的设计 (8) 3.2.2电风扇叶片的设计 (11) 3.2.3电风扇后盖的设计 (14) 3.2.4电风扇马达的设计 (15) 3.2.5电风扇底盘的设计 (18) 第4章电风扇的装配设计 (20) 4.1新建组件文件 (20) 4.2工件的装配过程 (20) 4.3生成装配爆炸图 (28)

(一)结束语 (29) (二)致谢 (29) (三)参考文献 (29)

第1章绪论 计算机辅助设计是一种将人和计算机的最佳特性结合起来以辅助进行产品的设计与分析的技术,是综合了计算机与工程设计方法的最新发展成果而形成的一门新兴学科。它的产生和不断发展、对工业生产、工程设计和科学研究等领域的技术进步和发展产生了巨大影响。 1.1三维造型设计的现状和发展 经过四十多年的发展,CAD/CAM技术有了长足的进步。而三维CAD技术到目前为止共经历了5次大的技术革新,按顺序分别介绍如下: (1)三维线框系统 20世纪60年代,新出现的三维CAD系统是简单的线框式系统,只能表达基本的几何信息,而不能有效表达几何数据间的拓扑关系。 (2)曲面造型系统 法国达索飞机制造公司基于巴塞尔算法,在上世纪70年代开发出以表面模型为特点的三维造型系统CATIA,从而标志着CAD技术突破了单纯模仿工程图纸三视图的模式,首次实现完整描述产品零件的主要信息,使得CAD技术有了实现基础。 (3)实体造型技术 实体造型技术带来了算法改进、未来发展和希望,同时也带来了数据计算量的极度膨胀。 (4)参数化技术 进入20世纪80年代中期,由于设计理念上的冲突,策划参数化技术的人员单独成立了参数化技术公司,开始研制名为PRO/ENGINEER的参数化软件,并一次实现了尺寸驱动零件设计修改。 (5)变量化技术 变量化技术既保持了参数化技术的原有优点,同量又克服了它的许多不足。他的成功应用,为CAD技术的发展提供了更大的空间的机遇。 从我国目前的应用现状看,以PRO/ENGINEER为首的参数化设计技术占据着主导地位,并且还在迅速膨胀,其发展势头犹如AUTOCAD刚刚进入中国时一样。随着变量化技术的逐步扩展和完善,预计在不远的将来会进入新的应用时期。 1.2常用三维造型软件介绍 三维软件技术经过几十多年的发展,每个时代都有当时流行的软件。现在,工作站的微机平台CAD/CAM软件已经占据主导地位,并且出现了一批比较优秀的商业化软件。 (1)Unigraphics(UG) UG是Unigraphics Solutions公司的拳头产品。该公司首次突破传统CAD/CAM模式,为用户提供一个全面的产品建模系统。在UG中,优越的参数化和变量化技术与传统的实体、线框和表面功能结合在一起,这一结合被实践证明是强有力的,并被大多数三维设计软件厂商所采用。 (2)SoliddWorks

proe骨架模型——自顶向下的设计方法

Pro/ENGINEER 用设计来简化复杂的装配采用自顶向下的设计方法 设计小组或个人便能够使用集中式信息来同时处理多项工作,自顶向下设计是一种在上层处理关键信息并把这些数据向较低的产品结构层传递的方法。通过使用六种主要功能(布局『可选』、装配结构、骨架、数据通讯、发布/复制几何体、以及建立零件/装配几何体),个人或设计小组可以缩短设计时间,提高质量,并能在高层实现更改控制。 始于布局规划 Pro/ENGINEER提供了一个电子记事薄,随着设计概念的发展,可以在此获取和 更新设计意图。采用自顶向下方法,可以把实体模型链接到布局,并随着布局的变化自动更新模型。 虽然它们不是自顶向下设计的必要条件,但是,布局能把设计信息集中保存,这有助于在建立实体模型之前建立设计意图。 - 技巧-在检索引用了布局的模型时,通常会把布局调出到缓存区中。即使装配不在缓存区中,模型需要的所有关系也都有效。 定义装配结构 在建立装配结构的过程中,用户实质上建立了一个虚拟的物料清单(BOM)。这是一种确定设计小组主要工作的方法,如果只有一个人负责项目,那么,这种结构就可以起到类似标签或标记的作用,它们可以指出需要完成或需要处理的地方。虚拟物料清单可以帮助用户为各个小组成员分配工作,从而使用户把精力放在某些具体的工作上,而不是整个装配上。另外,虚拟物料清单还允许关联前面的零件库,把模型提交给Pro/INTRALINK或PDMLink,并把它们分配给适当的库或文件夹。 - 技巧-用户可以在Pro/INTRALINK 或PDMLink中建立虚拟物料清单,然后 把装配拖到Pro/ENGINEER中。 建立虚拟物料清单的步骤: 建立顶层装配。用户可以输入名称,使用缺省的模板,或者复制另一个文件。 在设计需要的时候添加空组件或子装配。 添加一些散件,比如润滑油,用以表示物料清单中不用建模的项目。 骨架为装配设计提供了框架。当骨架发生变化时,所连接的实体模型也跟着发生变化。

proe产品设计茶壶设计1

茶壶设计 姓名:王闯班级:车辆1093班学号:1091504314 一:茶壶身的设计 (1)单机菜单栏【文件】【创建】按钮,系统弹出如图1-1所示的对话框,选择类型为Part类型,同时取消【使用缺省模版】选项。 图1-1 建立新文件 (2)单机【确定】按钮,系统弹出如图1-2所示的对话框,选择公制模版作为主要基准。

