斜拉桥模型分析

斜拉桥模型分析
斜拉桥模型分析

斜拉桥的模型分析

第一章建模综述

1.1 Midas Civil 简介

本次建模分析采用Midas Civil软件,Midas Civil是个通用的空间有限元分析软件,可适用于桥梁结构、地下结构、工业建筑、飞机场、大坝、港口等结构的分析与设计。特别是针对桥梁结构,Midas Civil结合国内的规范与习惯,在建模、分析、后处理、设计等方面提供了很多的便利的功能,目前已为各大公路、铁路部门的设计院所采用。

1.2 斜拉桥简介

斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。

1.3 建模基本步骤

(1)利用斜拉桥建模助手生成斜拉桥二维索塔模型, 并扩建为三维模型;(2)建立主梁横向系, 并生成索塔与桥墩上的主梁支座;

(3)输入边界条件;

(4)输入荷载及荷载条件;

(5)利用未知荷载系数功能计算拉索初拉力;

(6)施工阶段分析计算;

桥梁基本数据输入

Midas Civil基本参数输入

荷载及荷载条件选取

定义材料及截面特性参数值

节点选取,生成单元,建立成桥阶段模型生成模型添加荷载

进行分析计算

图1桥梁模型建立流程图

第二章斜拉桥模型基本参数选取

2.1 斜拉桥基本数据

表1 斜拉桥基本数据

桥梁等级桥梁长度桥面宽度车道数桥梁形式一级420m 15.6m 双向两车道三跨连续斜拉

图1 斜拉桥示意图

2.2 斜拉桥材料特性值

对斜拉桥不同部位材料参数基本信息进行选取。本次模型分析主要选取拉索、桥梁主塔、桥梁索塔、主梁横系梁、索塔横梁、加劲梁等部位纳入分析体系。选

取材料的弹性模量、泊松比、容重等参数,如表2。在材料对话框中输入如下参数。

表2斜拉桥材料信息参数

项目

弹性模量

(tonf/m2)

泊松比

容重

(tonf/m2)

拉索 2.0×1070.3 7.85

主梁 2.1×1070.3 7.85

索塔 2.0×1050.17 2.5

主梁横系梁 2.0×1070.3 7.85

索塔横梁 2.0×1050.17 2.5

加劲梁 2.0×1050.3 7.85·

2.3 斜拉桥截面特性值

在截面特性对话框下输入如下参数。

表3斜拉桥截面属性参数

项目Area(m2) Ixx(m4) Iyy(m4) Izz(m4)

拉索0.0418 0 0 0

主梁0.3902 0.0070 0.1577 4.7620

索塔0.1691 0.1540 0.1450 0.1143

主梁横系梁0.5395 0.4399 0.1316 3.2667

索塔横梁0.1046 0.1540 0.1080 0.0913

加劲梁0.5395 0.4399 0.1316 3.2667

2.4 荷载作用

荷载作用可以分为可变作用和永久作用,在建立模型中需要分别进行设定。

2.4.1 永久作用

对于斜拉桥,永久作用主要指桥梁自重。自重系数选取1。二期恒载包括桥面上路缘石、防撞护栏、栏杆、灯柱、泄水管、桥面铺装等。人行道荷载设为恒载。其中二期恒载为18.6KN/m,人行道荷载为6.2KN/m。

2.4.2可变作用

桥梁模型设为双车道,采用中国城市桥梁荷载(CJJ77-98),车轮间距1.8m,

采用公路I 级车道荷载,取值按照JTG D60-2004《公路桥涵设计通用规范》规定选取。

第三章模型建立

斜拉桥模型建立的步骤如下:

1.建立加劲梁模型

2.建立主塔模型

3.建立拉索模型

4.生成主塔上的支座

3.1 斜拉桥三维模型

在建立各部分模型时,首先建立节点,然后拓展单元,分别拓展为梁单元,建立主梁和主塔,在此过程中分别设定材料、截面、生成模式、距离等。利用建立桁架单元建立拉索,设定材料、节点连接等。生成后的斜拉桥三维模型的如图2所示。

图2 斜拉桥三维模型

消隐后的斜拉桥3D模型如下图:

图3 斜拉桥消隐模型

图4 斜拉桥拉索布置(正视图)

图5 斜拉桥拉索布置(俯视图)

第四章斜拉桥静力荷载工况与荷载组合情况4.1 荷载工况

斜拉桥静力荷载工况见图6。

图6 斜拉桥静力荷载工况

4.2 荷载组合

荷载组合情况如图7。

图7 斜拉桥荷载组合

第五章斜拉桥模型施加荷载并设定边界条件5.1斜拉桥人行道荷载

图8 人行道荷载(KN/m)

5.2斜拉桥二期恒载

图9 斜拉桥二期恒荷载(KN/m)

5.3 斜拉桥拉索初拉力

图10 拉索初应力(KN/m)

拉索共80根,每一根拉索初拉力为9.8KN/m。

5.4 斜拉桥的边界条件

斜拉桥支座和索塔采用采用弹性连接。斜拉桥桥面采用刚性连接。

图11 斜拉桥支座和索塔底采用弹性连接

图12 连接方式选择

图13 斜拉桥桥面采用刚性连接

弹 性 连 接

图14 刚性连接进行设置

图15 边界条件设定

刚性 连 接

边界条件

第六章对斜拉桥受力及变形状况进行数值分析6.1 查看悬索桥的反力

图16 斜拉桥反力

可以看出反力的作用点分别作用到桥梁支座底端,索塔的底部。 6.2斜拉桥的位移变形

图17 斜拉桥的位移变形

6.3 斜拉桥的内力和应力分析

图18 斜拉桥桁架单元内力图

图19 斜拉桥梁单元内力图

图20 斜拉桥桁架单元应力图

图21 斜拉桥梁单元应力图

第七章结论

本次的建模分析采用的是对斜拉桥的正装分析。斜拉桥是一种高次超静定结构,其自重引起的内力和变形可以通过调整拉索的张拉力而人为地进行调整。在建模时,拉索的初应力的不同,对斜拉桥结构受力状态会产生关键影响,所以可以通过调整索力来调整结构应力和变形。对在斜拉索锚固之后施加的荷载而言,拉索是以其张力作为外荷载的形式作用在主梁和索塔上的。本次分析只是进行了最初步的运用,对于斜拉桥还可以运用Midas Civil 进行如下分析。

