第2-2节 凸轮机构运动仿真

第2-2节 凸轮机构运动仿真
第2-2节 凸轮机构运动仿真

第2讲凸轮机构运动仿真

一、启动pro/e并设置工作目录

1.点击【开始】→【所有程序】→【PTC】→【pro/engineer】→【pro/engineer】,启动pro/e 软件。

图 1 启动pro/e

2.设置工作目录:选择【文件】→【设置工作目录】,选择桌面《运动仿真凸轮机构》文件

夹为工作目录,点击该图框右下方的【确定】键。如图2、图3所示。

图 2 设置工作目录

图 3 选取工作目录

注:可事先将内部文件格式为prt格式的【运动仿真凸轮机构】文件夹复制到电脑桌面,便于查找。也可以在图3所示对话框右边的文件夹树中查找所需的目标文件。

二、新建加工文件

1.点击【文件】→【新建】命令,选择类型为【组件】,子类型选择【设计】,将名称改为tulun0912,将【使用缺省模板】前的对勾去掉,如图4所示。单击【确定】后弹出【新文件选项】对话框,【模板】选mmns asm design,单击【确定】完成任务的新建,如图5所示。

图 4 新建组件图 5 选择单位制

三、零件的装配

1.预览整个机构效果图

单击工作窗口右边工具栏中的【装配】命令,在【打开】命令中单击【cams.asm】项。单击【预览】可在框图中查看整个凸轮机构组装好后的效果图,后面的组装皆可按此标准来进行。

图 6 机构效果图

2.安装基座

(1)单击工作窗口右边的【装配】命令,在【打开】命令中选择groun.prt文件,即机座(也可以先行【预览】确认一下),点击【打开】,如图7所示。

图 7 选择机座

(2)导入机座后单击图8中所示【自动】命令右边小三角形,将机座设置为【缺省】模式,当状

态栏显示完全约束时,点击面板右端的对勾,完成机座的放置,如图8所示。

图 8 选择缺省

3.凸轮的安装

(1)同上点击【装配】选中并打开打开第二个文件cam.prt,即凸轮机构,点击工具栏旁的【用户定义】下拉菜单,选择【销钉】连接类型,如图9所示。

图 9 选择销钉连接

(2)先进行轴对齐,即选择机座机架上凸台的中心线A-1,再选择凸轮的中心线A-1,完成轴对齐。如图10所示。

图 10 中心线对齐

(3)再进行面匹配,光标移到凸轮上单击右键选择凸轮底面的面再选择基座的顶面,同样当状态栏显示完全约束时点击工具栏上的对勾完成凸轮的装配。

图 11 选取面匹配

注:点击右边工具栏上的工具,可打开最近导入的文件,可随意调整方向大小方便选择端面与中心线,如图12所示。

图 12 元件窗口

4.曲柄的安装

(1)同上点击【装配】,选择第三个零件connectionrod.prt,即曲柄【打开】,【用户定义】类型栏选择【销钉】类型。

(2)同样先轴对齐,选择机座凸台中心线A-2与曲柄中心线A-3,再选择凸台顶面与曲柄顶面进行面匹配,同样当状态栏显示完全约束时,单击完成曲柄的装配,如图13所示。

图13 曲柄装配

5.摇杆的装配

(1)同上点击【装配】打开第四个文件pole.prt,点击工具栏旁的【用户定义】下拉菜单,同样还是选择选择【销钉】类型。

(2)选择轴A-3与轴A-10进行轴对齐,在选择凸台顶面与摇杆上表面进行面匹配,同样当状态栏显示完全约束时,单击完成摇杆的装配,如图14所示。

图 14 摇杆装配

6.连杆的装配

(1)同理导入drivenpart.prt,由于连杆上有两个需要装配的轴孔,可以分先后装配,此处先取

小轴孔与曲柄上的小凸台进行连接。同样先在【用户定义】中选择【销钉】连接类型,轴A-6与轴A-11对齐,面与面匹配。这时不能单击,还要新建一个连接,如图15所示。

图15 连杆装配

(2)点击工具栏中【放置】→【新设置】(有些版本的是【新建集】),新建一个销钉连接,选择轴A-7与A-12对齐,凸台顶面与连杆表面匹配,当状态栏显示完全约束时,单击右边