图1-2 模版对话框 (3)单机菜单栏【插入】【旋转】选项,打开旋转特征面板,如图1-3所示。 图1-3 旋转特征面板 (4)如图1-4所示,选择生成实体方式,然后单机,选择FRONT基准面作为草绘平面,默认系统参照面。 图1-4 生成草绘平面 (5)在该草绘平面上绘制如图1-5所示的草图,完成后单机按钮退出草绘模式。

图1-5 草绘示意图 (6)输入旋转角度“360”。完成后效果如图1-6所示。 图1-6 旋转效果图 (7)在菜单栏中选择【插入】【扫描】选项,选择其中的伸出项选项,系统弹出如图1-7所示的对话框。 图1-7 曲面:扫描对话框图1-8 扫描轨迹选项 (8)选择【扫描轨迹】选项,如图1-8。 (9)系统弹出如图1-9所示的菜单,选择使用先前的基准面作为草绘面,系统弹出如图1-10所示的菜单,选择【正向】选项,然后选择默认作为草图的放置方式。 选择【正向】【缺省】 图1-9 设置平面图1-10 设置草绘方向 (10)绘制如图1-11所示的草绘图,单击,并选择合并终点,完成操作。

图1-11 草绘示意图 (11)在草绘模式下,绘制扫描剖面,如图1-12所示,单击按钮,退出草绘模式。 图1-12 扫描剖面 (12) 如图1-13所示,定义完所有内容,单击【确定】按钮,生成扫描实体,如图1-14所示。 图1-13 定义扫描内容图1-14 扫描实体示意图(13)以FRONT为基准面创建草绘,如图1-15所示。

轴承型号含义对照表

轴承型号含义对照表, 轴承类型代号 进口轴承常用类型代号(指型号的开头的数字或者字母,比如6200,6开头就是深沟球轴承,NU,NJ为圆柱滚子轴承): 调心球轴承—1; 调心滚子轴承—2; 圆锥滚子轴承—3; 推力球轴承—5 深沟球轴承—6; 角接触球轴承—7; 圆柱滚子轴承—N; 滚针轴承—NA; 如何去看懂一个轴承,6200轴承

最右边两位数字表示轴承的公称内经尺寸当内径在20~480MM范围的时候,内径乘以五就是内径尺寸 10~17。 右起第三位是直径系列代号:直径系列代号有7,8,9,0,1,2,3,4,5等外径尺寸依次递增。 右起第四位是宽度系列代号,用8,0,1,2,3,4,5,6表示宽度尺寸递增。相同内径的同类轴承,外廓尺寸大(外径,宽度)则承载能力强。 轴承类型对照 轴承型号含义------轴承有0-9类(没有5类) 0类:双列角接触球轴承(通常省略)例:(0)3204 A 1类:自调心球轴承例:1201 ETN9 2类:球面滚子轴承、球面滚子推力轴承例:22209 E 29328 E 3类:圆锥滚子轴承例:32016 X/Q 4类:双列深沟球轴承例:4206 ATN9 深沟球轴承尺寸 5类:推力球轴承例:51100 6类:深沟球轴承例:6213-2Z 7类:角接触球轴承例:7305 BECBM 8类:圆柱滚子推力轴承例:81111 TN N类:圆柱滚子轴承第二个字母,有时候第三个字母,用来确定法兰结构,例如:NJ,NU,NUP; 双列或多列圆柱滚子轴承的型号总是以NN开头。 例:NU 2317 ECJ C类:CARB轴承C 2205 QJ类:四点接触球轴承例:QJ 217 MA。 轴承类型特点作用型号对照 双列角接触球轴承:能承受较大的径向和轴向联合负荷和力矩负荷,用于限制轴和外壳双向轴向位移的部件中。常见的双列角接触球轴承型号:3200ATN轴承、3203A-ZTN轴承、3205ATN轴承、3207ATN轴承等 推力滚子轴承:推力圆锥滚子轴承,推力圆柱滚子轴承用于承受轴向载荷为主的轴、径向联合载荷,但径向载荷不得超过轴向载荷的55% 。与其他推力滚子轴承相比,此种轴承摩擦因数较低,转速较高,并具有调心性能。常见的推力滚子轴承型号:81120轴承、81209 轴承、81217轴承等 圆锥滚子轴承:圆锥滚子轴承可以承受大的径向载荷和轴向载荷。由于圆锥滚子轴承只能传递单向轴向载荷,因此,为传递相反方向的轴向载荷就需要另一个与之对称安装的圆锥滚子轴承。常见圆锥滚子轴承型号:52375/52637轴承、30312JR轴承、H913849轴承等 深沟球轴承:深沟球轴承主要承受径向载荷,也可同时承受径向载荷和轴向载荷。当其仅承受径向载荷时,接触角为零。常见的深沟球轴承型号:6200轴承,6308轴承,6201轴承,6000轴承,6309轴承等深沟球