对于斜拉桥,还可以进行施工阶段的分析,根据施工方案的不同,斜拉桥的结构体系会发生很大的变化,且施工阶段的的结构体系相较于成桥阶段更不稳定,所以需要对施工阶段进行分析。通过正装施工阶段分析可以验算施工中产生的应力、检查施工顺序、可施工性等,从而找出最佳的施工方案。施工阶段分析可以将计算时间从施工开始到竣工后收缩徐变完成划分为若干个施工阶段,每一阶段划分为若干时间间隔。以施工阶段的起止时间、结构体系转换的时间、加载或卸载的时刻,作为每个阶段与时间间隔的分界点。在每个时间间隔,对当时已形成的结构进行一次全面分析,求出该时间间隔内产生的全部节点的位移增量和节点力增量,该增量与本时间间隔开始时的位移或节点力值相加,即得到本时间间隔终了时的节点位移及节点力状态。这样按工顺序先后依次计算,逐步累计,即可得到结构在各个施工阶段或使用阶段的内力和变形状态。

由于时间和能力原因,我只是对斜拉桥成桥阶段进行了初步的简单建模,并进行了受力和位移分析,后续工作需要通过以后慢慢研究学习继续进行。

第八章总结体会

这次的建模作业是一个很好的自我提升的机会,通过这次作业,我自学了Midas的一些基本操作,可以进行一些常见简单结构的模型建立和内力及变形分析,这是一次很好的锻炼机会,将会对以后的学习、科研以及工作起到很好的作用。同时通过学习Midas软件,大大加深了我对有限元相关知识的理解。

这次建模练习,我主要是参照教程上的步骤进行,但是还是有许多因素没有考虑在内,比如材料参数的选取,截面参数的选取,支座连接方式的选取以及其他规范中的相关规定,这些因素在建模练习中只是比葫芦画瓢,不能够很好理解其意义,如果将来投身实践,面对真实的工程这些参数的选取将会非常重要,这就需要不断对相关的基础知识和相关规范进行学习。在斜拉桥的后续施工阶段分析中,由于时间原因和自我能力原因并没有进行练习,后续的施工阶段分析是更加复杂的一个阶段,这个阶段需要考虑到混凝土的收缩徐变因素、温度因素、施工方法因素等,这将大大加大分析的难度,这个挑战留给我以后继续学习和练习。

斜拉桥模型制作设计图

斜拉桥模型制作设计图 一、模型概况 斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。 斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。 模型全长18.2米,高3.46米,桥面宽0.55米,索96根。 斜拉桥模型三维图见图1、2。 图1 斜拉桥模型全桥三维图

图2 斜拉桥模型桥塔三维图 二、材料 全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用Ф4钢筋,桥墩以及基础为钢筋混凝土结构。 有机玻璃主要材料性能初步假设为:弹性模量E=3.6×103 N/mm2。斜拉索采用Ф4钢筋(Q235),强度标准值f yk=235N/mm2,弹性模量E=2.1×105N/mm2。 三、模型结构图 1、斜拉桥模型立面布置 斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。该桥为对称结构,以主梁跨中点为中心左右对称。 6号桥塔 斜拉索 混凝土桥墩 边墩 主梁 边墩 3 7号桥塔 图3 斜拉桥模型布置图(单位:㎜) 注:以后图表中尺寸均采用毫米为单位。 2、主梁

主梁全长18.2米,横截面见图4。 图4 主梁横截面图 主梁截面图(单位:mm) 3、塔 塔高3.16米,详细尺寸见图5~7。塔与梁不直接连接,依靠拉索连接。梁底距离塔横梁20毫米。 塔墩高0.65米,地面以上0.4米,地面以下开挖0.25米。 为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。塔与墩连接处还要加钢板锚固。塔与墩连接的详细构造见图15~17。

索塔立面图 索塔侧面剖面图 图5 塔立面、剖面图图6 塔侧面剖面图

1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项 斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。 重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

斜拉桥建模实例

斜拉桥建模实例 我们拟定建立以下模型,见下图: 参数说明:桥面长度L1=100M,分100个桥面单元,每单元长度1M,桥塔长度L2=50M,分50个竖直单元,每单元长度1M,拉索单元共48个单元,左右对称,拉索桥面锚固端间隔为2 M,桥塔锚固端间隔为1M。 下面介绍具体建立模型的步骤: 步骤一,建立桥面单元。用快速编译器编辑1-100个桥面单元(具体过程略),参见下图: (注:在实际操作中桥面的截面形状可以自己拟定)

步骤二:建立桥塔单元。用快速编译器编辑101-150个桥塔单元(具体过程略),参见下图: (注:在实际操作中桥面的截面形状可以自己拟定,在分段方向的单选框内,一定要选择“竖直”,起点x=49,y=-20,终点x=49,y=30是定义桥塔的位置,这里我把它设在桥面中部,桥面下20米处,因为我做的桥塔截面为2m×2m的空心矩形,所以此处起点和终点x填49,请读者自己理解) 步骤三:拉索的建立。 A、先编辑桥塔左边部分24跟拉索单元。 点击快速编译器的“拉索”按钮,在拉索对话框内的编辑内容复选框选择编辑节点号勾上,编辑单元号:151-174,左节点号:1-48/2;右节点号:152-129;(注意:左节点1-48/2代表拉索在桥面的锚固点间距为2M),如下图:

编辑单元号:151-174,然后确定。如下图: B、建立桥面右半部分的24跟拉索。

在快速编译器中选择“对称”按钮,在“对称”对话框中的编辑内容4个复选框都勾上。 模板单元组:151-174;生成单元组:198-175;左节点号:55-101/2;右节点号:129-152;对称轴x=50,然后确定。见下图: 这样,我们就建好了拉索单元的模型。现在让我们来看一看整个模型的三维效果图:

