平移型“将军饮马”问题解法大全

平移型“将军饮马”问题解法大全
平移型“将军饮马”问题解法大全

平移型“将军饮马”问题解法大全

如下图,大家都熟悉求两条线段和最短的“将军饮马”模型,就是通过对称把同侧两定点转化为异侧两定点,再利用两点之间线段最短,找到我们要得的动点,进而求出最短距离。

在直线l上找一动点P,使得PA+PB之和最短,就是我们熟知的“将军饮马”模型,即(“两定一动型”----两个定点+一个动点)。如果本题拓展为在直线l上找两个动点P、Q(PQ两动点间距离为定值),使得AP+PQ+BQ的距离之和最短,又该如何处理呢?(“两动一定型”)

法一:先对称后平移

作定点A关于动点所在直线(河)的对称点A’,将点A’沿直线平移PQ的长度得A”,连接A”B,则交直线(河)于点Q,将点Q 沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.

思路:作对称(同侧变异侧)---对称点平移定长线段(“一定两动”化“两定一动”)---连接两定点---动点反向平移定长线段---连接所得点.

法二:先平移后对称

将点A沿直线平移PQ的长度得A’,作定点A’关于动点所在直线(河)的对称点A”,连接A”B,则交直线(河)于点Q,将点Q 沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.

思路:定点平移定长线段(“一定两动”化“两定一动”)----作对称(同侧变异侧)----连接两定点---动点反向平移定长线段---连接所得点.

作图模型:对称+平移+连接+反向平移+连接

“两定一动”问题即转化为“饮马问题”).具体思路均是构造定点关于动点所在直线(河)的对称点.

反思:“平移型将军饮马”问题,需通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.

通过平移将一定点变为两定点,再将同侧定点通过对称转变为异侧定点,连接原定点和对称点即可得最短距离.

(思路:定点沿河平移定长,作出对称点,连接异侧两定点)

“两定一动”问题即转化为“饮马问题”).具体思路均是构造定点关于动点所在直线(河)的对称点.

简析:非典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转化为“饮马问题”,但本题2动点不同在河上是难点).具体思路均是构造定点关于动点所在直线(河)的对称点.

反思:“平移型将军饮马”问题,需通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.

通过平移将一定点变为两定点,再将同侧定点通过对称转变为异侧定点,将动点平移到异侧定点连线上即可得最短距离.

(思路:定点沿河平移定长,作出对称点,连接异侧两定点,平移动点至定点连线上)

反思:非典型的“平移型将军饮马”问题,需要我们有化动为定思想,

将某动点看作定点,再通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.

(思路:定点沿河平移定长,作出对称点,连接异侧两定点,平移动点至定点连线上)

本质为转化思想:

化同侧为异侧(对称变换)

平移定距离(平移变换)

化折线为直线(两点之间线段最短)

总结:“平移型将军饮马”又可细分为以下4种类型:

①典型的“平移型将军饮马”(一定两动型---动点均在直线“河”上)

作对称+再平移(化为“两定一动”)+去连接+反平移

②非典型的“平移型将军饮马”(一定两动型---动点只有1点在直线“河”上)

作对称+再平移+去连接+另一动点反平移至直线

③非典型的“平移型将军饮马”(三动点型)

假定某动为定点+作对称+再平移(化为“两定一动”)+去连接+反平移

④非典型的“平移型将军饮马”(两定两动)即“造桥选址”问题先沿河垂直方向平移桥长+连接+反向平移.

将军饮马问题讲定稿版

将军饮马问题讲 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

将军饮马问题 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB 上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P 和Q),使得总路程MP+PQ+QN最短. 【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短. 3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短? 4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离之和最小 5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为() A. 15 B 7.5 C. 10 D. 24 6. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.