proe自顶向下设计的基础原理

本课程将讲授自顶向下设计的基础原理。该设计方式有力而稳定地扩展了参数设计,使产品设计更为有效。自顶向下设计使您可以在产品组件的环境中创建零件,并在 创建新零件特征时参照现有几何。 图 1 该设计方法不同于传统的自底向上设计方法,在自底向上设计方法中,各个元件是独立于组件进行设计的,然后再将这些元件组合到一起来开发顶级组件。 图 2 自顶向下设计是一种逐步进行的过程: 1.使用标准的起始组件创建一个顶级组件文件。 2.使用标准的起始零件在顶级组件中创建一个骨架。 3.在骨架元件中创建所需的骨架几何。 4.使用骨架模型参照创建并装配所需元件。 5.在元件中对所需特征进行建模,并使用骨架几何作为唯一的参数参照。 6.在组件中的适当级创建并装配一个映射零件。 7.在映射零件中创建所需参照。 8.创建并装配参照映射零件的元件。 9.在参照映射零件(如有必要,参照骨架)的元件中建立几何。

请注意,有更多关于自顶向下设计方面的高级功能和方法,例如,布局和发布几何,这些功能和方法将在 高级组件指南和大型组件指南两个课程中进行介绍。 当您决定使用“自顶向下设计”法时,需要了解一些Pro/ENGINEER的特点。 零件模式对组件模式 使用Pro/ENGINEER零件和组件文件有两种不同的方法。要对设计进行更改,可以在“零件模式”中修改零件文件本身,也可以在“组件模式”中的“组件”内容中修改零件文件。 在“零件模式”中,您仅操作零件的几何,且操作窗口中仅包含该零件。 在“组件模式”中,您操纵的是该组件,可以操作组件中的几何或其中零件的几何。 工作在“组件模式”时,若要为零件添加几何,必须选取考虑中的元件,右键单击并选择激活。这向系统表明您正在创建的特征属于所选的特定元件。如未“激活”(Active)该元件,则需要按上一课中的做法创建组件级特征。 当组件中使用的零件发生变更时(可能是尺寸修改或添加特征),这些变更在组件中是可见的,意识到这一点很重要。当零件单独打开并更改或在组件的内容中更改时,尤为如此。 这也是相关性(信息的双向流)的另一个范例。意识到一个零件仅有一个模型很重要。无论用在 设计、文档和制造工艺中何处,该模型将被参照(不是复制)。 创建不正确的外部参照 Pro/ENGINEER的一个重要功能就是将特征连接到一起,当发生设计修改时,在元件之间建立起关系并节省时间。但是,若要使这些关系正常运行,必须创建些设计中发生变更时可进行编辑和操作的可靠关系。

机械设计课程设计轴承的设计及校核

第七章轴承的设计及校核 7.1轴承种类的选择 查《机械设计课程设计手册》第二版吴宗泽罗圣国主编高等教育出版社出版P62 滚动轴承由于采用两端固定,采用深沟球轴承。型号为6303和6300。 7.2深沟球轴承结构 深沟球轴承一般由一对套圈,一组保持架,一组钢球组成。其结构简单,使用方便,是生产最普遍,应用最广泛的一类轴承。 该类轴承主要用来承受径向负荷,但也可承受一定量的任一方向的轴向负荷。当在一定范围内,加大轴承的径向游隙,此种轴承具有角接触轴承的性质,还可以承受较大的轴向负荷。 深沟球轴承装在轴上以后,可使轴或外壳的轴向位移限制在轴承的径向游隙范围内。同时,当外壳孔和轴(或外圈对内圈)相对有倾斜时,(不超过8~—16~根据游隙确定)仍然可以正常地工作,然而,既有倾斜存在,就必然要降低轴承的使用寿命。 深沟球轴承与其它类型相同尺寸的轴承相比,摩擦损失最小,极限转速较高。在转速较高不宜采用推力球轴承的情况下,可用此类轴承承受纯轴向负荷。如若提高其制造精度,并采用胶木、青铜、硬铝等材质的实体保持架,其转速还可提高。 型号 内径d 外径D 宽度B 倒角r 额定负荷kN 钢球极限转速rpm 重量 kg mm inch mm inch mm inch mm inch 动态静态数量大小油脂油 635 5 .1969 19 .7840 6 .2362 0.3 .012 2.34 0.885 9 2.381 34000 40000 0.008 6300 10 .3937 35 1.3780 11 .4331 0.6 .024 8.20 3.50 7 6.350 15000 21000 0.053