数学建模斜拉桥设计

斜拉桥设计 摘要: 模型是建立在对斜拉桥造价预算基础上的一类数学建模问题。模型的建立的初衷是对斜拉桥的设计提出合理美观的设计方案,且同时要尽量节省资金。 在对模型的建立与求解的过程之前先是对斜拉桥总体外观进行了设计,确定了水上的桥面长度与引桥的长度,以及引桥的支撑方式。模型的建立与求解是建立在模型假设的条件基础上,模型假设的提出为解决实际问题提供了方便。例如,索塔顶部的拉索部分并不是从同一节点引出,但假设同一节点之后更加方便简洁的有助于我们对斜拉桥的拉索的造价进行估算。在模型中由于索塔个数不同对索塔造价和拉索造价的影响确定了多种方案,从各方案的造价进行比较,确定最佳方案。 关键词:外观假设节点最佳方案

一、问题重述 如果计划在抚河某处修建一座斜拉桥,斜拉桥示意图和建桥处河道的截面图已分别划出。 给出几项简化假设: (1)在桥面处,索塔造价是同样长度的水上桥面的2倍; (2)100米长斜拉索与10米长水上前面造价相当; (3)索塔造价与离桥面的距离平方成正比;斜拉索造价与其长度成正比; (4)如果有陆地上的引桥的桥面,造价是水上桥面的一半; 1,请给出斜拉桥设计图,使其合理美观; 2,估算斜拉桥的造价,尽量节省资金。 图1 斜拉桥

河流截面图(单位m) 二、模型假设 1.假设斜拉桥的桥面是水平 2.假设斜拉桥的拉索的最大张角是45° 3.假设斜拉桥水面上每米的造价是5万元 4.假设模型中计算的拉索的个数索塔个数为整数 5.假设抚州地区的基岩深度为七米桩基深度为30米 6.在抚河剖面上补考虑地形起伏影响基岩距地表都为7米 7.斜拉索在索塔上的节点都为塔顶位置 8.假设主跨与次跨的长度相同 三、符号说明 1.i索塔个数 2.X ?索塔单边拉索的最大水平距离 3.α每个索塔的单边拉索个数 4. l第α个索拉索长度 α 5.t(1) 拉索的总长度 6.s表示各部分的造价 7.p表示各部分的价格 8.H索塔的长度的总和 9.W斜拉索桥的总造价 四、模型的建立与求解

斜拉桥静风稳定分析

斜拉桥静风稳定分析 摘要:随着斜拉桥跨径的不断增大,空气静力失稳现象已引起了人们的广泛重视。本文笔者通过线性方法和非线性方法对斜拉桥静风稳定性进行阐述分析,以供参考。 关键词:斜拉桥;静风稳定;线性分析;非线性分析 abstract: with increasing span cable-stayed bridges, aerostatic instability phenomenon has aroused wide interest. in this paper, the author by linear method and nonlinear method is analyzed on static wind stability of cable-stayed bridge, for reference. key words: cable-stayed bridge; static wind stability; linear analysis; nonlinear analysis 0 引言 风灾是自然灾害中发生最频繁的一种,近十几年,桥梁建设进入了大跨度时代,随着理论的发展,材料和施工方法的进步,斜拉桥、悬索桥的跨径的跨径越来越长。斜拉桥具有“塔高,跨长,索长、质轻、结构柔和阻尼弱”的特点,从而导致风荷载对桥梁安全、舒适性有着重要影响。风对桥梁主要有静力作用和动力作用,本文主要结合工程实例分析静力风荷载对混凝土主梁的斜拉桥的影响。 静风响应指结构在静力风荷载作用下的内力、变位和静力不稳定现象,主要体现为结构的刚度和静风稳定性。斜拉桥在静风荷载的作用下有可能发生横向屈曲失稳和静力扭转发散失稳。主梁在静风

ansys对斜拉桥的分析实例

用Ansys分析斜拉桥的变形、应力分布与优化

问题背景:第三届结构设计大赛,题目为:承受运动载荷的不对称双跨桥 梁结构模型设计。参赛作品为一个斜拉桥 比赛所用材料:桐木若干,白乳胶一瓶。 比赛要求:保证小车通过的同时,桥应力求重量轻,轻者可进入决赛。 参赛实验台示意图 比赛计算参数: 木杆的抗拉强度表

设计方案数据:根据所给材料,经过计算我们预计需要使用:主梁:4根6*6、4*6,55*1截取18mm宽,55*2截取15mm宽;拉塔:2根6*6,3*4作桁架;梁的固定用1根3*4;桥墩:2根3*4,55*1的木片作桁架结构。下脚料把主梁两端各加长20mm,并把端面做成梯形以使桥梁稳定。 桥梁简支模型:

其中(5)、(7)、(8)为拉索,(6)为拉塔,(1)、(2)、(3)、(4)为主梁,1、2、5为三个支座,塔高为330mm,2、3的距离为250mm,3、4的距离为200mm。 当小车经过2、5之间时,梁最容易发生破坏。 加载条件:预赛——空车(重9.88kg)行驶,桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。 Ansys分析目的:使用ansys分析软件对桥的应力分布进行分析,对结构进行改进与优化。 Ansys建模数据: 步骤: 定义单元类型:桐木材料选取单元类型:Beam 188 拉索材料选取单元类型为Link 10。 定义单元实常数:Link 10单元的实常数AREA定义为3.14*2.25/4。其中Beam 188不需要定义实常数。 定义材料属性:材料属性如图。 定义梁截面类型:主梁:8*8,侧梁:5*5,桁架:3*3(全部为矩形),拉索:R=1.5(圆形)。 建模:建立节点模型,利用建模工具建立节点,再用lines—straight lines 连接节点形成线模型。 划分网格:利用Meshing—Mesh attributes—picked lines,根据不同单元属性,不同材料属性,不同截面属性选择线,划分网格。再用Meshing命令中的line—set进行线单元数目划分,取为15。 定义load:对底座、边缘施加全部自由度约束,节点受力为98.8/4。 求解:solve命令。 查看结果:利用general postproc后处理查看结构变形云图,应力分布。 模型说明:建模过程中,对实际模型进行简化。其中弹性模量和泊松比进行简化处理,数据从网络中获取。桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。此约束忽略不计。当小车通过桥梁时,认为在如图位置变形最大,故受力分析时,将载荷加载到如图13、14、16、17节点处。尤其是拉索模型。由于拉索单元为Link,其只能受拉,不具有抗弯性能,故改用杆单元代替原模型。建模时使用mm作单位,而泊松比要除以1000,受力要乘以1000,才能得到正确的结果。

