振动疲劳的研究总结报告

振动疲劳的研究总结报告
振动疲劳的研究总结报告

结构振动疲劳研究的总结报告

南京航空航天大学振动工程研究所刘文光

(一)研究现状

疲劳作为结构失效的主要形式,它是指材料、零件和构件在交变载荷作用下,在某点或某些点产生局部的永久性损伤,并在一定循环次数后形成裂纹、并使裂纹进一步扩展直到完全断裂的现象。早在19世纪中叶,随着蒸汽机的发明和铁路建设的发展,研究人员发现机车车轮结构在远小于其静强度极限载荷时发生交变应力破坏现象,由此提出并发展了不同于结构静强度破坏的结构疲劳破坏问题。由于工业、交通和国防技术的发展,结构疲劳失效问题遍布在航空、航天、能源、交通、建筑、化工等诸多领域,促使抗疲劳设计得到深入的发展和广泛的应用。另外,我们很容易发现在结构疲劳破坏问题中包含了一类重要的现象,那就是当交变载荷的频率与结构的某一阶(甚至某几阶)固有频率一致或比较接近时,结构将会发生共振,这时一定的激励将会产生更大的响应,使结构更加易于产生破坏。这类振动疲劳问题,说明结构的疲劳失效与结构的振动响应密切相关。为了揭示结构的疲劳失效与结构振动响应之间的内在规律,需要利用结构动力学的理论加以研究。

在工程实际中,结构受到外部激励总会产生不同的振动响应,因此,绝大部分结构的疲劳失效都与振动有关,实际上可以归结为振动疲劳问题。振动疲劳的研究是科学技术发展的必然要求,同时也是结构疲劳失效理论与结构动力学理论相结合的必然结果。迄今为止,很少有人系统地研究过振动疲劳问题。有关文献中即使提到振动疲劳一词,不同的学者也给出了不同的定义。文献[1]作者认为“振动疲劳是结构所受动态交变载荷(如振动、冲击、噪声载荷等)的频率分布与结构固有频率分布具有交集或相接近,从而使结构产生共振所导致的疲劳破坏现象,也可以直接说成是结构受到重复载荷作用激起结构共振所导致的疲劳破坏。所以只有结构在共振带宽内或其附近受到激励导致的共振破坏才属于振动疲劳破坏,否则都属于静态疲劳问题。”文献[2]作者认为:“当振动频率与结构模态频率相当时,即可视为振动疲劳问题;如果频率远小于结构模态频率时(频率在几或十几),就是普通疲劳问题;当振动频率远大于结构模态频率,以至于与声波频率相当时,即可视为声疲劳进行处理。”文献[3]作者在其博士论文中也提到振动疲劳一词,它指出振动疲劳与噪声和频率有关,但没有揭示振动疲劳的内在本质。上述每一种定义,它都指出了振动疲劳与结构的固有频率、交变载荷的变化频率有关。为了进一步明确振动疲劳的含义,本文将振动疲劳定义为:“振动疲劳是指结构的疲劳破坏与结构的振动响应(包括结构固有频率、

交变载荷变化频率、振动幅值、振动相位和结构的振型等模态)密切相关的失效现象,其破坏机理与静态疲劳破坏一致,它包括低频振动疲劳、共振振动疲劳和高频振动疲劳。”

上世纪60年代,S.H.Crandall[4]首先提出了振动疲劳的定义,它指出:“振动疲劳是指振动载荷作用下产生的具有不可逆且累积性的结构损伤或破坏。”这一定义对传统的疲劳理论,它并没有带来显著的改变,也没有涉及振动疲劳现象的动力学本质。之后,国内外陆续有部分学者展开了一些相关方面的研究。例如,文献[6]作者将高频振动实验方法引入非金属类桩基材料的疲劳损伤力学研究领域,对花岗岩、C30混凝土等非金属材料进行高频振动疲劳试验,描述该类材料在稳定状态下的循环应力应变特性,通过实验研究载荷幅值与振动频率对材料特性的影响,研究平均载荷与振幅比值对材料疲劳曲线的影响;文献[7]作者研究了装备中的小口径管道的振动疲劳问题;文献[8]作者利用有限元法,基于功率谱密度函数,在频域内分析了随机振动载荷作用下的疲劳破坏;文献[9]作者对国内外几十年来形成的主要的振动疲劳分析方法进行了归纳整理,为飞机设计和维修提供振动疲劳的设计与分析技术支持文献。还有很多研究人员[10~15]分别从不同的角度研究了振动疲劳问题。