完成连杆的装配,如图16、17所示。

图 16 新建约束

图 17 连杆装配

注:在第(2)步操作中轴A-7与A-12不容易区别选取,可以先将孔与轴错开然后再选。步骤如下:

先选取上面工具栏中的符号。会弹出一个【拖动】对话框。选取连杆未被装配的一端就可以将凸台与空分开,如图18所示。

图 18 部件拖动

四、机构运动学仿真

1.新建凸轮连接

(1)点击工作界面上的【应用程序】,选择【机构】,如图19所示。

图 19 机构仿真图 20 新建凸轮运动副

(2)在工作界面左侧单击【机构树】→【连接】→【凸轮】,右键点击【新建】,新建一个凸轮副设置。(3)点击【曲面/曲线】下的箭头,如图21所示;按住CTRL键选择图22中的曲面,注意曲面选取的完整性(360度选取),可边选取边调整方向。

图 21 凸轮1连接图 22 选定曲面

(4)点【确定】完成选择,如图23所示。

(5)在图24中点击凸轮2下的【曲面/曲线】选择箭头选择图25中的曲面,这时可以按住Ctrl键或者点击【自动选取】来选择该曲面。

图 23 确定完成图 24 凸轮2连接

图 25 选定曲面

(6)先后点击【选取】、【凸轮从动机构连接】对话框中的【确定】键,如所示。完成凸轮机构之间的连接。

图 26 确定凸轮连接

2.新建伺服电机

(1)在工作界面右侧单击图标【定义伺服电动机】命令建立一个伺服驱动,如图27所示。

图 27 新建伺服电机

(2)在图28中点击【类型】→【运动轴】下的箭头,选择如图29中轴A-1。

图 28 定义电机运动轴 图 29 选择电机驱动轴A-1

(3)单击【伺服电动机定义】→【轮廓】→【规范】中选择【速度】,在【模】中将 A 的值改为360,单击【确定】,如图30所示。

图 30 定义电机速度参数

3.分析和仿真

(1)点击图标【分析】命令,选择【类型】→【运动学】,【终止时间】改为3,【帧频】改为100,如图31所示。单击【运行】可观看凸轮机构运动状态,最后单击【确定】。

图 31 选择运动学分析改定参数

(2)单击【机构树】下的【回放】图标,在弹出的【回放】对话框中单击,再点击左上角的回放,出现下图的图形框,点击向右的箭头开始播放,如图32所示。

图 32 回放命令

(3)点击【捕获】,修改名称后单击【确定】即可保存视频,如图33、34所示。

图 33 捕获动画图 34 保存动画

4.处理结果

(1)点击图标【测量】→【创建新测量】命令,如图33所示。在弹出的对话框中分次选择【类型】→【位置】、【类型】→【速度】、【类型】→【加速度】命令,对应都选取模型中同一测量点。

图 35 新建测量

(2)单击【类型】→【位置】命令,选取【点或者运动轴】为图36中所示的点,【分量】取Y 分量。如图36所示。单击【确定】。

图 36 测量位置图 37测量速度

(3)单击如图35中【创建新测量】→【类型】→【速度】命令,选取【点或者运动轴】为图36中所示的同一测量点,【分量】选择Y分量。如图37所示。单击【确定】。

(4)同样单击【创建新测量】→【类型】→【加速度】命令,选取【点或者运动轴】为图36中所示的同一测量点,【分量】选择Y分量,如图38所示。单击【确定】。

图 38 测量加速度图39显示测量值

(5)完成对位置、速度、加速度的测量后,选中这3个测量,点击【结果集】中的【AnalysisDefinitional】,将显示各个测量数据,如图39所示。

(6)单击图38中【测量结果】菜单下的图标可以绘制选定结果集所选测量的图形,如图40所示。单击【图形工具】对话框下的【文件(F)】导出excel表格并保存到工作目录中。如图41示。

图 40测量结果(位置、速度、加速度曲线)图 41 导出excel表格

(7)最后退出任务,单击界面左上方工具栏中的键,保存文件到工作目录中。

凸轮机构大作业___西工大机械原理要点

大作业(二) 凸轮机构设计 (题号:4-A) (一)题目及原始数据···············(二)推杆运动规律及凸轮廓线方程·········(三)程序框图········· (四)计算程序·················