midas斜拉桥建模

目录 概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料和截面特性值 4 成桥阶段分析 6 建立模型 7 建立加劲梁模型 8 建立主塔 9 建立拉索 11 建立主塔支座 12 输入边界条件 13 索初拉力计算 14 定义荷载工况 18 输入荷载 19 运行结构分析 24 建立荷载组合 24 计算未知荷载系数 25 查看成桥阶段分析结果 29查看变形形状 29 正装施工阶段分析 30

正装施工阶段分析 34 正装施工阶段分析 34 正装分析模型 36 定义施工阶段 38 定义结构组 41 定义边界组 48 定义荷载组 53 定义施工阶段 59 施工阶段分析控制数据 64 运行结构分析 65 查看施工阶段分析结果 66 查看变形形状 66 查看弯矩 67 查看轴力 68 查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70

概要 斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环 境融合,是符合环境设计理念的桥梁形式之一。 为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。 一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分 析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例 题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。 图 1. 斜拉桥分析模型

大跨度混凝土斜拉桥静风稳定性分析

大跨度混凝土斜拉桥施工阶段静风稳定性分析 魏艳超1 李松延 2 1. 上海建科工程咨询有限公司,上海,200032 2. 上海建科工程咨询有限公司,上海,200032 摘 要:大跨度斜拉桥结构整体刚度较小,对风荷载作用十分敏感。当前斜拉桥的施工一般采用悬臂施工法,在全桥合拢时会发生体系转换。斜拉桥主梁未合拢前,整个结构处于悬臂状态,很容易在风荷载的作用下发生失稳破坏。使用大型有限元软件MIDAS/Civil ,对重庆轨道交通六号线蔡家大桥进行施工阶段的静风稳定性分析,结合风洞试验相关数据,计算桥梁的静风临界失稳风速,并总结结构刚度随主梁长度的变化规律,进而评估该桥的抗风性能。 关键词: 混凝土;斜拉桥;施工阶段;静风稳定性 1 引 言 进入新世纪之后,我国的桥梁建设突飞猛进。斜拉桥的发展更是一日千里,其跨径已经跨越了千米大关,应用越来越广泛。 斜拉桥是直接将主梁用多根斜拉锁锚固在桥塔上的一种桥梁结构体系,其结构刚度比其他桥型要小得多,属于柔性结构,在荷载作用下呈现出较为明显的几何非线性特征。在风荷载的作用下极易发生失稳。在斜拉桥的施工过程中,由于采用悬臂施工法造成全桥合拢时会发生体系转换,故对斜拉桥施工过程中的静风稳定性也应给与重视。本文以重庆轨道交通六号线蔡家大桥的施工为例,分析斜拉桥各关键施工阶段结构的静风稳定性。 2 三维非线性分析理论 在我国现行的《公路桥梁抗风设计规范》中规定:斜拉桥的主跨大于400米时必须要进行静风稳定性验算。在对斜拉桥进行静风稳定性分析时,现今最常用的理论是三维非线性分析理论。 为了对桥梁结构进行三维非线性分析,需要先将作用在桥面主梁上的空气静力做一步简化,一般是将其分解。静力三分力是对分解后的空气静力的称呼,具体即横向风荷载H P 、竖向风荷载V P 和扭转矩M ,如图1所示: α Pv M Ph 图1 静力三分力 具体表达式为如下: ()2H 0.5d H P V C H ρα= ()2 V V 0.5d P V C B ρα= (1)

桥梁的设计与模型制作

桥梁的设计与模型制作 1. 桥梁有哪些种类? 基本有如下几种: 2.为什么有这样的设计? 人和车辆等通过桥梁时,桥面会弯曲,如果桥面弯曲的越厉害就越会发生危险。 同样的材料,同样的厚度,桥的跨度越大,越易弯曲。为防止桥面过于弯曲,可采用不同的方法帮助桥面承担重量。 如:梁式桥 梁式桥是一种在竖向荷载作用下无水平反力的结构。由于外力(恒载和活载)的作用方向与承重结构的轴线接近垂直,故与同样跨径的其它结构体系相比,梁内产生的弯矩最大,通常需用抗弯能力强的材料(钢、木、钢筋混凝土等)来建造。 梁式桥还可分为:钢桁梁桥、T型梁桥、悬臂梁桥、连续梁桥和连续钢构桥等。 图一钢桁梁桥 图二连续式梁桥 拱式桥 拱式桥的主要承重结构是拱圈或拱肋。这种结构在竖向荷载作用下,桥墩或桥台将承受水平推力。同时,这种水平推力将显著抵消荷载所引起在拱圈(或拱肋)内的弯矩作用。因此,与同跨径的梁相比,拱的弯矩和变形要小得多。鉴于拱桥的承重结构以受压为主,通常就可用抗压能力强的圬工材料(如砖、石、混凝土)和钢筋混凝土等来建造。 拱桥的跨越能力很大,外形也较美观,在条件许可的情况下,修建拱桥往往是经济合理的。 拱桥种类繁多,常见的有:圬工拱桥、箱型拱桥、双曲拱桥、钢架拱桥、桁架拱桥、肋拱桥、桁式组合拱桥和斜腿钢架拱桥等。根据拱桥的不同承载方式,还可分为:上承式桥梁、下承