7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______. 练习 1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P 在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由. 2、如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓 库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理? 3、已知:A、B两点在直线l的同侧,在l上求作一点M,使得|| -最小. AM BM 4、如图,正方形ABCD中,8 AB=,M是DC上的一点,且2 DM=,N是AC上的一动点,求DN MN +的最小值与最大值. 5、如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。 6、如图,直角坐标系中有两点A、B,在坐标轴上找两点C、D,使得四边形ABCD的周长最小。

轴对称将军饮马问题

将军饮马问题教案 教学设计 【教材分析】 本节内容的地位与作用 最短路径问题是中考热点问题之一,本课是在初二上学期,学生学完了轴对称、勾股定理、位置与坐标、一次函数等章节后以课本上数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.主要是运用数形结合和思想,综合轴对称、线段的性质和勾股定理以及一些常见的轴对称图形的性质解决线段之和最短问题,该问题的解决为我们提供了一种解题的思路和线索,触类旁通,由此产生了一系列问题的解题思路。使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣。 【学情分析】从我平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,只懂得机械的重复做题,浪费的大量的时间和精力,再加上来自社会、家长和老师的压力较大,学生学的辛苦,毫无快乐可言.而家长对我们教学的质量的要求较高,不但要学习成绩好,还要孩子学的轻松,玩的高兴.所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,读死书,以达到“教”是为可不教的目的.我班为平行班,代表了年级的平均水平,学生基础尚可,自觉性较强,学习努力,所以本节课设计为一堂学法研究课,旨在让学生学会思考,感受学习的快乐,体验成功. 教学目标: 【知识技能】 1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感 悟转化思想. 2.能利用轴对称变换解决日常生活中的实际问题。 【过程与方法】.培养学生的探究、归纳、分析、解决问题的能力。 【情感与态度】进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中 重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 难点:在实际题目中会运用最短路径模型灵活解决问题。 【教学关键】 运用好数形结合的思想,特别是从轴对称和线段的性质入手,获得求线段之和最短问题的直观形象,以便准确理解本节课的内容。 【教学策略】利用教学资源,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

轴对称中的动点问题:将军饮马

轴对称中的动点问题 【命题:严学荣 审核:明祥彬】 将军饮马问题:如图所示,将军准备从A 点出发,想让马到一条笔直的河流上去饮水,然后再去B 地,那么走怎样的路线最短呢? 【题型梳理】 一、两点一线型(两定一动) 例1 如图,A 、B 两点在直线l 的异侧,点P 是l 上一动点,若AB =5,求P A +PB 的最小值. 【变式训练】 1.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小. 2. 如图,A 、B 两点在直线l 的同侧,点P 是l 上一动点,若AB =5,求PA PB ?的最大值. 3.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使PA PB ?的最大. l A l l l

二、一点两线型(一定两动) 例2 如图,点P 是∠MON 内的一点,分别在OM ,ON 上 作点A ,B .使△P AB 的周长最小 【变式训练】 1.如图,点A 是∠MON 外的一点,在射线OM 上作点P ,使P A 与点P 到射线ON 的距离之和最小. 三、两点两线型(两定两动) 例3 如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B .使四边形P AQB 的周长最小 【变式训练】 如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A 到B 的距离最短? 【精讲精练】 1.如图,在台球桌面ABCD 上,有白和黑两球分别位于M ,N 两点处,问:怎样撞击白球M ,使白球先撞击台边BC ,反弹后再去击中黑球N ? O O N A O

轴对称与将军饮马问题(基础篇)专题练习(解析版)

轴对称与将军饮马问题(基础篇)专题练习 一、两定点一动点 1、答案:D 分析: 解答:∵点B和B’关于直线l对称,且点C在l上, ∴CB=CB’, 又∵AB’交l于C,且两条直线相交只有一个交点, ∴CB’+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 2、答案:B 分析: 解答:MN是正方形ABCD的一条对称轴, ∴PD=AP, 当PC+PD最小时,即点P位于AC与MN的交线上, 此时∠PCD=45°. 3、答案:C 分析: 解答:当PC+PE最小时,P在BE与AD的交点位置, 如图, ∵△ABC是等边三角形, ∴∠ACB=60°, ∵D、E分别是边BC,AC的中点, ∴P为等边△ABC的重心, ∴BE⊥AC, ∴∠PCE=1 2 ∠ACB= 1 2 ×60°=30°, ∴∠CPE=90°-∠PCE=90°-30°=60°,

选C. 4、答案:作图见解答. 分析: 解答:如图所示: 5、答案:作图见解答. 分析: 解答:所作图形如图所示: 6、答案:(1)画图见解答.(2)画图见解答. (3)P(0,4). 分析: 解答:(1)