(五)程序计算结果及分析·············(六)凸轮机构图·················(七)心得体会··················(八)参考书··················· 一题目及原始数据 试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计 (1)推程运动规律为五次多项式运动规律,回程运动规律为余弦加速度运动规律; (2)打印出原始数据; (3)打印出理论轮廓和实际轮廓的坐标值; (4)打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角; (6)打印最后所确定的凸轮的基圆半径。 表一偏置直动滚子推杆盘形凸轮机构的已知参数 题号初选的 基圆半 径 R0/mm 偏距 E/mm 滚子 半径 Rr/m m 推杆行 程 h/mm 许用压力角许用最小曲率半径 [ρamin] [α1] [α2] 4-A 15 5 10 28 30°70?0.3Rr 计算点数:N=90 q1=60; 近休止角δ1 q2=180; 推程运动角δ2 q3=90; 远休止角δ3 q4=90; 回程运动角δ4 二推杆运动规律及凸轮廓线方程推杆运动规律: (1)近休阶段:0o≤δ<60 o s=0;

ds/dδ=0; 2/δd 2 d=0; s (2)推程阶段:60o≤δ<180 o 五次多项式运动规律: Q1=Q-60; s=10*h*Q1*Q1*Q1/(q2*q2*q2)-15*h*Q1*Q1*Q1*Q1/(q2*q2*q2*q2)+6*h*Q1*Q1*Q 1*Q1*Q1/(q2*q2*q2*q2*q2); ds/dδ =30*h*Q1*Q1*QQ/(q2*q2*q2)-60*h*Q1*Q1*Q1*QQ/(q2*q2*q2*q2)+30*h*Q1*Q1*Q 1*Q1*QQ/(q2*q2*q2*q2*q2); 2/δd 2 d=60*h*Q1*QQ*QQ/(q2*q2*q2)-180*h*Q1*Q1*QQ*QQ/((q2*q2*q2*q2))+1 s 20*h*Q1*Q1*Q1*QQ*QQ/((q2*q2*q2*q2*q2)); (3)远休阶段:180o≤δ<270 o s=h=24; ds/dδ=0; 2/δd 2 d=0; s (4)回程阶段:270≤δ<360 Q2=Q-270; s=h*(1+cos(2*Q2/QQ))/2; ds/dδ=-h*sin(2*Q2/QQ); 2/δd 2 d=-2*h*cos(2*Q2/QQ); s 凸轮廓线方程: (1)理论廓线方程: s0=sqrt(r02-e2) x=(s0+s)sinδ+ecosδ y=(s0+s)cosδ-esinδ (2)实际廓线方程 先求x,y的一、二阶导数 dx=(ds/dδ-e)*sin(δ)+(s0+s)*cos(δ);

哈工大机械原理大作业 凸轮机构设计 题

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() Timer1.Enabled = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single

Dim s As Single, q As Single 'i作为静态变量,控制流程;s代表位移;q代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Picture1.PSet Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Picture1.PSet Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Picture1.PSet Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Picture1.PSet Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then

浅谈基于UG凸轮机构的运动仿真

浅谈基于UG凸轮机构的运动仿真 Xxx (xx大学 xx学院江苏xx xxxxx) 摘要:介绍如何利用UG软件来完成凸轮机构设计和运动仿真。应用UG 的表达式工具和规律曲线功能, 精确、快速地生成凸轮实体, 应用UG的运动仿真功能, 再现凸轮机构的运动过程, 检验机构的运动结果是否与设计相一致, 以保证设计的准确性。[1] 关键词: UG ;凸轮;机构;运动仿真;参数化 Discussion on the dynamic simulation of cam mechanism based on UG xxxxx (UGS College, Yancheng Institute of Technology, Yancheng, Jiangsu 224051) Abstract: This article introduces how fulfills the design of the cam mechanism and the motion simulation by UG software. Using the expression tool and the law curve of UG software, the cam entity can be produced precisely and fast. Using the motion simulation of UG software, the whole process of the cam mechanism can reappeared. Whether the result of the movement is consistent with the design can be examined. Key words: UG; Cam ;mechanism;Motion simulation;Parametric 0 引言 凸轮机构因具有结构简单、运动准确可靠等优点,在机械和自动控制系统中被广泛应用。凸轮机构设计的关键在于凸轮轮廓曲线的设计,通常的方法是根据从动件的运动规律,应用图解法或解析法来设计凸轮轮廓曲线。图解法直观、简便,但精度不高,解析法精确但计算繁杂,也不能满足现代设计的需要。UG 是大型的CAD/CAE/CAM 三维软件,可利用其建模模块的表达式工具和规律曲线等功能,结合解析法进行凸轮机构的三维设计,还可在运动仿真模块中进行运动仿真和运动分析。[2] 1 UG 运动仿真模块介绍 运动仿真模块是CAE应用软件,用于建立运动机构模型,分析其运功规律运动方针。运动仿真模块可以进行机构的干涉分析。跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程0 0240 190≤ ≤?,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮s d ds -φ 线图 本题目采用Matlab 编程,写出凸轮每一段的运动方程,运用Matlab 模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回程的运动方程 输入凸轮基圆偏距等基本参数 输出ds,dv,da 图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