式桥梁、中承式桥梁。 图六上承式拱桥桥梁 图七下承式拱桥桥梁 图八中承式拱桥桥梁 悬索桥 传统的悬索桥(也称吊桥)均用悬挂在两边塔架上的强大缆索作为主要承重结构。在竖向荷载作用下,通过吊杆使缆索承受很大的拉力,通常就需要在两岸桥台的后方修筑非常巨大的锚碇结构。悬索桥也是具有水平反力(拉力)的结构。现代的悬索桥上,广泛采用高强度的钢丝成股编制的钢缆,以充分发挥其优异的抗拉性能,因此结构自重较轻,就能以较小的建筑高度跨越其它任何桥型无与伦比的特大跨度。悬索桥的另一特点是:成卷的钢缆易于运输,结构的组成构件较轻,便于无支架悬吊拼装。我国在西南山岭地区和在遭受山洪泥石冲击等威胁的山区河流上,以及对于大跨径桥梁,当修建其他桥梁有困难的情况下,往往采用吊桥。 悬索桥的样式图见下图所示:

斜拉桥的稳定性分析-pc梁

斜拉桥的稳定性分析 周超舟1,蔡登山2,吕小武3,马 森4 (1.中铁大桥局股份公司施工设计事业部,湖北武汉430050; 2.中铁大桥局集团桥科院有限公司,湖北武汉430034; 3.河南省交通厅工程处,河南郑州450052; 4.辽宁省交通勘测设计院,辽宁沈阳110000) 摘 要:利用有限元方法,将斜拉桥的主梁和桥塔离散成三维板壳单元,用悬链线索单元来考虑斜拉索的非线性影响,对大跨度斜拉桥的稳定性进行了分析,所建立的有限元分析方法,在大跨度斜拉桥的稳定性分析中具有一定的实用价值。 关键词:斜拉桥;有限元法;稳定性分析中图分类号:U 448.27;T U 311.2 文献标识码:A 文章编号:1671-7767(2006)04-0044-03 收稿日期:2006-04-19 作者简介:周超舟(1971-),男,高级工程师,1994毕业于西南交通大学,工学学士。 1 前 言 斜拉桥的斜拉索承受轴向拉力,其水平分力对主梁产生巨大的轴向压力,而竖直分力则对桥塔产生轴向压力,且随着跨度的加大,主梁和桥塔的轴向压力也增大。所以,大跨度斜拉桥的稳定性分析是一个十分重要的问题。国内外虽然有许多学者对斜拉桥的稳定性进行过分析[1,2] ,但大都是针对钢斜拉桥的,且多用等效弹性模量来考虑斜拉索的非线性影响,这使得计算结果的误差较大,不便于推广应用。 在PC 斜拉桥中,结构自重在总荷载中所占的比例很大,为了减轻自重,可采取两种方法:①使用轻质混凝土;②减小主梁的横截面。结合目前的材料水平、经济状况和施工条件等因素,以第②种方法用得较多。但这样就更加突出了PC 斜拉桥的稳定性问题。 大跨度PC 斜拉桥一般都采用悬臂施工的方法来建造[3],凭直观分析可知,斜拉桥在施工时的最大悬臂状态,即中跨未合龙之前,是一个较危险的状态,此时结构的整体刚度还不能实现,而在较大的施工荷载的作用下,主梁极易发生失稳破坏。近年来,国内几座斜拉桥在施工时出现的事故也证实了这一结论。1986年10月,四川达县洲河斜拉桥在施工时坍塌,有专家指出是由于主梁失稳造成的;1998年9月,浙江宁波招宝山大桥在施工时,发生主梁断裂事故,其中一个主要原因就是:薄壁箱式主梁的底板过薄,在施工荷载的作用下,主梁被压溃。所以,为了保证施工安全,必须对大跨度PC 斜拉桥进行施工状态的稳定性分析。 2 PC 斜拉桥稳定性分析的有限元法 用有限元法对PC 斜拉桥进行分析时,为了更好地反映出主梁的剪力滞、扭转等效应,将主梁离散为三维板壳单元;桥塔一般为矩形箱式柱,也可离散为三维板壳单元;斜拉索则用悬链线索单元来分析。2.1 板壳单元 如图1所示为8节点三维板壳单元(即三维Serendipity 单元),其位移形函数为[4]: 图1 三维板壳单元 N i = 1 8 (1+F 0)(1+G 0)(1+N 0)(1)式中,F 0=F i F ,G 0=G i G ,N 0=N i N ,i =1,2,,,8。 根据板壳理论的基本假设:变形前中面的法线,在变形后仍保持为直线。因此,板壳单元内任一点的位移可由中面对应点沿总体坐标x 、y 、z 方向的3个位移分量u m 、v m 、w m ,以及节点i 处上、下表面的向量V 3i 绕与它相垂直的两个正交向量的转角B 1i 和B 2i 表示: u v w =E 8i=1N i u m v m w m +E 8 i=1N i F t i 2[v -1i -v -2i ] B 1i B 2i (2) 44 世界桥梁 2006年第4期

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

研究性学习桥梁设计中的力学知识与模型制作

桥梁设计中的力学知识与模型制作 1. 桥梁有哪些种类? 基本有如下几种: 2.为什么有这样的设计? 人和车辆等通过桥梁时,桥面会弯曲,如果桥面弯曲的越厉害就越会发生危险。同样的材料,同样的厚度,桥的跨度越大,越易弯曲。为防止桥面过于弯曲,可采用不同的方法帮助桥面承担重量。 如:梁式桥 梁式桥是一种在竖向荷载作用下无水平反力的结构。由于外力(恒载和活载)的作用方向与承重结构的轴线接近垂直,故与同样跨径的其它结构体系相比,梁内产生的弯矩最大,通常需用抗弯能力强的材料(钢、木、钢筋混凝土等)来建造。 梁式桥还可分为:钢桁梁桥、T型梁桥、悬臂梁桥、连续梁桥和连续钢构桥等。 图一钢桁梁桥