ProE产品研发设计技巧

产品研发设计技巧 前言:产品研发不仅仅需要体现一个人的设计灵感,同时也需要具有一定的绘图技巧。一个完美的产品就看你如何去展现,下面我将用实例来列出产品在研发过程中的注意事项以及结构与外型的设计等。 1、Pro/E绘图步骤 绘图过程中,绘图步骤可体现一个人的绘图水平与Pro/E运用熟练程度。下面是用两种方法绘制的一个圆柱体,前一种是直接点击拉伸工具绘制的,后一种是先通过草绘工具先将2D绘制出来,然后再使用拉伸工具进行拉抻,这两种方法可明显看出前者的步骤比后者少,若遇到需设置基准面的情况下,使用后者所绘制的步骤将会更多。 图(1) 图(2)

2、三边曲面的处理 通常在绘制过度曲面或处于圆弧过度的曲面时会碰到尖角面,也就是三边曲面,三边曲面偏移量小,甚至无法偏移,对后续模具设计或结构变更等带来极大的不便, 图(3) 面对于此类曲面需将三边面转为四边面。或将尖角面切除,重新绘制一个四边曲面。 图(4)

3、倒圆角 在设计产品时,倒圆角步骤应放在整个产品设计的最后,原因有两方面:一是,倒圆角在设计重新生成时速度很慢,二是,倒完圆角后在后续的设计过程中在使用倒圆角的边做某一步骤的参照后,若想删除这个圆角时不好删除,有连带父子关系。只有将参照转移后方可删除。 图(5) 4、实体化工具的使用 实体化工具在一个产品设计中可以将曲面转为实体,也可以切除材料,但是一个很完美的产品设计中,实体化工具最多使用二次左右,甚至一次。实体化工具适合在一个产品用曲面设计成型后使用一次让其变为实体。其它几乎可以不用。 下面请看一个错误的实体化运用:很多人在做隔层时喜欢用下面这种方法来切除材料。看看使用此方法错在何处。 图(6)

深沟球轴承设计

深沟球轴承设计计算 Ⅰ.编制说明: 1.沟道曲率半径必须满足Rimax<,Remax<,且Rimax

9. JB/T 10239-2001 滚动轴承零件冲压保持架技术条件 10. CSBTS 滚动轴承零件深沟和角接触球轴承套圈公差 11. CSBTS 深沟和角接触球轴承套圈沟形公差 12. CSBTS 深沟及角接触球轴承套圈沟道圆形偏差 设计轴承型号:6020 一. 轴承的基本(外形)尺寸的确定 依据型号算d,查GB(GB 276-1994,GB 274-2000) 可知D、B、r 轴承公称内径d=(mm) 轴承公称外径D=(mm) 轴承公称宽度T=(mm) 轴承单向最小倒角rsmin=(mm) 二、滚动体直径的设计 钢球直径Dw按下式计算: Dw=Kw (D-d) Kw分档取值见表1,Dw的取值精度为. 计算出Dw后,应从表2中选取接近计算值的标准钢球尺寸. 表1 Kw值 直径系列 100200300400 d(mm) d≤35~~~~ 35<d≤120~~~~ 20<d≤240~~~~ 标准钢球直径Dw mm 见GB/T 308-2002 滚动轴承钢球钢球与保持架中心圆直径Dwp

Proe的主要应用

Pro/E的主要应用 摘要:Pro/E是美国PTC公司旗下的产品Pro/Engineer软件的简称,是美国参数技术公司(Parametric Technology Corporation,简称PTC)的重要产品。Pro/E是一款集CAD/CAM/CAE功能一体化的综合性三维软件,在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。 关键词:三维软件,Pro/e,机械,应用 正是由于Pro/E的强大功能,使得它在很多领域得到了广泛的应用。下面主要通过Pro/E在各方面的应用来介绍其作用和功能。 一、建模 Pro/E是一款参数化建模软件,具有丰富的零件实体建模功能,能进行变量化的草图轮廓绘制,并能自动进行动态约束检查。通过拉伸、旋转、薄壁特征、抽壳、特征阵列,以及打孔等操作,更简便地实现机械产品的开发设计。通过扫描、混合、填充,以及拖动可控的相关操作,能生成形状复杂的构造曲面,可以直观地对曲面进行修剪、延伸、倒角和缝合等操作。 Pro/E的所有模块都是相关联的。这就意味着在产品开发过程中某一处进行的修改,能够扩展到整个设计中,同时自动更新所有的工程文档,包括装配体、设计图纸,以及制造数据。在开发周期的任一点进行修改,却没有任何损失,并使并行工程成为可能,所以能够使开发后期的一些功能提前发挥其作用。 Pro/E是基于特征的参数化造型,可以按预先设置很容易地进行修改、装配、加工、制造,通过给这些特征设置参数,然后修改参数,很容易进行多次设计叠代,实现产品开发。Pro/E的数据管理模块可以加速产品投放市场,在较短的时间内开发更多的产品。 参数化设计是指零件或部件的形状比较定型,用一组参数约束该几何图形的一组结构尺寸序列,参数与设计对象的控制尺寸有显式对应,当赋予不同的参数序列值时,就可驱动达到瓶的目标几何图形,其设计结果是包含设计信息的模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品,大大提高了设计效率。