VC++凸轮机构运动仿真编程示例

VC++凸轮机构运动仿真编程示例 一. 机构运动原理 1. 推杆从动件的运动规律(仅列出常用的四种运动规律) 表1-1 从动件的运动方程式 2. 偏置直动尖顶推杆盘形凸轮机构 如图所示,凸轮逆时针方向转动,导路偏置于凸轮转动中心A ,导路距转轴A 的垂直距离为偏距e 。以偏距e 为半径作的圆为偏距圆。当凸轮转动时,凸轮上的偏距圆也随之转动,但其始终与导路轴线相切。凸轮转动时不便求解其上的廓线方程,故采用反转法。反转法是建立在推杆与凸轮的相对运动与参考系无关这一原理上的。所谓反转法,即给整个机构一个与凸轮转向相反的角速度-ω1,则凸轮静止不动,而从动件随机架反转且沿凸轮廓线相对运动,导路的反转角?即凸轮的转角。如图所示,此时导路由B K 00转到BK 。由于AK B K 000⊥,AK BK ⊥,所以∠=K AK 0?,此时导路BK 与基圆和凸轮廓线的交点''B B 间的长度,即从动件 的位移s BB =''。由几何关系知??B K A B KA 00='',所以s 0=''=B K ) ( r e b 22 1 2 -。选取坐标

系xAy ,B 0点为凸轮廓线起始点。当凸轮转过?角,由反转法知此时从动件位于BK 。则B 点的坐标为 )()( X s s e Y s s e =++=+-?? ???00sin cos cos sin ?? ?? (1-1) 式(1-1)即为尖顶推杆凸轮廓线的方程式,也称为理论廓线方程。 3. 偏置直动滚子推杆盘形凸轮机构 大多数推杆在尖顶B 处装有滚子,以提高推杆的使用寿命。显然,只要使滚子中心B 沿理论廓线曲线上运动,即可保证推杆预期的运动规律。如图所示,此时凸轮的轮廓曲线不是理论廓线,而是处处与滚子相切的另一条曲线,这条曲线称为凸轮的实际廓线。因为实际廓线与理论廓线在法线方向的距离处处相等,且等于滚子半径r r ,故当已知廓线上任一点B )(x y ,时,只要沿理论廓线在该点法线方向取距离为r r ,即得实际廓线上的相应点)('''B x y ,。由此可见,理论廓线上作一系列滚子圆的包络线即实际廓线。因此实际廓线是理论廓线的等距曲线。该等距曲线有两条,即内等距曲线和外等距曲线。 盘状槽形凸轮的廓线即该两条等距曲线。由高等数学知识可求得理论廓线B 点处法线n -n 的斜率(与切线斜率互为负倒数)应为 ()() tan θ??=- =-d d d d d d x y x y (1-2) 式(1-2)中的dx/dy 与dy/dx 可根据式(1-1)求出,代入式(1-2)后有 ()()()()tan sin cos sin cos θ?? ?? = -+++--d d s e s s s s s e 00 (1-3) 式(8-10)中的θ角可在0360 ~变化,其值要根据分子、分母的正负号所决定的tan θ所在象限来计算。求出θ角后,可计算()'''B x y ,的坐标值:

凸轮机构作业习题讲解学习

凸轮机构作业习题

9.设计凸轮廓线时,若减小凸轮的基圆半径,则凸轮压力角将( A )。 A.增大 B.减小 C.不变 D.不确定 10.直动平底从动件盘形凸轮机构的压力角(B)。 11.A.永远等于0° B.等于常数 C.随凸轮转角而变化 D.肯定大于0°二.填充题(每空2分,共20分) 1.理论轮廓曲线相同而实际轮廓曲线不同的两个对心移动滚子从动件盘形凸轮 机构,其从动件的运动规律是相同的。(选填相同/不同)2.设计某移动从动件盘形凸轮机构,采用平底从动件可以保证凸轮 机构在运动过程中压力角保持不变。 3.图示凸轮机构的名称是偏置移动从动件盘型凸轮机构。 (填充题3图)(填充题4图) 4.在图示凸轮机构中,盘形凸轮的一段轮廓线为渐开线,且凸轮基圆与渐开线 基圆半径相同(半径r0=10 mm),偏置距离e=10 mm,当从动件尖端与渐开线轮廓段在图示位置接触时,其压力角α= 0 。 5.在凸轮机构中,当从动件选择等速运动规律时,会产生刚性冲击。 6.当凸轮机构的压力角过大时,机构易出现锁死现象。 7.在设计滚子移动从动件盘形凸轮机构时,若发生凸轮实际轮廓变尖现象,为 克服变尖现象,可采取的措施有__增大基圆半径___或____减小滚子半径___。 8.用作图法绘制凸轮廓线时,常采用的方法为有_____图解法__________。 9.凸轮机构中常用弹簧来保持凸轮和从动件紧密接触,弹簧在机构运动分析中 不是一个构件。(选填是/不是) 三、(本题10分)在图示偏置滚子移动从动件盘形凸轮机构中,在图中作出:(1)图示位置时推杆的压力角和位移;(2)凸轮从图示位置转过90°后,推杆的压力角和位移;(3)推杆的行程和所在位置的压力角。

如何用solidworks2016进行凸轮的运动仿真分析

如何用Solidworks2016进行凸轮的运动分析 李犹胜(上海200000) 0、摘要 凸轮机构是机械设计中常用的结构,它的运动仿真模拟是凸轮设计过程中不可缺少的步骤。很多专业人士都对其做了研究,但是过程趋于复杂。较多的年轻工程师很难理解,本文通过一个简单的例子通过SolidWorks2016软件来说明凸轮机构仿真模拟的方法和步骤,浅显易懂。 1、关键词 凸轮机构、运动仿真、运动分析 2、概述 凸轮机构一般是由凸轮、从动件和机架三个构件组成的高副机构。凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动。凸轮机构能实现复杂的运动要求,广泛用于各种自动化和半自动化机械装置中,几乎所有任意动作均可经由此一机构产生[1]。在设计凸轮机构时,凸轮机构的模拟运动分析将是一项必要而不可缺少的工作。它也是进行凸轮外形设计的辅助手段。 本文介绍了使用solidworks2016软件进行凸轮运动分析的基本步骤和使用技巧。 3、零件建模及装配 3.1、先用solidworks2016 将凸轮机构的零件建 模好,作为本文的一个例子,作者建立了下列零 件数模。 3.2 将上述零件导入到solidworks 2016装配体中, 具体操作为:步骤1、文件、新建、选择装配图模板,进入装配体模式 步骤2、导入凸轮轴 (1)选择插入部件 (2)在插入零部件窗口中选择“浏览”按钮。 (3)选择要插入的文件,按“打开”按钮; (4)将图形放在屏幕的任意位置,将其固定(如图2)。

步骤3、导入“凸轮” (1)重复按照步骤2的方法,将凸轮导入到装配体中。 (2)添加“同心”约束,添加后如图(3)添加“距离”约束添加后的结果如下 步骤4 、导入“滚轮” (1)重复按照步骤2的方法,将滚轮导入到装配体中。 (2)添加一个“机械约束”中的“凸轮配合”约束

机械原理大作业3凸轮结构设计说明

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚明 设计时间: 工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程(mm) 升程运动 角(o)升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得: ????? ???? ??-=512sin 215650?ππ?S ;