图二连续式梁桥 拱式桥 拱式桥的主要承重结构是拱圈或拱肋。这种结构在竖向荷载作用下,桥墩或桥台将承受水平推力。同时,这种水平推力将显著抵消荷载所引起在拱圈(或拱肋)内的弯矩作用。因此,与同跨径的梁相比,拱的弯矩和变形要小得多。鉴于拱桥的承重结构以受压为主,通常就可用抗压能力强的圬工材料(如砖、石、混凝土)和钢筋混凝土等来建造。 拱桥的跨越能力很大,外形也较美观,在条件许可的情况下,修建拱桥往往是经济合理的。 拱桥种类繁多,常见的有:圬工拱桥、箱型拱桥、双曲拱桥、钢架拱桥、桁架拱桥、肋拱桥、桁式组合拱桥和斜腿钢架拱桥等。根据拱桥的不同承载方式,还可分为:上承式桥梁、下承式桥梁、中承式桥梁。 图六上承式拱桥桥梁 图七下承式拱桥桥梁

图八中承式拱桥桥梁 悬索桥 传统的悬索桥(也称吊桥)均用悬挂在两边塔架上的强大缆索作为主要承重结构。在竖向荷载作用下,通过吊杆使缆索承受很大的拉力,通常就需要在两岸桥台的后方修筑非常巨大的锚碇结构。悬索桥也是具有水平反力(拉力)的结构。现代的悬索桥上,广泛采用高强度的钢丝成股编制的钢缆,以充分发挥其优异的抗拉性能,因此结构自重较轻,就能以较小的建筑高度跨越其它任何桥型无与伦比的特大跨度。悬索桥的另一特点是:成卷的钢缆易于运输,结构的组成构件较轻,便于无支架悬吊拼装。我国在西南山岭地区和在遭受山洪泥石冲击等威胁的山区河流上,以及对于大跨径桥梁,当修建其他桥梁有困难的情况下,往往采用吊桥。悬索桥的样式图见下图所示: 图九单跨式悬索桥 斜拉桥 斜拉桥由斜索、塔柱和主梁所组成。用高强钢材制成的斜索将主粱多点吊起,并将主梁的恒载和车辆荷载传至塔柱,再通过塔柱基础传至地基。这样,跨度软人的主梁就象一根多点弹性支承(吊起)的连续梁一样工作,从而可使主梁尺寸大大减小,结构自重显著减轻,既节省了结构材料,又大幅度地增大桥梁的跨越能力。此外,与悬索桥相比,斜拉桥的结构刚度大,即在荷载作用下的结构变形小得多,且其抵抗风振的能力也比悬索桥好,这也是在斜拉桥可能达到大跨度情况下使悬索桥逊色的重要因素。 斜索在立面上也可布置成不同型式。各种索形在构造上和力学上各有特点,在外形美观上也各具特色。常用的索形布置为竖琴形(图十)和扇形(图十一)两种。另一种是斜索集中锚固在塔顶的辐射形布置(图十二),因其塔顶锚固结构复杂而较 少采用 。图十竖琴形斜拉桥

独塔单索面斜拉桥主塔稳定性分析

独塔单索面斜拉桥主塔稳定简化分析 郭卓明 李国平 袁万城 上海城建设设计院 同 济 大 学 摘要:由于悬吊桥梁采用索塔支撑,其主塔往往须承受强大的轴向压力,因此其稳定是一个比较突出的问题。尤其独塔单索面斜拉桥在空间受力和稳定性方面都相对比较薄弱,对其进行稳定性分析更显必要。本文在对其主塔受力的适当简化之后,分别对其弹性及弹塑性稳定进行了简化分析,在传统的弹塑性稳定内力分析的基础上提出了一种独塔单索面斜拉桥主塔弹塑性稳定分析的简化方法。并以两座独塔单索面斜拉桥为背景做了算例,分析结果表明本文采用的简化分析方法是可行的。 关键词:独塔单索面 斜拉桥 主塔稳定 简化分析 一、引言 国民经济的飞速发展和国家对基础设施投入的进一步加强为我国大跨桥梁的发展提供了一个良好的条件,近十几年来,斜拉桥在我国迅速发展。由于单索面斜拉桥在美学上的优势,目前采用这种形式的斜拉桥也越来越多。由于悬吊桥梁的主塔均需承受巨大的轴向压力,而且随着桥梁跨度的增大,主塔也越来越高,结构越来越柔,其稳定问题成为一个非常突出的问题。尤其是其侧向稳定在设计时更需特别注意。 结构的稳定是一个较为经典的问题。从1744年欧拉的弹性压杆屈曲理论,到1889年恩格赛的弹塑性稳定理论,到Prandtl, L.和Michell, J. H. 的侧倾稳定理论,再到李国豪教授、项海帆教授等对桁梁桥、拱桥稳定的研究[1]以及近来国内外许多学者对各种具体结构稳定的研究,稳定问题在理论上已经比较成熟。在斜拉桥的稳定方面,1976年Man-chang Tang 提出了弹性地基梁的屈曲临界荷载估算法,葛耀君[5]用能量法分析了斜拉桥的面内稳定,此外樊勇坚、李国豪以及钱莲萍等都提出过各种实用计算方法,但都是仅限于弹性稳定的简化分析,且基本集中于主梁的稳定。对于弹塑性稳定,最近谭也平、景庆新[2]等都用有限元的方法进行了分析。稳定问题在计算方法上经历了经典的平衡微分方程方法、能量法等简化方法和有限元的数值计算方法这三个阶段,目前众多的研究尤其是对弹塑性稳定的研究大都集中在有限元分析上。然而在精确的有限元分析的同时,采用直观明了、概念清晰的力学简化分析,无论在对有限元分析结果的检验还是在初步设计时进行简单的估算都十分必要。本文在对独塔单索面斜拉桥主塔的受力特性进行适当简化之后,对独塔单索面斜拉桥主塔的弹性及弹塑性稳定问题分别进行了简化分析。 二、弹性稳定简化分析 考虑最一般的情况,主塔失稳方向和拉索平面成夹角β,如图(1)所示。失稳线形假定为()()v z V f z H ?=,分解到斜拉索平面内和平面外分别为: 平面内:()()()x z v z V f z H =?=?cos cos ββ 平面外:()()()y z v z V f z H =?=?sin sin ββ 主塔产生变形以后,外力功主要有拉索做功、主塔本身轴压做功和风荷载做功,其中拉索做功需考虑其在平面内的弹性支撑和平面外的非保向力作用,则由能量法可方便的导出主塔势能的总表达式:

斜拉桥的结构体系及特点

斜拉桥结构体系及特点 斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔,其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应,斜拉索对主梁只起到一定程度的帮扶作用。斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。 斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系,影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式,不同的结合方式产生不同的结构体系。根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1)塔梁固结体系;(2)支承体系; (3) 刚构体系, 见图1 所示。(4)半漂浮体系,见图2所示。 (1)塔梁固结体系及特点 塔梁固结、塔墩分离、梁底设支座支承在桥墩上,斜拉索为弹性支承,这是一种完全的主梁具有弹性支承的连续梁结构。这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定,而其他支座可纵向活动。这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分,代之以一般桥墩,中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。这种体系结构整体刚度小, 当中跨满载时,由于主梁在墩顶处的转角位移导致塔柱倾斜,使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。 我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。 (2)支承体系及特点 塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座,这种体系接近主梁具有弹性支承的连续梁结构。支承体系与梁塔固结体系主梁受力性能基本相同, 塔墩底部承受较大的弯矩。 我国芜湖长江大桥采用的是支承体系, 该体系在部分斜拉桥结构中较少采用。支承体系的特点:支承体系悬臂施工中不需要额外设置临时支点,施工较方便。

斜拉桥的发展现状及常见问题浅析

斜拉桥的发展现状及常见问题浅析徐灯飞夏德俊(西南交通大学土木工程学院四川成都611756) 庄晴(内江师范学院四川内江641112) 摘要:本文主要论述了斜拉桥在近些年发展建设中取得的成就,分析了斜拉桥在结构、布置、选材和审美方面,以及简单介绍了斜拉桥在结构设计和施工建设方面遇到的难题及采取的必要措施。斜拉桥因为结构和审美上优势,以及大量的建设尝试和研究,斜拉桥以后势必还会有更大的发展。 关键词:斜拉桥;布置形式;桥梁结构体系;斜拉桥审美 一.我国斜拉桥建设取得的成就 自1979年建成的第一座斜拉桥——主跨只有76米云阳桥以来,经过30多年的飞速发展,现今我国斜拉桥无论是在规模和跨度方面,还是在结构设计和施工技术都取得了巨大的成就。目前我国已经是世界上斜拉桥数量最多、跨度最大的国家。2008年建成的苏通大桥全长1088米,成为世界上最长的斜拉桥,这也是我国历史上工程规模最大、建设条件极为复杂的特大型桥梁工程。目前我国已经建成的世界级的大跨度斜拉桥还有:2005年建成的南京长江三桥,是国内第一座钢塔斜拉桥,也是世界上第一座弧线形钢塔斜拉桥;2009年香港建成的双塔斜拉桥昂船洲大桥,主跨长1018米,为世界第二长;2010年建成的鄂东长江大桥,主桥主跨为926米,位居混合梁斜拉桥世界第二位等等...... 我国斜拉桥的设计与施工技术也已经跨入世界的先进行列,并取得了显著的成绩:(1)斜拉索制造工艺实现了专业化和工厂化及防护技术不断完善;(2)斜拉桥的施工技术逐步完善;(3)用计算机进行结构计算和施工过程控制等。目前我国的斜拉桥正在向新型结构、大跨度、轻质和美观等方向发展,以更好的适应交通、经济、环境和安全的要求。 二.斜拉桥整体结构特点 斜拉桥又称为斜张桥,是用许多拉索将主梁直接拉在桥塔上的一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。在斜拉桥结构体系中,索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势。三.斜拉桥的布置: 1.斜拉桥整体布置: 常见的布置形式有:独塔双跨式、双塔三跨式和多塔多跨式。(1)相对于双塔三跨式,独塔双跨式斜拉桥主跨径较小,而且常采用双跨不等的非对称形式,使结构整体受轴向力为主,以充分发挥材料的优势,这种布置形式在跨越中小河流和城市通道中较常用;(2)斜拉桥布置成双塔三跨式时,具有较大的主跨径,并便于通航、简化计算、方便施工,因此在大跨度桥中最为常见,适用于跨越海峡和宽度较大的河流、峡谷等。双塔三跨桥一般布置成对称结构,而且要调整好边跨和主跨的比例,这对于审美和控制整体刚度及拉索应力有很大非常有利;(3)多塔多跨式斜拉桥现在已经很少采用,因为这种形式的桥中间塔顶处没有端锚索来有效的限制其变位,采用多塔多跨式会使结构的柔性增大,对抗风不利。 2.索塔

斜拉桥的正装分析

斜拉桥正装未闭合力的说明 1. 斜拉桥正装分析和未闭合配合力功能 等,除此之外斜拉桥还需要进行施工阶段分析。 根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis)。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。 进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。 采用这种分析方法,工程师普遍会经历的困惑是: 1) 在进行正装分析时可以看出正装和倒拆的张力不闭合。 2) 因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。 产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下: 1) 从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。 2) 如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。 从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容易求出来的,但是小位移分析要通过考虑假想位移来计算拉索的张力是很难的。MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正

混凝土双塔斜拉桥的稳定分析

混凝土双塔斜拉桥的稳定分析 【摘要】长春光复高架桥跨铁路双塔斜拉桥桥长368m,采用84m+200m+84m双塔双索面结构,主梁为预应力混凝土双边箱结构,桥塔采用h型箱型薄壁结构。文章用midas 2010程序对运营状态下桥梁结构稳定性进行了分析。 【关键词】混凝土斜拉桥;稳定性;稳定系数;预应力 1 工程概况 1.1 主桥设计简介 长春光复高架桥跨铁路双塔斜拉桥位于长春站东侧,本桥在该处跨越京哈上下行线共计18条铁路线和长吉城际上下行线,是该区域的重要景观。主桥的桥梁结构形式采用双塔双索面结构,半漂浮体系,孔跨布置为84m+200m+84m,边跨计算跨径83m,边中跨比为0.42。主塔为h型,箱型薄壁结构,结构高度为54.5m,h/l=0.2725。梁上索距6m,每个塔设15对拉索,每对斜拉索和主梁相交处设横梁。 1.2 设计标准及技术条件 1.2.1 公路等级:城市快速路,v=60km /h,双向6车道; 1.2.2 荷载标准:公路—ⅰ级; 1.2.3 桥面布置: 0.50米(风嘴)+1.5米(拉索锚固区)+0.5 米(防撞护栏)+11.5米(行车道)+1.0米(中央分隔带)+11.5米(行车道)+0.5米(防撞护栏)+1.5米(拉索锚固区)+0.50米(风嘴)=29米。 1.2.4 抗震设防烈度:ⅶ度;