基于proe的产品外壳模具设计

本科毕业设计(论文) 基于Pro/E的产品外壳模具设计 学院名称机械与汽车工程学院专业班级材控12-2 学生姓名 导师姓名 年月日

基于Pro/E的产品外壳模具设计 作者姓名 专业材料成型及控制工程 指导教师姓名 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1选题依据 (3) 1.2国内外研究现状及其发展趋势 (4) 1.2.1国外的发展现状 (4) 1.2.2国内的发展现状 (5) 1.3研究内容、目的及意义 (7) 1.3.1研究内容 (7) 1.3.2研究目的及意义 (8) 第二章塑件的工艺性分析 (9) 2.1塑件原材料分析 (9) 2.2塑件结构特征分析 (10) 2.3模流分析 (11) 2.3.1浇口位置分析 (11) 2.3.2塑料熔体填充分析 (11) 2.3.3冷却质量分析 (12) 2.3.4熔接痕分析 (12) 2.3.5气泡分析 (13)

第三章模具结构设计 (13) 3.1模具型腔数目及排布方式的确定 (13) 3.2注塑机的选用 (14) 3.3分型面的设计 (15) 3.4成型零部件设计 (17) 3.5浇注系统设计 (19) 3.5.1主流道设计 (19) 3.5.2分流道设计 (20) 3.5.3 浇口设计 (22) 3.5.4冷料穴与拉料杆设计 (22) 3.6注塑机有关参数校核 (23) 3.7排气系统设计 (25) 3.8模架设计 (25) 3.9推出机构设计 (26) 3.9.1顶杆设计 (27) 3.9.2复位杆设计 (27) 3.9.3推杆固定板和推板设计 (28) 3.10合模导向机构设计 (29)

深沟球轴承设计方法

深沟球轴承设计方法 1 外形尺寸 1.1 轴承的基本尺寸d 、D 、B 按GB/T 273.3的规定 1.2 装配倒角r 1、r 2按GB/T 274的规定 2 主参数的设计方法 2.1 钢球直径Dw Dw=Kw (D-d ) 取值精度0.001 为保证钢球不超出端面,要考虑轴承宽度B 。 Kw 取值见表1 表1 Kw 值 2.1.1 常见钢球直径可查GB/T 308 2.1.2 计算出Dw 后,应从中选取最接近计算值的标准钢球值,优先选非英制。 2.2 钢球中心圆直径P P=0.5(D+d ) 取值精度0.01 2.3 球数z 式中ψ为填球角,计算时按表2取值 直径系列 公称内径 8、9、1 2 3 4 ≤35 0.24~0.31 0.29~0.31 0.28~0.32 0.25~0.31 超过 35~120 0.25~0.32 0.31~0.32 0.32 0.25~0.32 超过120~120 0.24~0.30 0.26~0.31 0.29~0.31 0.25~0.30

表2 ψ值 2.4额定载荷的计算 2.5最后确定Dw、P、z的原则 2.5.1满足额定载荷的要求。 2.5.2应最大限度的通用化和标准化,对基本尺寸相同或相近的 承应尽可能采用相同的球径、球数。 2.5.3保证保持架不超出端面,对D≤200mm的1、2、3系列轴承要考虑安 防尘盖与密封圈的位置。优化设计时轴承兜孔顶点至端面的距离a b应满足如下要求: D≥52~120 ,a b≥2 ;D≤50 ,a b≥1.50 D>125~200,a b≥2.5。 2.5.4填球角ψ的合理性。大批生产并需自动装球的轴承ψ角宜取 186°左右,为了使z获得整数并控制ψ角,允许钢球中心径适当加大至最大不得大于P+0.03P。 2.6 实取填球角ψψ=2(z-1)sin-1 (Dw/P) 实取填球角ψ下限不得小于180°,上限应满足下列要求: 8、9、1系列ψ≤195°2系列ψ≤194° 3系列ψ≤193°4系列ψ≤192°