表1静态疲劳与振动疲劳的差异

随着对疲劳科学研究的不断深入,人们已经总结了很多疲劳行为的经验规律,经典的规律包括S-N曲线、Basquin关系式、Goodman图、累积损伤(Miner假设)、Manson-coffin 定律等。从各种角度分析疲劳破坏的机理,形成了断裂疲劳学、疲劳统计学等。随着人们对疲劳的认识也越来越深刻,振动疲劳的研究将会形成一门新兴的学科。表1列出了静态疲劳与振动疲劳分析问题的差异。

对比静态疲劳与振动疲劳的差异,振动疲劳的研究可以借鉴静态疲劳的研究经验,在静态疲劳的理论基础上,把结构动力学的理论引入到疲劳的理论之中,用结构动力学的分析方法来分析振动疲劳问题。因此,振动疲劳的理论是在一种崭新的构思指导下,将结构动力学理论引入到静态疲劳的理论中而发展起来的一种新的分析疲劳失效的方法。

参考文献

[1]姚起杭,姚军.工程结构的振动疲劳问题[J],应用力学学报.第23卷第一期,2006.03:P12-17

[2]孙伟.结构振动疲劳寿命估算方法研究[D].南京航空航天大学.2005.02.

[3]Ziad A. Hanna. Vibration fatigue assessment finite el ement analysis and test correlation [D],2005.

[4]Crandall S H,Mark W D.Random Vibration in MechanicalSystems[M].Academic Press inc 1963.

[5]姚起杭,姚军.结构振动疲劳问题的特点与分析方法[J],机械科学与技术.第十九卷增

刊,2000.09:P56-58

[6]罗仁安,余小波,朱焱等. 非金属类桩基材料的ZWICK高频振动力学实验研究[J].机械强度, 2004

Vol.26 No.z1 P.304-306

[7]M. HAMBLIN. Fatigue of cantilevered pipe fittings subjected to vibration[J]. Fatigue & Fracture of

Engineering Materials and Structures. Volume 26 Issue 8, August 2003. Page 695-707

[8]NWM Bishop. VIBRATION FATIGUE ANALYSIS IN THE FINITE ELEMENT ENVIRONMENT[J]. An

Invited Paper presented to the XVI ENCUENTRO DEL GRUPO ESPA?OL DE FRACTURA, Torremolinos, Spain, 14-16 April 1999

[9]周敏亮,陈忠明.飞机结构的随机振动疲劳分析方法[J],飞机设计. 第28卷第2期2008年4月:P46_49

[10]K. Sobczyk and J.Trebicki. K. Sobczyk and J.Trebicki. 8th ASCE Specialty Conference on Probabilistic

Mechanics and Structural Reliability PMC2000-333:P: 1-6

[11]安刚,龚鑫茂.随机振动环境下结构的疲劳失效分析[J],机械科学与技术.第19卷2000年9月:P40-42

[12]陆榕海,廖振魁. 略论发动机涡轮叶片的振动疲劳[J]. 洪都科技,1997:P19-23

[13]王荣乾.军用电子机柜随机振动疲劳分析[D]. 北京交通大学.2006.11

[14]王明珠,姚卫星,孙伟.结构随机振动疲劳寿命估算的样本法[J].中国机械工程第19卷第8期2008年4

月下半月:p972-975

[15]Dr Neil Bishop. Vibration Fatigue Analysis in the Finite Element Environment [J]. Paper to be presented

at Americas User Conference, Oct 5-9,Sheraton Universal Hotel, Universal City, California