1.2.5 设计风速:35.4米/秒; 1.2.6 环境类别:ⅱ类; 1.2.7 桥上纵坡:2.2%和-3%,竖曲线半径4000m,桥上横坡:1.5%; 1.2.8 桥下净空:铁路:电气化铁路净高按不小于7.96m。长吉城际不小于7.5m。 1.3 主要材料特征 1.3.1 主梁 主梁标准断面采用c50混凝土双边箱梁,梁宽29m,中心处梁高3.0m,桥面板厚0.3m,桥面板设1.5%双向横坡。边箱箱底板宽4m,三角部分宽4.5m,主梁标准段长度为6.0m,标准段底板、腹板厚为0.4m,三角部分底板、顶板厚为0.3m,在标准段两边箱间不设底板;三角部分底板厚为0.45m;边跨密索区梁段长度为2.5m,箱形截面为单箱四室结构,三角部分底板、顶、底板、腹板及桥面板厚度同索塔区箱梁。主梁纵向预应力采用精轧螺纹粗钢筋和预应力钢绞线,精轧螺纹粗钢筋抗拉标准强度为fpk=930mpa,弹性模量ey=2.0×105mpa;预应力钢束采用高强度低松弛1860级钢绞线,直径φs15.24mm,fpk=1860mpa,fpd=1260 mpa,ep=1.95×105mpa。主梁腹板设竖向预应力,采用精轧螺纹粗钢筋。 1.3.2 主塔 主塔截面采用矩形空心断面,上塔柱和中塔柱横桥向标准尺寸3.5米,纵桥向标准尺寸6.5米,拉索锚固处塔壁厚1.2米,拉索锚固区塔内净空4.1×1.9米。下塔柱横桥向尺寸3.5米,纵桥向尺寸

斜拉桥非线性分析综述

1斜拉桥非线性分析的研究现状 在结构分析领域,一直普遍存在着由结构几何变形、梁-柱效应和材料塑性引起的结构力-变形非线性关系。Turner等人,在1960年里发表的一篇论文里提出根据结构加载前已存在的应力建立刚度矩阵和在几何非线性分析中使用线性化方法与增量法的概念。1966年,Oden、Prazmieniecki提出了计算几何矩阵的方法。Turner、Oden 等人中公式推导中,位移函数采用了简化的表达式,其分析计算实质上限制在大位移、小应变的范围内。从70年代初期,开始研究关于大位移、大应变大结构,将固体力学的分析方法引用到结构几何非线性有限元分析中,当位移与应变较大之后,通常用到修正坐标的方法,即所谓移动坐标法。大跨径斜拉桥是高次超静定结构,即使在正常荷载作用下,往往发生较大位移,结构几何形状发生显著的变化,整个结构由于有限变形而表现出明显的几何非线性行为。归纳起来,斜拉桥的几何非线性来自三个方面:斜拉索的垂度效应;主梁、索塔中轴力与弯矩相互作用而产生的梁-柱效应;大位移产生几何形状改变而引起的非线性效应。斜拉索作为柔性构件,在自重和轴力作用下,呈悬链线形状。其轴向刚度将随垂度的变化而变化,而斜拉索的垂度又取决于索中的拉力,因此斜拉索拉力与变形之间存在明显的非线性关系。对自锚固体系斜拉桥,斜拉索索力使主梁、桥塔等构件处于弯矩和轴力的组合作用下,桥塔和主梁变形过程中,由于横向挠度会使轴

力产生附加弯矩,而弯矩又影响轴向刚度的大小,从而影响结构变形,由此产生所谓的梁-柱效应,使整个斜拉桥表现出非线性行为。大跨度斜拉桥的另一特点是由于柔性较大而产生较大的位移,此有限位移会使斜拉桥的几何形状产生较大的变化,从而使结构分析不能仅按未变形的初始几何形状进行,而应当随着位移的变化逐步修正结构的几何形状。此时,结构的几何刚度矩阵是几何变形的函数。因此平衡方程{F}=[K]{δ}=不再是线性关系,线弹性分析中的叠加原理也不再完全适用。斜拉索垂度效应产生的非线性效应随着索自重即水平投影长度增加而增加,随索中拉力减小而减小。1956年H.J.Ernst提出用直杆模拟斜拉索,用等效弹性模量来考虑斜拉索垂度的非线性效应,这就是今天斜拉桥分析中广泛采用的Ernst公式。 我国学者对斜拉桥的几何非线性也进行了广泛对理论分析与试验研究。1982年周上君用等效弹性模量考虑斜拉索垂度,考虑结构大位移效应,用小挠度全量平衡方程进行迭代计算。但他用小挠度平衡方程计算斜拉桥大位移效应,未考虑主梁与桥塔大梁-柱效应。1990年陈德伟引入稳定函数考虑梁单元的梁-柱效应,用Ernst 公式考虑拉索的垂度效应,用拖动坐标系考虑大位移影响,求解斜拉桥的几何非线性问题。程国庆、潘家英等总结了斜拉桥几何非线性研究等现状,对各种斜拉桥几何非线性分析方法作了评述,指出:(1)等效弹性模量法用直杆单元模拟整根斜拉索,给斜拉桥的分析带来了很大的方便,但是当斜拉索两端节点位移相当大时,等效弹性模量法具有一定的近似性;(2)处理梁-柱效应可采用几何刚度矩阵和稳定函

相关文档
最新文档