深沟球轴承基本尺寸

da da Da ra min max max max ZRO2SI3N4 POM 684CE 9 2.50.1 4.8/8.20.10.00050.00030.0001P684694CE 1140.15 5.2/9.80.150.00130.00070.0003P694604CE 1340.2 5.6/10.40.20.00170.00090.0004P604624CE 1650.2 5.6/11.40.20.00230.00130.0006P624634CE 1650.36/140.30.00400.00220.0010P634685CE 1130.15 6.2/9.80.150.00090.00050.0002P685695CE 1340.2 6.6/11.40.20.00190.00100.0005P695605CE 1450.2 6.6/12.40.20.00270.00150.0007P605625CE 1650.37/140.30.00380.00210.0010P625635CE 1960.37/170.30.00660.00360.0016P635686CE 13 3.50.157.2/11.80.150.00150.00080.0004P686696CE 1550.27.6/13.40.20.00300.00160.0007P696606CE 1760.38/150.30.00460.00250.0011P606626CE 1970.38/170.30.00630.00340.0016P626636CE 2290.38/200.30.01080.00580.0027P636687CE 14 3.50.158.2/12.80.150.00170.00090.0004P687697CE 1750.39/150.30.00400.00220.0010P697607CE 1960.39/170.30.00590.00320.0015P607627CE 2270.39/200.30.00980.00530.0024P627637CE 2690.39/240.30.01850.01000.0046P637688CE 1640.29.6/14.40.20.00250.00140.0006P688698CE 1960.310/170.30.00560.00300.0014P698608CE 2270.310/200.30.00930.00500.0023P608628CE 2480.310/220.30.01300.00720.0033P628638CE 2890.310/260.30.02200.01200.0054P638689CE 1740.210.6/15.40.20.00270.00150.0007P689699CE 2060.311/180.30.00650.00350.0016P699609CE 2470.311/220.30.01100.00600.0028P609629CE 2680.311/240.30.01500.00810.0038P629639CE 30100.613/260.60.02800.01500.0070P6396800CE 1950.31212170.30.00380.00220.0010P68006900CE 2260.31212.5200.30.00850.00490.0017P69006000CE 26 8 0.3 12 13 24 0.3 0.0146 0.0085 0.0035 P6000 67深沟球轴承尺寸表 size of angular contact ball bearing 轴承型号外型尺寸(mm)相关安装尺寸重量 轴承型号 d(内径)D(外径)B(厚度)r 参考(kg)4 58910

PROE5.0设计.pdf

Pro/E参数化草图设计无球差凸透镜(比例可参考眼睛) 2009-02-08 20:42 分类:默认分类 字号: 大大 中中 小小 ① 十字中心线。 ② 左边和右边轴上分别画一个圆,两圆相交,将上方交点约束重合,修剪成凸透镜,锁定镜厚和各自半径。 ③ 画物点、入射光线、折射光线、出射光线、像点,锁定物点和像点至Y轴距离。 ④ 设定入射和折射、折射和出射的关系(参照单球面方法)。 ⑤ 以下参照单球面方法完成……。 注意:凸透镜如果改为左边球面和右边平面的平凸透镜可能更好,因为更易加工,此时右平面的法线即是水平线。 问题1:再考虑平行光入射的情况又会如何?(如果记录高度值取0.2 ,0.4, 0.6,…平行光入射的XY向像差几乎在0.02以下,非常精确。) 问题2:非球面透镜是指平行光入射汇聚于一点的透镜吗? 技巧:点击“重画”图标可以令草绘界面加速。 Pro/E参数化草图设计非球面曲线有助消除成像球差 2009-02-08 20:33 分类:默认分类 字号: 大大 中中 小小 ① 新建草绘文件画水平中心线。( ② 水平中心线上画大圆,画轴上物点和像点。 ③ 物点射出一条光线并折射会聚于像点。 ④ 过大圆心附近任意点和折射点画一条直线(此线是非球面曲线的法线),过折射点画圆,分别过该圆与入射线和折射线的交点作垂直于法线的垂线,由折射率确定两垂线的相应长度(折射定律推得折射率等于入射方垂线与折射方垂线的比值)。 ⑤ 锁定大圆心至物点像点的距离、大圆的半径、两垂线的长度,并将法线与轴的左夹角标为参照值。 ⑥ 驱动折射点至轴的高度值,分别记录高度值例如10,20,30,40,50,60,70,80…的相应夹角值,利用对应的高度和夹角值在弧上画一系列的端点在弧上的大至向着十字中心的射线,并将高度值和角度值锁定。 ⑦ 由下面的射线端点开始往上画折线,每段折线均垂直于经过的射线。 ⑧ 以最下方的垂足为折点画新的入射线和折射线,但折射线不要约束于像点,以④的方法设定折射率,驱动该折射法线的角度,将灵敏度调至最小,指针指正滑轮,推动中键将折射线调整至刚刚经过像点,得到正确的法线方向和折点位置,记下新的法线方向角度,然后恢复到⑦,并将相应法线修改为新的法线角度值。继续上一点… ⑨ 保存。 ⑩ 新建零件文件,建立草绘曲线特征,调色板的简介中插入刚保存的曲线(注意比例及放置基准)。 ? 建立造型特征,过顶点和折线与射线的交点描出造型曲线,并注意捕捉点和设置顶点为曲率连续。保存。 利用Pro/E设计反光杯曲线 2009-02-08 20:29 分类:默认分类 字号: 大大 中中 小小 ① 新建草绘文件(可在调色板的简介中找到,方便以后调用)画十字中心线。 ② 左边竖直准线及右边焦点,并作准线至中心点至焦点两线段且约束相等。 ③ 依据抛物线定义作折线段,约束距离相等并标注Y向高度值(高度间隔值如果取④整体尺寸高度的n分之一,这样在平行射出情形时,抛物线的高度会绝对符合设计要求),描出抛物线。 ④ 右上角画一个直角以确定整体尺寸,画出光斑高度并约束上下对称。 ⑤ 驱动焦点距离至抛物线接近整体尺寸。 ⑥ 作上下两条水平线段的反向延长线段超过光斑处,把这两条延长线段、抛物线和其中一条焦点射出的光线(方便旋转时拾取到端点)一起以焦点为圆心旋转至接近光斑。 注:仅要求平行射出时不需要⑥。