(二)背景和意义

通常疲劳可以划分为静态疲劳和动态疲劳两大类。静态疲劳主要考虑结构设计上的应力应变分布(包括考虑诸如空气、表面不平度等其它外界因素)。大部分研究是以弄清与疲劳破坏有关的主要因素和机理为目的的,这些疲劳行为的研究范围,涉及从10-7毫米的原子尺度到几米长的工程结构。研究人员提出了很多疲劳行为的经验规律[1],经典的有S-N 曲线、Basquin关系式、Goodman图、累积损伤(Miner假设)、Manson—Coffin定律,等等。随着疲劳理论的不断发展,研究人员利用断裂力学的知识来分析疲劳问题,之后,还利用统计学的知识来分析疲劳问题。根据疲劳行为经验规律,设计人员可以设计各种结构。然而,要设计飞机这种一直处于振动随机载荷作用下的结构(如进气管道壁板和尾喷口蒙皮、机身侧壁和机翼下壁板以及尾翼根部、或梢部蒙皮、发动机罩蒙皮等等部位都是振动疲劳裂纹多发区域),由于振动疲劳破坏的复杂性,采用静态疲劳分析加增大安全系数的方法显然满足不了要求。

随着科学技术的发展,一些武器装备和运输机械,特别是像飞机之类的长寿命运载工具,其中部分主要受动载荷作用结构部件常常出现振动疲劳裂纹或破坏。由于对于这种振动疲劳的问题很少开展针对性的研究,大多是采用静态疲劳方法加以处理,以至造成了事倍功半的后果。虽然振动疲劳破坏的发生和裂纹扩展的机理与静态疲劳是一致的,但由于静动态载荷引起的结构应力分布不同,即使能够保持临界点应力一致也不一定具有相同的疲劳寿命和裂纹扩展速率。人们已经意识到采用静态的疲劳经验公式或者仅仅依靠断裂力学的知识来分析疲劳失效已经不能满足科技发展的需求,需要发展一种新的分析振动疲劳失效的理论与技术。振动疲劳的理论与技术就是一种崭新的疲劳分析理论和技术。

振动疲劳的理论与技术,其主要任务是将结构动力学各有关学科的知识和技术以及各种信息通过创造性思维过程,实现符合社会、生产和科学技术发展的需要,并能为结构的振动疲劳控制提供所接受的抗疲劳设计与分析方法。也就是说,振动疲劳就是以提高结构的抗疲劳能力为设计目标,研究振动疲劳产生过程中裂纹的发生、扩展直至断裂与振动响应之间的内在规律及疲劳控制方法,并对振动疲劳进行分析和定量描述的科学。所以,作为分析结构疲劳失效的方法——振动疲劳的理论与技术研究是结构振动和结构疲劳强度学科交叉的前沿领域。

根据近年来日益增多的文献报道,在结构振动疲劳问题方面,很多学者研究了结构疲劳失效与结构振动固有振动频率大小、振动响应幅值等因素之间的规律。这些问题的研究使得人们对于影响结构产生振动疲劳失效的原因以及失效模型越来越清晰,促进了结构振动疲劳理论的发展。

由于振动疲劳理论在产生原理、分析方法等方面都与静态疲劳理论不同,因而振动疲劳的理论学科基础、研究手段和研究内容也与静态疲劳理论有所不同,它涉及静态疲劳理

论、结构动力学、断裂力学、声学、自动控制等领域,是一门多学科交叉的综合技术。因此,开展振动疲劳的理论与技术研究具有十分重要的意义和实用价值。

为了具体说明开展振动疲劳研究的意义,下面列举几个典型实例。

1)飞机由于结构疲劳破坏发生而失事。

1979年,一架美国的“DC-10”大型客机在芝加哥奥黑尔国际机场起飞不久就坠毁。

1985年8月,日航的一架5ALl23客机,由于后部压力隔板的开裂而坠毁。

2002年5月,台湾中华航空公司一架波音747客机在台湾海峡贬空突然解体,造成225人遇难。

事后的调查结果显示,上述的机毁人亡事故均是由飞机结构的疲劳破坏引起的。

因为飞机动力装置产生的振动,飞机着陆滑行及某些地面机动产生的振动,鸟撞、突风等引起的振动,这些振动都能引起振动疲劳损伤,当损伤累积到一定程度,结构产生振动疲劳破坏。各种非平稳气动力作用,包括扰流抖振激励,附面层压力脉动,突起及空腔的气动及声激励以及急剧机动动作用产生的动载荷引起结构破坏。经受扰流抖振操纵面、突出在气流中的外挂、整体油箱等内部存储器等引起结构的振动失效。