(2) (3)过点A作AM⊥x轴于M, ∵A(2,6), ∴M(2,0),AM=6, 又∵B(4,0), ∴点B关于y轴的对称点B’(-4,0), ∴B’M=6=AM, ∴△AB’M为等腰直角三角形, ∴∠P’BO=45°, ∴△P’BO也为等腰直角三角形, ∴B’O=PO=4, ∴P(0,4). 7、答案:(1)画图见解答. (2)画图见解答. 分析: 解答:(1)关于y轴对称,纵坐标不变,横坐标相反. (2)作C关于y轴的对称点C1,连接C1B,交y轴于点P.连接PB,PC,此时△PBC周

轴对称及将军饮马问题教师版

轴对称及“将军饮马”问题 知识点睛 轴对称图形: 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴) 对称. 如下图,ABC ?是轴对称图形. 两个图形轴对称: 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做 对称点. 如下图,ABC ?关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C是对 A B C ?与''' 称点. 对称轴的性质: 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.即:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 线段的垂直平分线: 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 如图,直线l经过线段AB的中点O,并且垂直于线段AB,则直线l就是线段AB的垂直 平分线. 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等. 如图,点P是线段AB垂直平分线上的点,则PA PB =. 线段垂直平分线的判定: 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 成轴对称的两个图形的对称轴的画法: 如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这 两个图形的对称轴. 成轴对称的两个图形的主要性质: ①成轴对称的两个图形全等

轴对称及将军饮马问题.教师版

轴对称及“将军饮马”问题 知识点睛 轴对称图形: 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们就说这个图形关于这条直线(或轴)对称. 如下图,ABC ?是轴对称图形. 两个图形轴对称: 把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点. 如下图,ABC ?与'''A B C ?关于直线l 对称,l 叫做对称轴.A 和'A ,B 和'B ,C 和'C 是对称点. 对称轴的性质: 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.即:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 线段的垂直平分线: 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 如图,直线l 经过线段AB 的中点O ,并且垂直于线段AB ,则直线l 就是线段AB 的垂直平分线. 线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等. 轴对称图形 两个图形轴对称 区别 图形的个数 1个图形 2个图形 对称轴的条数 一条或多条 只有1条 联系 二者都的关于对称轴对称的

如图,点P 是线段AB 垂直平分线上的点,则PA PB . 线段垂直平分线的判定: 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 成轴对称的两个图形的对称轴的画法: 如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴. 成轴对称的两个图形的主要性质: ①成轴对称的两个图形全等 ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线 轴对称变换的方法应用: 轴对称变换是通过作图形关于一直线的对称图形的手段,把图形中的某一图形对称地移动到一个新的位置上,使图形中的分散条件和结论有机地联系起来.常用的辅助线有角平分线条件时的各种辅助线,本质上都是对称变换的思想. 轴对称变换应用时有下面两种情况: ⑴图形中有轴对称图形条件时,可考虑用此变换; ⑵图形中有垂线条件时,可考虑用此变换. 重、难点 例题精讲 板块一、轴对称与轴对称图形的认识 【例 1】 下列”QQ 表情”中属于轴对称图形的是( ) A . B . C . D . 【解析】 C 重点:理解轴对称的概念,并且熟悉掌握轴对称的性质以及作图,同时理解轴对称 变换的概念,能很好的做出轴对称变换的图形,并能很好的利用轴对称的知识来解决题目 难点:运用轴对称变换来解决实际题目,以及轴对称的生活中的实际运用

(完整word版)将军饮马问题的11个模型及例题

将军饮马问题 问题概述 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 方法原理 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 基本模型 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

初中将军饮马问题题型总结(全)

初中涉及将军饮马问题题型总结 题型一:将军饮马之单动点 1. 三角形中的将军饮马 【真题链接1.】(2017?天津) 如图,在ABC ?中,AB AC =,AD 、CE 是ABC ?的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( ) A .BC B .CE C .AD D .AC 【解析】 解:如图连接PC , AB AC =,BD CD =, AD BC ∴⊥, PB PC ∴=, PB PE PC PE ∴+=+, PE PC CE +, P ∴、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度,故选:B . B B

【真题链接2.】(2020?天津一模) 如图,ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( ) A .1 B .2 C D . 【解析】 解:如图, 连接BE 交AD 于点P ', ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点, AD ∴、BE 分别是等边三角形ABC 边BC 、AC 的垂直平分线, P B P C ∴'=', P E P C P E P B BE '+'='+'=, 根据两点之间线段最短, 点P 在点P '时,PE PC +有最小值,最小值即为BE 的长. BE == 所以P E P C '+' 故选:C . B B