深沟球轴承的CAD计算稿及PROE设计步骤

深沟球轴承设计院系:机电工程学院 专业:数控 班级:数控133 姓名:夏天驰 学号:1302313132 指导老师:杨咸启 前言

是滚动轴承中最为普通的一种类型。基本型的深沟球轴承由一个外圈,一个内圈、一组钢球和一组保持架构成。深沟球轴承类型有单列和双列两种,单列深沟球轴承类型代号为6,双列深沟球轴承代号为4。其结构简单,使用方便,是生产最普遍,应用最广泛的一类轴承[1]。 深沟球轴承 编辑本段工作原理 深沟球轴承主要承受径向载荷,也可同时承受径向载荷和轴向载荷。当其仅承受径向载荷时,接触角为零。当深沟球轴承具有较大的径向游隙时,具有角接触轴承的性能,可承受较大的轴向载荷,深沟球轴承的摩擦系数很小,极限转速也很高[1]。 编辑本段轴承构造 深沟球轴承结构简单,与别的类型相比易于达到较高的制造精度,所以便于成系列大批量生产,制造成本也较低,使用极为普遍。深沟球轴承除基本型外,还有各种变型结构,如:带防尘盖的深沟球轴承,带橡胶密封圈的深沟球轴承,有止动槽的深沟球轴承,有装球缺口的大载荷容量的深沟球轴承,双列深沟球轴承。 编辑本段轴承类型 1、单列深沟球轴承 2、带防尘盖的单列深沟球轴承 3、带防尘盖、密封圈的单列深沟球轴承 4、外圈上有止动槽及止动环的单列深沟球轴承 5、有装球缺口的深沟球轴承 6、双列深沟球轴承 编辑本段轴承特性 深沟球轴承是最具代表性的滚动轴承,用途广泛。适用于高转速甚至极高转速的运行,而且非常耐用,无需经常维护。该类轴承摩擦系数小,极限转速高,结构简单,制造成本低,易达到较高制造精度。尺寸范围与形式变化多样,应用在精密仪表、低噪音电机、汽车、摩托车及一般机械等行业,是机械工业中使用最为广泛的一类轴承。主要承受径向负荷,也可承受一定量的轴向负荷。选取较大的径向游隙时轴向承载能力增加,承受纯径向力时接触角为零。有轴向力作用时,接触角大于零。一般采用冲压浪形保持架,车制实体保

ProE家电产品设计的一般流程

Pro/ENGINEER家电产品设计的一般流程 Pro/ENGINEER家电产品设计的一般流程如下所述 步骤一:对市场客户进行分析及写出可行性分析报告,提出开发计划书及订定产品规格。 步骤二:对设计资料进行必要的准备,包括以下几个部分 ?初期零件表 ?初期制造流程图 ?关键性零组件适用报告 步骤三:拟定产品外观设计作业办法,包括以下几个部分。 ?外观设计方针说明表 ?草绘/概念图 ?外观实际尺寸图/三维文档 ?产品外观色彩计划,即配色表 ?外观手板模型制作 步骤四:进行软件设计,包括以下几个部分。 ?软件规划说明书 ?软件设计说明书,测试表 步骤五:进行硬件设计作业(PCB Layout),包括以下两项。 ?电子线路图、零件外观及尺寸规格 ?Layout注意事项与规格书 步骤六:拟定结构设计作业,包括以下几项。 ●提出结构开发计划,对产品的材料先定好,如软胶、硬胶或透明件。对一些不太肯定的塑胶材料向模 具厂请教参照意见 ●设计三维结构图,考虑好上下盖的固定方式,设计出扣位和螺丝的位置,检查里面空间是否足够。想 好按钮的固定方式和操作情况,注意按键和按钮之间的距离,特别注意设计在侧面按钮空间和操作可行性 ●对透明件尽量不要用扣位,因扣位会使产品露白,建模前应把整体构思结构向上司汇报并确认后方可 行进行。检查三维模型的干涉,进行机构模拟,对两件之间的配合要考滤,预留空间(因喷漆和电镀都会使产品空隙很紧,对上下盖的配合能通过挤压和落地测试检查)。结构完成后要存储成图片给客户确认。 ●给出PCB的具体尺寸及限高,以便电子工程师列PCB ●绘制结构零件图、爆炸图、产品规格检验表,做零件样品检查记录 ●制作结构手板和零件打样。对手板需严格要求,对做出的手板和图纸进行对照。利用手板的时间,准 备其他东西,如充电片和螺丝等。将检查的结果再次给客户确认(同时将方件给模具厂报价,并定好模块)。出工程图时标明零件材质,是否有喷漆、电镀等进行标明,并注明产品不能有缩水、毛刺、溶接痕、露白和尺寸误差等。 ●做零件承认计划及量产准备计划 步骤七:制定模具开发作业,包括以下两项 ●签定模具开发合约书 ●试模检查。看纹路是否均匀一致,夹水线是否严重,美工线是否均匀,宽度是否符合要求。如有胶垫 就要看胶垫是否一致,扣位工作是否可靠,披锋是否严重。螺丝柱是否对正,上下螺丝柱是否顶住,是否虚位太大。表面缩水是否严重,入水位置是否影响外观,用手掐四周是否有异响,锁螺丝后是否离壳,锁螺丝是否可靠(打爆或打滑),胶壳是否变形严重、是否顶白、是否料花,是否脱花,胶件颜色是否符合要求,塑胶材料的强度是否满足要求等。 步骤八:进行样品验证,提交测试报告 步骤九:制作样品包装设计及包装图面资料 步骤十:量试通知,召开量试正式会试,进行量试产品测试及验证。