2)汽轮机叶片的振动疲劳失效。

3)武器发射、投放、弹射等动作产生的冲击及压力波作用而导致的振动疲劳失效。

振动疲劳的危害性人们很早就认识到了,因此也对这个问题进行了一些研究,但是由于振动问题有一定的特殊性,对它的研究远比不上静态疲劳问题研究得成熟,因此还有很多问题值得进一步探索。结构振动疲劳是振动理论与疲劳技术的一种交叉,也是振动应用技术的一个重要方面,为了对结构的振动疲劳的特性进行更加正确的分析预计和验证试验,有必要对结构振动疲劳的问题展开专门研究。

我们可以大胆地设想,随着结构振动疲劳理论的发展,它将成为结构动态设计的理论基础。

参考文献

[1]J.T.巴恩比著,疲劳[M].科学出版社,1984

[2]姚起杭,姚军.工程结构的振动疲劳问题[J],应用力学学报.第23卷第一期,2006.03:12-17

[3]鲁启新,吴铁鹰.振动疲劳试验的自动化[J].航空学报.第6卷5第期1985.10.P:474477

[4]NWM Bishop. VIBRATION FATIGUE ANALYSIS IN THE FINITE ELEMENT ENVIRONMENT[J]. An

Invited Paper presented to the XVI ENCUENTRO DEL GRUPO ESPA?OL DE FRACTURA, Torremolinos, Spain, 14-16 April 1999

[5]Ziad A. Hanna. Vibration fatigue assessment finite element analysis and test correlation [D],2005.

(三)研究内容

由于振动疲劳的理论与技术研究还处于起步阶段,虽然近年来国际上陆续有研究报告发表,但远没有形成系统的理论体系和分析方法;同时,振动疲劳研究涉及的学科范围广泛;此外,作为一门新的学科体系,要真正地建立起理论框架,首先应该解决的问题是概念的建立、研究方法的确定等。经过认真思考,本人认为,目前振动疲劳问题的主要研究内容应该包括以下几方面:

1. 振动疲劳的分类研究

在工程实际中,结构总会受到各种各样的激励而产生动态响应。因此,严格来说绝大多数疲劳都属于振动疲劳问题。为了研究工作的简化,一般而言我们先要对振动疲劳进行分类。不同的振动疲劳类型可以采用不同的研究方法,把各种振动疲劳分析方法总结起来形成比较系统的振动疲劳分析技术。

通常,我们比较习惯按照结构固有频率f0和交变载荷f的变化频率进行分类,它可以把振动疲劳分为三类:

1)低频振动疲劳,指结构所受的交变载荷的变化频率远低于结构的固有频率,一般而言f<0.8f0,这种载荷作用下引起的振动疲劳通常称为低频振动疲劳。

2)共振振动疲劳,指结构所受的交变载荷的变化频率接近于结构的固有频率,一般而言

0.8 f0< f<1.2 f0,这种载荷作用下的振动疲劳通常称为共振振动疲劳。

3)高频振动疲劳,指结构所受的交变载荷的变化频率远高于结构的固有频率,一般而言

f>1.2 f0,这种载荷作用下的振动疲劳通常称为高频振动疲劳。

不同类型的振动疲劳具有不同的振动疲劳特性,分类有利于研究工作的简化。研究过程中,我们可以对高频振动疲劳、共振振动疲劳和低频振动疲劳分别进行研究,分析其振动疲劳特性,提出不同的预测结构寿命的方法及控制振动疲劳的措施。低频载荷下,一般可以按照分析载荷的应力应变与振动频率的影响,共振频率载荷下,一般主要研究结构发生共振时的振幅对结构的破坏,而高频主要研究每次振动损伤产生的累积效果。

有的时候,我们也可以根据交变载荷的变化规律进行分类,它包括:

1)确定性载荷振动疲劳,指能够预期知道交变载荷的变化规律,这种载荷所引起的振动

疲劳称为确定性振动疲劳。

2)随机载荷振动疲劳,指作用于结构的交变载荷是随机变化的,这种载荷作用引起的疲

劳称为随机载荷振动疲劳。

2. 振动疲劳与静态疲劳的比较研究

虽然振动疲劳与静态疲劳有所差异,但它们引起结构发生失效的机理是相同的。比较研究可以使研究工作少走很多弯路。振动疲劳理论是静态疲劳理论与结构动力学理论相结合而形成的一门学科。因此,现有的静态疲劳理论是振动疲劳研究的理论基础之一。通过分析比较结构静态疲劳与振动疲劳的特点,有助于建立振动疲劳的理论框架和体系。振动疲劳的研究可以通过借鉴静态疲劳的理论,考虑结的动力学响应,建立振动疲劳的理论基础。

3. 结构振动疲劳特性的研究

结构振动疲劳是在考虑结构的动力学响应的基础上,分析结构的疲劳失效。因此,研究结构的疲劳失效与结构的动力学特性之间的内在联系十分重要。比如,我们可以通过试验观察研究结构振动疲劳与结构的固有频率、交变载荷的变化频率、结构振动响应的振动幅值等模态之间的联系,揭示振动疲劳的动力学本质,为结构振动疲劳的寿命预测和结构的抗疲劳设计提供理论依据。

4. 振动疲劳的寿命分析方法

研究振动疲劳的最终目标就是希望形成一门抗疲劳技术,通过结构的抗疲劳设计延长结构的使用寿命。因此,应该在静态疲劳寿命分析方法的基础上发展振动疲劳寿命分析方法,找出振动疲劳的寿命与结构的振动响应之间的关系。

5. 振动疲劳的识别与测试

振动疲劳的形成经历了裂纹的发生、扩展直至断裂整个过程。如何判断振动疲劳的发生,疲劳失效的形成,需要利用振动疲劳识别技术。我们可以引入模糊识别技术判断振动疲劳裂纹的产生,确定振动疲劳失效的模态阈值。

任何科学研究都离不开实验,所以,我们可以通过实验测试获得数据,分析实验结果与结构的振动响应之间的内在联系,从而有助于建立振动疲劳的理论模型。

6. 其它方面的研究

振动疲劳的理论与技术,作为一门新的科学技术刚刚起步,有大量的研究内容需要展

开,比如:1)结构抗振动疲劳设计和控制维修技术;2)减轻振源强度的设计方法;3)降低结构振动传递的设计方法;4)薄壁结构抗振动疲劳设计方法;5)防止振动疲劳破坏或振动控制技术,等等。

(四)总结

本文作者在阅读部分文献的基础上,经过思考与分析,形成了本篇研究报告。由于作者理论水平的不够,研究报告的内容见解不深,甚至有些错误之处。我相信,经过不断的深入研究,一定可以探索到振动疲劳的本质。振动疲劳的理论与技术是一个全新的科学研究方向,其研究持续性很强。

振动力学课程设计报告

振动力学课程设计报告-(2) 振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计 单位: 专业/班级: 姓名:

指导教师: 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中 的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下, 应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立

1、结构(系统)模型简介

k4、C4分别为尼龙连接板得等效刚度和阻尼。 g为偏心块质量,m为给料槽体质量,m2激振器的振动质量。 m R —输送槽体(包括激振器)的质量,1500kg ;即g m 叫 m G —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

东南大学物理实验报告-受迫振动

物理实验报告 标题:受迫振动的研究实验 摘要: 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如,众多电声器件需要利用共振原理设计制作。它既有实用价值,也有破坏作用。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。另外,实验中利用了频闪法来测定动态的相位差。