【真题链接3.】(2019秋?东至县期末) 如图,在ABC ?中,AB AC =,4BC =,面积是16,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ?周长的最小值为( ) A .6 B .8 C .10 D .12 【解析】解:连接AD ,AM . ABC ?是等腰三角形,点D 是BC 边的中点, AD BC ∴⊥, 11 41622 ABC S BC AD AD ?∴= =??=,解得8AD =, EF 是线段AC 的垂直平分线, ∴点C 关于直线EF 的对称点为点A , MA MC ∴=, AD AM MD +, AD ∴的长为CM MD +的最小值, CDM ∴?的周长最短11 ()84821022 CM MD CD AD BC =++=+ =+?=+=. 故选:C . A A

5轴对称的应用-将军饮马问题

轴对称的应用 将军饮马问题 【基础练习】 1. 如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物, 要在河边建一 个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方, 可使所修的渠道最短,试在图中确定该点(保留作图痕迹) 2.如图,已知牧马营地在P 处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线. 3.如图,直线l 是一条河,P ,Q 两地相距8千米,P ,Q 两地到l 的距离分别为2千米,5千米,欲在l 上的某点M 处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( ) A . B . C . D . 草地 河流 营地 P

4.如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ) A . B . C . D . 5.如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把牛牵到河边饮水再回家,最短距离是( ) A .750米 B .1000米 C .1500米 D .2000米 6.如图,在一条公路CD 的同一侧有A 、B 两个村庄,A 、B 与公路的距离AC 、BD 分别为500m 和700m ,且C 、D 两地相距500m ,若要公路旁(在CD 上)建一个车站,则A 、B 两村庄到车站的距离之和最短是( ) A .1000m B .1200m C .1300m D .1700m 7.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B 是桌面上的两个球,怎样击

《轴对称》之“将军饮马”问题(二)

《轴对称》之“将军饮马”问题(二) 【变式3】 若将军骑马从军营出发,先骑马去草地边吃草,再牵马去河边喝水,最后将马送入河边上的马厩,问:马厩建在何处,可使将军走的路程最短? 【图示】 【分析】 我们同样把这个问题转化为熟悉的数学问题,把军营看作一个点,而把草地边和河边看作两条直线.问题即转化为,如下图:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得AB+BC最短. 首先明确各点,线的属性.

点A是定点,OM,ON是定线,点B,点C是OM,ON上要找的点,是动点. 第一步,显然用“化折为直”,作点A关于OM的对称点A’,连接A’C.但是点C的位置并不确定,如何保证A’C最短呢?此时问题转化为射线ON外一点A’到ON上一点C之间距离的最小值. 根据“垂线段最短”,则A’C⊥ON时最短! 【解答】 【变式4】 若将军从军营A出发去河边饮马,之后牵马在河岸散步200米,再骑回军营B,问从河边何处开始散步,可使整个行程最短?【图示】 蓝色部分即为散步所走的200米.

【分析】 我们继续把这个问题转化为熟悉的数学问题,把军营A与军营B看作2个定点,把河看作一条直线.问题即转化为,如下图:在直线l上找两个点C,D,使得AC+BD最短. 本题若作点A关于l的对称点A’,连接A’C和BD,会出现两线段不共线的问题,怎么办?我们能不能把BD进行相应的平移,使得与A’C共线? 完全可以,把BD沿着DC方向向左平移200米,问题即迎刃而解. 或者我们可以这么想象,把河边散步的200米,挪至回到军营B前,沿着与河平行的方向向右散步200米,问题也可解决.【解答】 如图,作点A关于l的对称点A’,将点B向左平移CD的长度到点B’(实际为200米),连接A’B’,交直线l于点C,将点C向右平移CD的长度到点D,点C,点D即为所求.