深沟球轴承设计方法

深沟球轴承设计方法 1外形尺寸 1.1轴承的基本尺寸d、D、B按GB/T 273.3的规定 1.2装配倒角r1、r2按GB/T 274的规定 2主参数的设计方法 2.1 钢球直径Dw Dw=Kw(D-d)取值精度0.001 为保证钢球不超出端面,要考虑轴承宽度B。 Kw取值见表1 表1 Kw值 2.1.1 常见钢球直径可查GB/T 308 2.1.2 计算出Dw后,应从中选取最接近计算值的标准钢球值,优先选非英制。 2.2 钢球中心圆直径P P=0.5(D+d)取值精度0.01 2.3 球数z

式中ψ为填球角,计算时按表2取值 表2 ψ值 2.4额定载荷的计算 2.5最后确定Dw、P、z的原则 2.5.1满足额定载荷的要求。 2.5.2应最大限度的通用化和标准化,对基本尺寸相同或相近的 承应尽可能采用相同的球径、球数。 2.5.3保证保持架不超出端面,对D≤200mm的1、2、3系列轴承要考虑安 防尘盖与密封圈的位置。优化设计时轴承兜孔顶点至端面的距离a b应满足如下要求: D≥52~120 ,a b≥2 ;D≤50 ,a b≥1.50 D>125~200,a b≥2.5。 2.5.4填球角ψ的合理性。大批生产并需自动装球的轴承ψ角宜取 186°左右,为了使z获得整数并控制ψ角,允许钢球中心径适当加大至最大不得大于P+0.03P。 2.6 实取填球角ψψ=2(z-1)sin-1 (Dw/P)

实取填球角ψ下限不得小于180°,上限应满足下列要求: 8、9、1系列ψ≤195°2系列ψ≤194° 3系列ψ≤193°4系列ψ≤192° 3套圈设计 3.1 内沟曲率半径Ri Ri≈0.515Dw 3.2 外沟曲率半径Re Re≈0.525Dw Ri、Re取值精度0.01,允差见表3 表3 Ri和Re公差(上偏差) 3.3 内滚道直径di di=P-Dw 3.4 外滚道直径De De=P+Dw di和De取值精度0.001,允差见表43 表4 di和De公差(±) 3.5 沟位置a a=a i=a e=B/2 a取值精度0.1,允差见表5

基proe的电动剃须刀产品设计

基于PRO/E的电动剃须刀产品造型设计 1 PRO/E 软件简介 Pro/Engineer操作软件是美国参数技术公司(PTC)旗下的CAD/CAM/CAE一体化的三维软件。Pro/Engineer软件以参数化著称,是参数化技术的最早应用者,在目前的三维造型软件领域中占有着重要地位。Pro/Engineer作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今主流的CAD/CAM/CAE软件之一,特别是在国内产品设计领域占据重要位置。 PRO/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决特征的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。目前Pro/E最高版本为Creo Parametric 2.0。但在市场应用中,不同的公司还在使用着从Proe2001到WildFire5.0的各种版本,WildFire3.0和WildFire5.0是主流应用版本。Pro/Engineer软件系列都支持向下兼容但不支持向上兼容,也就是新的版本可以打开旧版本的文件,但旧版本默认是无法直接打开新版本文件。虽然PTC提供了相应的插件以实现旧版本打开新版本文件的功能,但在很多情况下支持并不理想容易造成软件的操作过程中直接跳出。 Pro/Engineer是建立在统一基层上的数据库上,不象一些传统的CAD/CAM系统建立在多个数据库上。所谓单一数据库,就是工程中的资料全部来自一个库,使得每一个独立用户在为一件产品造型而工作,不管他是哪一个部门的。换言之,在整个设计过程的任何一处发生改动,亦可以前后反应在整个设计过程的相关环节上。例如,一旦工程详图有改变,NC(数控)工具路径也会自动更新;组装工程图如有任何变动,也完全同样反应在整个三维模型上。这种独特的数据结构与工程设计的完整的结合,使得一件产品的设计结合起来。这一优点,使得设计更优化,成品质量更高,产品能更好地推向市场,价格也更便宜。

相关文档
最新文档