目录 1引言 (3) 2.实验方法 (3) 2.1实验原理 (3) 2.1.1受迫振动 (3) 2.1.2共振 (4) 2.1.3阻尼系数的测量 (5) 2.2实验仪器 (6) 3实验内容、结果与讨论 (7) 3.1测定电磁阻尼为0情况下摆轮的振幅与振动周期的对应关系 (7) 3.2研究摆轮的阻尼振动 (8) 3.3测定摆轮受迫振动的幅频与相频特性曲线,并求阻尼系数 (9) 3.4比较不同阻尼的幅频与相频特性曲线 (14) 4.总结 (15) 5.参考文献 (16)

1引言 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如为研究物质的微观结构,常采用核共振方法。但是共振现象也有极大的破坏性,减震和防震是工程技术和科学研究的一项重要任务。表征受迫振动性质的是受迫振动的振幅—频率特性和相位—频率特性(简称幅频和相频特性)。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。 2.实验方法 2.1实验原理 2.1.1受迫振动 本实验中采用的是玻耳共振仪,其构造如图1所示: 图一

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

振动实验报告剖析

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

西工大结构试验技术 实验说明YE6251说明书

SINOCERA? YE6251振动力学实验系统 说 明 书 江苏联能电子技术有限公司

YE6251振动力学实验系统 一、系统概述 振动力学实验系统主要由YE6251振动力学实验仪、YE15000振动力学实验台、激振和传感器、数据采集卡及其采集和分析软件等组成。 1、振动力学实验仪:YE6251Y2扫频信号发生器、YE6251Y1功率放大器、YE6251Y3 阻尼调节器、YE6251Y4位移测量仪、YE6251Y5力测量仪、两通道YE6251Y6加速度测量仪、机箱及电源。 2、振动力学实验台:简支梁、固支梁、悬臂梁、薄板、复合阻尼梁、电磁阻尼器、 单自由度质量—弹簧—阻尼系统、两自由度质量—弹簧—阻尼系统、动力吸振器。 3、激振和传感器:YE15400电动式激振器、LC-01A冲击力锤(含CL-YD-303A力 传感器)、CL-YD-331A阻抗头、CWY-DO-502电涡流式位移传感器、CA-YD-107压电式加速度传感器。 4、数据采集卡及其采集和分析软件:A/D(D/A)采集卡、系统应用软件由数据采 集、数据预处理,时域处理,频域处理、模态分析,报告生成、在线帮助等模块组成。 二、YE6251振动力学实验仪主要技术指标 YE6251Y2扫频信号发生器 1、输出波形:正弦波 2、频率范围:对数模式下10Hz~1000Hz在一个连续量程之内 3、具有手动、自动两种频率控制方式 4、手动控制频率时,有粗调和微调两种方式 5、自动频率控制时,扫频范围:10Hz~1000Hz,扫频上、下限分档任意调节,扫频 比:100:1,扫频时间在0.1S~20S内任意调节 6、频率显示:采用4位7段LED数显 频率〈200Hz时:分辨率0.1Hz 频率≥200Hz时:分辨率 1Hz 7、频率显示精度:±1%±1 8、幅值线性度:10Hz~1000Hz频率范围内±0.2dB 9、失真度:≤0.5% 10、具有BNC信号输出端子; YE6251Y1功率放大器 1、恒流输出 2、功率输出:输出电流0~1A连续可调,最大输出电流大于1.2A

波尔共振实验报告

波尔共振 振动是一种常见的物理现象,而共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。 目前,电力传输采用的是高压输电法。而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。人们期待着能在更远的距离实现无线输电,那时生产和生活将会发生一场重大变革。 【目的与要求】 1. 观察测量自由振动中振幅与周期的关系。 2. 研究阻尼振动并测量阻尼系数。 3. 观察共振现象及其特征;研究不同阻尼力矩对受迫振动的影响及其辐频特性和相频特 性。 4. 学习用频闪法测定动态物理量----相位差。 【实验原理】 物体在周期性外力(即强迫力)的作用下发生的振动称为受迫振动。若外力是按简谐振动规律变化,则稳定状态时的振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统的固有频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。在无阻尼情况下,当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。 当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-),其运动方程为 t M dt d b k dt d J ωθ θθcos 02 2+--= (33-1) 式中,J 为摆轮的转动惯量,-k θ为弹性力矩,M 0为强迫力矩的幅值,ω为强迫力的圆频率。 令 ,2 0J k =ω ,2J b =β J M m 0= 则式(33-1)变为 t m dt d dt d ωθωθβθcos 22022=++ (33-2) 当0cos =t m ω时,式(2)即为阻尼振动方程。 当0=β,即在无阻尼情况时式(33-2)变为简谐振动方程,系统的固有圆频率为ω0。方程(33-2)的通解为 )cos()cos(021?ωθαωθθβ+++=-t t e f t (33-3) 由式(33-3)可见,受迫振动可分成两部分: 第一部分,)cos(1αωθβ+-t e f t 和初始条件有关,经过一定时间后衰减消失。