将军饮马题型总结

将军饮马题型总结 将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。所谓轴对称是工具,即这类问题最常用的做法就是作轴对称。而最短距离是题眼,也就意味着归类这类的题目的理由。比如题目经常会出现线段a+b 这样的条件或者问题。一旦出现可以快速联想到将军问题,然后利用轴对称解题。 将军饮马最常见的三大模型 1. 如图,在直线异侧两个点A 和B ,在直线上 求一点P 。使得PA+PB 最短(题眼)。 一般做法:作点A (B )关于直线的对称点, 连接A ’B ,A ’B 与直线交点即为所求点。A’B 即为最短距离 理由:A ’为A 的对称点,所以无论P 在直线任何位置都能得到AP=A ’P 。所以PA+PB=PA ’+PB 。这样问题就化成了求A ’到B 的最短距离,直接相连就可以了。 2. 如图,在∠OAB 内有一点P ,在OA 和OB 各 找一个点M 、N ,使得△PMN 周长最短(题 眼)。 一般做法:作点P 关于OA 和OB 的对称点 P1、P2。连接P1P2。P1P2与OA 、OB 的交 点即为所求点。P1P2即为最短周长。 理由:对称过后,PM=P1M ,PN=P2N 。所以 PM+PN+MN=P1M+P2N+MN 。所以问题就化 成了求P1到P2的最短距离,直接相连就可以了。 B

3.如图,在∠OAB内有两点P、Q,在OA PMNQ周长最短(题眼)。 一般做法:题目中PQ距离固定。所以只是 求PM+MN+QN的最短距离。最终P’Q’+PQ 即为所求最短周长。M、N即为所求的点。 理由:作完对称后,由于P’M=PM,Q’N=QN, 所以PM+MN+QN=P’M+MN+Q’N。所以就 化成了求P’到Q’的最短距离,所以相连即可。 常见问题 1.怎么对称,作谁的对称? 2.对称完以后和谁连接? 3.所求点怎么确定? 首先明白几个概念,动点、定点、对称点。动点一般就是题目中的所求点, 即那个不定的点。定点即为题目中固定的点。对称的点,作图所得的点,需要连 线的点。 那么第一个问题,怎么对称。简单说所有题目需要作对称的点,都是题目的 定点。或者说只有定点才可以去作对称的。(不确定的点作对称式没有意义的) 那么作谁的对称点?首先要明确关于对称的对象肯定是一条线,而不是一个点。 那么是哪一条线?一般而言都是动点所在直线。 接下来对称完以后和谁连接?一句话:和另外一个顶点相连。绝对不能和一 个动点相连。明确一个概念:定点的对称点也是一个定点。例如模型二和模型三。 最后所求点怎么确定?首先一定要明白,所求点最后反应在图上一定是个交 点。实际就是我们所画直线和已知直线的交点。

最新将军饮马问题(讲)

将军饮马问题 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上 的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短. 【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河 OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短. 3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短? 4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA 边的距离之和最小

5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为() A. 15 B 7.5 C. 10 D. 24 6. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N 两点的距离也相等. 7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC 边上一动点,则DP长的最小值为______. 练习 1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由.

中考复习《轴对称》之“将军饮马”问题

《轴对称》之“将军饮马”问题 “将军饮马”的起源: 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它. 而从此以后,这个被称为“将军饮马”的问题便流传至今. 【图示】 【分析】 我们把俯视图视角的问题抽象化,数学化,将河流看作一条直线l,军营看作一个点,转化为一个路程之和的最短问题.即如下图:直线同侧有两点A,B,在直线上选取一点C,使得AC+BC最短.

在思考这个问题之前,我们先来回忆下初一上学期中,涉及线段最短的两个重要结论: 1、两点之间,线段最短. 2、垂线段最短. 请各位同学务必记住,初中阶段的几何最值问题,最后几乎都可以转化为通过这两个结论来求得. 如果“将军饮马”问题不能很快回答,那么我们先看这个问题,假如军营A,B在河的两岸,那么这个点C在哪呢? 很简单,连接AB,与直线l的交点即为点C.理由,两点之间,线段最短.(当然也可以用三角形一边小于两边之和) 那么回到原先的问题,即军营A,B在河的同侧,该如何思考就不难了.根据线段对称性,只需作点A关于直线l的对称点A’,连接A’B,与直线l的交点即为点C.

【解答】 如图 【变式1】 若将军骑马从军营出发,先骑马去草地边吃草,再牵马去河边喝水,最后回到军营,问:这位将军怎样走路程最短? 【图示】 【分析】 我们同样把这个问题转化为熟悉的数学问题,把军营看作一个点,而把草地边和河边看作两条直线,当然在图示中,这两条直线相交,形成了一个角.问题即转化为,如下图:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.

