高速切削技术有何特点

高速切削技术有何特点?

高速切削针对不同金属材料的工件,当切削速度到达某一特定值时,切削温度不但不会升高反而会降低,产品的质量也会改善,生产效率也会大幅度提高。

高速切削与加工材料、加工方式、刀具及切削参数等有很大的关系。一般认为,高速切削的切削速度是常规切削速度的5~10倍,铝合金1500~5500m/min;铜合金900~5000m/min;钛合金100~1000m/min;铸铁750~4500m/min;钢600~800m/min。各种材料的高速切削进给速度范围为2~25m/min。

高速切削之所以得到工业界越来越广泛地应用,是因为它相对传统加工具有显著的优越性,具体说来有以下特点:

1.可提高生产效率

高速切削加工允许使用较大的进给率,比常规切削加工提高5~10倍,单位时间材料切除率可提高3~6倍。当加工需要大量切除金属的零件时,可使加工时间大大减少。

2.降低了切削力

由于高速切削采用极浅的切削深度和窄的切削宽度,因此切削力较小,与常规切削相比,切削力至少可降低30%,这对于加工刚性较差的零件来说可减少加工变形,使一些薄壁类精细工件的切削加工成为可能。

3.提高了加工质量

因为高速旋转时刀具切削的激励频率远离工艺系统的固有频率,不会造成工艺系统的受迫振动,保证了较好的加工状态。由于切削深度、切削宽度和切削力都很小,使得刀具、工件变形小,保持了尺寸的精确性,也使得切削破坏层变薄,残余应力小,实现了高精度、低粗糙度加工。

从动力学角度分析频率的形成可知,切削力的降低将减小由于切削力产生的振动(即强迫振动)的振幅;转速的提高使切削系统的工作频率远离机床的固有频率,避免共振的发生;因此高速切削可大大降低加工表面粗糙度,提高加工质量。

4.加工能耗低,节省制造资源

由于单位功率的金属切除率高、能耗低以及工件的在制时间短,从而提高了能源和设备的利用率,降低了切削加工在制造系统资源总量中的比例,符合可

持续发展的要求。

5.简化了加工工艺流程

常规切削加工不能加工淬火后的材料,淬火变形必须进行人工修整或通过放电加工解决。高速切削则可以直接加工淬火后的材料,在很多情况下可完全省去放电加工工序,消除了放电加工所带来的表面硬化问题,减少或免除了人工光整加工。

由于高速切削的特点决定了高速切削可以节省切削液、刀具材料和切削工时,从而可极大限度地节约自然资源和减少对环境的污染,提高生产率和产品质量,因此,高速切削在工业生产尤其是规模较大的汽车企业和与之相关的模具制造业上的应用具有“燎原”之势。

影响材料可切削性首要因素是什么?

钢的化学成分很重要:钢的合金成分越高,就越难加工;当碳含量增加时,金属切削性能就下降。

钢的结构对金属切削性能也非常重要。不同的结构包括:锻造的、铸造的、挤压的、轧制的和已切削加工过的。锻件和铸件有非常难于加工的表面。

硬度是影响金属切削性能的一个重要因素。一般规律是钢越硬,就越难加工。高速钢(HSs)可用于加工硬度最高为330—400HB的材料:高速钢+钛化氮(TiN)涂层,可加工硬度最高为45HRC的材料;而对于硬度为65—70lHRC的材料,则必须使用硬质合金、陶瓷、金属陶瓷和立方氮化硼(CBN)。

非金属参杂一般对刀具寿命有不良影响。

例如Al203氧化铝),它是纯陶瓷,有很强的磨蚀性。

最后一个是残余应力,它能引起金属切削件能问题。常常推荐存粗加工后进行应力释放工序。

相关文档
最新文档