振动力学课程设计题目

振动力学课程设计题目 采用MATLAB 对所选的问题进行数值计算和作图,采用高于MATLAB7.4(2007)版本所编写的程序需转换为文本(.txt )文件, 早于MATLAB7.4(2007)版本所编写的程序可直接采用M 文件传送至QQ :296637844。题目如下,其中1,2,3题为必做题,4-38选二题(第一轮:一班01号为第4题, 一班02号为第5题…一班28号为第25题, 二班01号为第26题,…二班17号为第38题, 二班18号为第4题,…二班27号为第13题;第二轮:一班01号为第14题…)。文件名采用自己的姓名。考核时间暂定于12月30日。 题目: 1. 编写MA TLAB 程序,根据书本公式(3.1-10)、(3.1-10)作出单自由度系统强迫振动的幅频特性曲线、相频特性曲线。0.1,0.2,0.3,0.5,0.7,1.0,1.2?=。 2. 根据书本图4.5-3,分析有阻尼动力减振器的特性。包括在不同的质量比,频率比,阻尼比条件下结构的响应。 3. 对于图2所示体系,用矩阵迭代法计算其固有频率及振型。 1231,2m m m ===,1230 c c c ===,1231,5,8k k k ===,1230,0,0F F F ===, 1231,1,1ωωω===。 4. 采用中心差分法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 5. 采用Houbolt 法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 6. 采用Wilson-θ法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 7. 采用Newmark-β法计算单自由度体系10105sin(/2)x cx x t ++= ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 8. 采用中心差分法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 9. 采用Houbolt 法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 10. 采用Wilson-θ法计算10105sin(/2)2sin()sin(2)x cx x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 11. 采用Newmark-β法计算10105s in (/2)2s in ()s in (2 x c x x t t t ++=++ ,当c=3和c=20,000,0x x == 前10s 内的位移,作出其时间位移曲线图。 12. 采用卷积积分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别 在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 13. 采用中心差分法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前10s 内的时间位移曲线。 14. 采用Houbolt 法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别在 ()5(),5(),5sin(2)(),(02)F t N t N t N t s =≤≤作用下前 10s 内的时间位移曲线。 15. 采用Wilson-θ法计算单自由度体系m=10kg ,c=3Ns/m ,k=10N/s ,分别

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示:= ρ 1 ------------------------------------------------------- ①

另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ-------------------------------------------------------- ② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=n*λ/2 或λ=2*L/n代入③得γ n=2L ------------------------------------------------------ ④ρ1 四实验内容和步骤 1.研究γ和n的关系 ①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

振动力学课程设计报告材料(2)

振动力学课程设计报告 课设题目:电磁振动给料机的振动分析与隔振设计单位: 专业/班级: 姓名: 指导教师:

一、前言 1、课题目的或意义 通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。 2、课题背景: 1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。料槽衬板采用20mm厚钢板。料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。 2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下,应尽可能减轻振动槽体的质量。从而使其在实际工程应用中会有非常广泛的前景。 二、振动(力学)模型建立 1、结构(系统)模型简介

O 1 O 0 O 2 123123k k k c c c 、为隔振弹簧,为主振弹簧,、、分别为隔振和主振弹簧的阻尼 4k 、4c 分别为尼龙连接板得等效刚度和阻尼。 0m 为偏心块质量,1m 为给料槽体质量,2m 激振器的振动质量。 R m —输送槽体(包括激振器)的质量,1500kg ;即012R m m m m ++= G m —槽内物料的结合质量。 在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。 2、系统模型参数 (包括系统所必需的几何、质量、等效刚、激励等)