最短路径问题(将军饮马问题)教学设计

最短路径问题——将军饮马问题及延伸 湖南省永州市双牌县茶林学校 熊东旭

最短路径问题 教学内容解析: 本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。 本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。 教学目标设置: 1、能利用轴对称解决最短路径问题。 2、在解题过程能总结出解题方法,,能进行一定的延伸。 3、体会“轴对称”的桥梁作用,感悟转化的数学思想。 教学重点难点: 重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。 难点:如何利用轴对称将最短路径问题转化为线段和最小问题。 学情分析: 1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。 2、学生已经学习过“两点之间,线段最短。”以及“垂线段最短”。以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。

教学条件分析: 在初次解决问题时,学生出现了多种方法,通过测量,发现利用轴对称将同侧两点转化为异侧两点求得的线段和比较短;进而利用PPT动画演示,实验验证了结论的一般性;最后通过逻辑推理证明。 教具准备:直尺、ppt 教学过程: 将实际问题中的“地点” “河”抽象为数学中的 “点”“线”,把实际问题 抽象线段和最小问题。

将军饮马问题的11个模型及例题

将军饮马问题 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马最短路径问题教学设计

13.4 将军饮马——最短路径问题教学设计 一、教学内容解析 为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问题. 初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”,为理论基础,有时还要借助轴对称、平移、旋转等变换进行研究. 本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题——“将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题.从中,让学生借助所学知识和生活经验独立思考或与他人合作,经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间,数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与能力转化上起到桥梁作用。 基于以上分析,本节课的教学重点确定为: [教学重点] 利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题. 二、教学目标解析 新课程标准明确要求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题、情感与态度等方面得到发展.因此,确定教学目标如下: [教学目标] 能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感. [目标解析] 达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对

将军饮马问题

“将军饮马问题”教学活 一、问题背景: 唐代诗人李颀的诗《古从军行》开头两句说“白日登山望烽火,黄昏饮马傍交河。”诗中隐含着一个有趣的数学问题。 如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营,请问怎样走使总的路程最短? B·营地 A·山峰 河流 这个问题在古罗马时代就有了,传说在亚历山大城有位精通数学和物理的学者,名叫海伦。一天,以为罗马将军专程拜访他,向他请教一个百思不其解的问题。 将军每天从军营A出发,先到河边饮马,然后再去河边同侧的B 营地开会,应怎样走使路程最短?这个问题很简单,海伦略加思索就解决了 二、引用“饮马问题”: 将军饮马问题,应用拓展到人教版八年级上册轴对称性质当中一实际应用问题: 如图所示,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?

B·镇 A·镇 L 三、教学方法的探究: 当教师在组织教学活动中,平铺直叙得讲,学生不易理解。“将军饮马”问题,在学生理解方面,存在两大难点,一是如何利用轴对称的性质作出使得线路最短的点。二是说明最短的理由,如何设计探究活动组织有意义的方法和策略,成为了突出重点、突破难点,化难为易的关键,可采用镜面反射的原理创设探究活动,使问题简单化,学生易于理解和掌握。 设想把河流看作诗一面平面镜,村庄A、B看作诗甲、乙两人,这样设计: 甲、乙两人分别位于镜面的同侧A、B两点,甲、乙通过镜面分别看到自己的影子A′、B′。如图,连接AB′,AB′与L交于C,甲、乙通过镜面都能看到对方的影子。连接A′C与BC,探究: B

A L C C′ A′ B′ (1)、AC与A′C,B′C与BC上存在什么关系,说明理由。(2)、AC+B′C与AC+BC存在大小关系如何,说明理由。 (3)、平面镜L有异于C点的另外一点C′,连接AC′、BC′、B′C′,AC′+BC′与AC′+B′C′是否相等?AC′+BC′与AC+BC是否相等?不相等大小关系如何?说明理由。 这样设计探究活动,能充分体现轴对称性质,使复杂问题简单化,难点分解,由浅入深,通过实际生活中的镜面反射原理使得问题通俗化、趣味化,能调动学生学习的兴趣,易于学生掌握和理解。四、妙用饮马问题: 利用轴对称思想,将该问题转化为“两点间线段最短”,即“三角形两边之和大于第三边”的问题。饮马问题可归结为“求定直线上一动点与直线外两点的距离之和的最小值”问题的数学模型,利用“饮马问题”的思想,结合初中的基本几何图形,及直角坐标系中的函数图象等,在近几年的中考中发挥着举足轻重的作用。 1、如图,在AB、AC上有两个定点E、F,要在BC上找一点D, 使△DEF的周长最短?

相关文档
最新文档