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告一、实验目的1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。 二、实验原理1.有粘滞阻尼的阻尼振动弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++=记ω0为无阻尼时自由振动的固有角频率,其值为ω0=,定义阻尼系数k/J β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++=小阻尼即时,阻尼振动运动方程的解为2200βω-< (*)( )) exp()cos i i t t θθβφ=-+由上式可知,阻尼振动角频率为 ,阻尼振动周期为d ω=2d d T π=2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为22cos d d J k M t dt dt θθγθω++=()( ))()exp cos cos i i m t t t θθβφθωφ=-++-这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=-稳态解的振幅和相位差分别为路须同时切断习题电源,备制造厂家出具高中资料需要进行外部电源高中资料

m θ=2202arctan βωφωω=-其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。3.电机运动时的受迫振动运动方程和解弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω=式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为。于是在固定坐标系中摆轮转角θ的运动方程为()cos m t t θαθαω-=-()22cos 0m d d J k t dt dt θθγθαω++-=也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到m θ=由θm 的极大值条件可知,当外激励角频率时, 0m θω ??=ω=系统发生共振,θm 有极大值。α 引入参数,称为阻尼比。(0ζβ ωγ==于是,我们得到 m θ=()()0202arctan 1ζωωφωω=-三、实验任务和步骤 1.调整仪器使波耳共振仪处于工作状态。 2.测量最小阻尼时的阻尼比ζ和固有角频率ω0。进行隔开处理;同一线槽内人员,需要在事前掌握图纸电机一变压器组在发生内部

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

土木工程试验与检测学习心得

《土木工程结构试验与检测》学习心得 本学期院内开设了一门《土木工程结构试验与检测》的专业选修课,根据自身今后的目标工作定位和实际情况,我有幸选择了这门课程进行修读。通过一个学期课程的学习与现场试验的认知,感觉自己受益匪浅。通过课程学习,明白了结构试验的原理及不同情况下试验的基本方法和对试验数据的处理、分析。通过现场试验的了解与认知,更加清晰的了解了土木工程结构试验与检测的大致实际操作、分析方法。 结构试验既是一门科学又是一种技术,是研究和发展土木工程新结构、新材料、新工艺以及检验结构分析和设计理论的重要手段,在结构工程科学研究和技术创新等方面起着重要作用。 结构试验一般分为研究性试验和鉴定性试验。通过研究性试验,我们不仅可以验证结构计算理论或通过结构试验创立新的结构理论,还可以制定工程技术标准。而作为直接的生产性目的和具体的工程对象的鉴定性试验,我们通过结构试验检验结构、构件或结构部件的质量,确定已建成结构的承载能力,验证结构设计的安全度。故综上所述,我们从结构试验的目的了解到了其不仅为结构理论提供必要的依据,更为实际工程建设的安全、可靠度提供了直接的检测。 在课程理论学习方面,老师从结构静载、动载、非破损检验等方面进行了介绍。而通过理论知识学习,我们从试验规划与设计、试验技术准备、试验仪器的了解、试验实施过程、试验数据处理等方面加强了自身的知识储备。 在通过近14周的理论课程学习之后,我们有幸来到厦门大学漳州校区结构试验室,参观、了解部分建筑结构试验仪器,并在老师的带领下学习使用部分仪器。 结构实验室内拥有振动力学实验台、非金属超声检测分析仪、混凝土回弹仪、单自由度振动台等结构试验仪器。以下就举两个例子做简要说明。 非金属超声检测分析仪为工程检测仪器,为了保证其测量的准确,在测量物表面涂上耦合剂,通过超声波传播的波速就能来进行检测。其主要用于检测岩体及结构混凝土强度、内部缺陷、损伤层厚度、裂缝深度等,可扩展为声波透射法桩基完整性检测仪及混凝土厚度测试仪。而我们通过现场对其的了解和实际操作,让我进一步了解了其工作机理。我认为更为重要的是我明白了如果将我们平时在其它课程

相关文档
最新文档