?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

凸轮运动Matlab仿真-Matlab课程设计

Matlab 课程设计 李俊机自091 设计题目一:凸轮机构设计 已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。 %总程序代码 clc; clf; clear; p=figure('position',[100 100 1200 600]); for i=1:360 %画圆形凸轮 R=100; %圆形凸轮半径 A=0:0.006:2*pi; B=i*pi/180; e=20; %偏心距 a=e*cos(B);

b=e*sin(B); x=R*cos(A)+a; y=R*sin(A)+b; subplot(1,2,1) plot(x,y,'b','LineWidth',3); %填充 fill(x,y,'y') axis([-R-e,R+e,-R-e,R+e+100]); set(gca,'Xlim',[-R-e,R+e]) set(gca,'Ylim',[-R-e,R+e+100]) axis equal; axis manual; axis off; hold on; plot(a,b,'og') plot(e,0,'or') plot(0,0,'or','LineWidth',3)

%画滚子 gcx=0; %滚子中心X坐标r=10; %滚子半径 gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标 gx=r*cos(A)+gcx; %滚子X坐标 gy=r*sin(A)+gcy; %滚子Y坐标 plot(gx,gy,'b','LineWidth',2); %画其它部分 plot([0 a],[0 b],'k','LineWidth',4) plot([3 3],[170 190],'m','LineWidth',4) plot([-3 -3],[170 190],'m','LineWidth',4) %画顶杆 gc=120; dgx=[0 0]; dgy=[gcy gcy+gc]; plot(dgx,dgy,'LineWidth',4); hold off

机械设计课后习题第9章作业图文要点

第9章作业 9-1 何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全图示各段一、 一、一曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击? 答凸轮机构传动中的刚性冲击是指理论上无穷大的惯性力瞬问作用到构件上,使构件产生强烈的冲击;而柔性冲击是指理论上有限大的惯性力瞬间作用到构件上,使构件产生的冲击。 s-δ, v-δ, a-δ曲线见图。在图9-1中B,C处有刚性冲击,在0,A,D,E处有柔性冲击。 9—2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 题9-1图 答在用包络的方法确定凸轮的工作廓线时,凸轮的工作廓线出现尖点的现象称为变尖现象:凸轮的工作廓线使推杆不能实现预期的运动规律的现象件为失真现象。变尖的工作廓线极易磨损,使推杆运动失真.使推杆运动规律达不到设计要求,因此应设法避免。变尖和失真现象可通过增大凸轮的基圆半径.减小滚子半径以及修改推杆的运动规律等方法来避免。 9—3力封闭与几何封闭凸轮机构的许用压力角的确定是否一样?为什么?

答力封闭与几何封闭凸轮机沟的许用压力角的确定是不一样的。因为在回程阶段-对于力封闭的凸轮饥构,由于这时使推杆运动的不是凸轮对推杆的作用力F,而是推杆所受的封闭力.其不存在自锁的同题,故允许采用较大的压力角。但为使推秆与凸轮之间的作用力不致过大。也需限定较大的许用压力角。而对于几何形状封闭的凸轮机构,则需要考虑自锁的问题。许用压力角相对就小一些。 9—4一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲改用较大的滚子?问是否可行?为什么? 答不可行。因为滚子半径增大后。凸轮的理论廓线改变了.推杆的运动规律也势必发生变化。 9—5一对心直动推杆盘形凸轮机构,在使用中发现推程压力角稍偏大,拟采用推杆偏置的办法来改善,问是否可行?为什么? 答不可行。因为推杆偏置的大小、方向的改变会直接影响推杆的运动规律.而原凸轮机构推杆的运动规律应该是不允许擅自改动的。 9-6 在图示机构中,哪个是正偏置?哪个是负偏置?根据式(9-24说明偏置方向对凸轮机构压力角有何影响? 答由凸轮的回转中心作推杆轴线的垂线.得垂足点,若凸轮在垂足点的 速度沿推杆的推程方向.刚凸轮机构为正偏置.反之为负偏置。由此可知.在图 示机沟中,两个均为正偏置。由

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

凸轮机构设计及其动态仿真

凸轮机构设计及其动态仿真 [摘要]根据所要求的从动件运动曲线类型和相关基本参数得到对应的凸轮轮廓曲线,利用得到曲线在Solidworks中用插入坐标点曲线功能,快速生成凸轮实体,应用COSMOSMotion的运动仿真功能,再现了凸轮机构的运动过程,用图形输出的运动仿真结果与输入曲线的对比,可以检验机构的运动特性是否符合设计要求。 【关键词】凸轮设计;运动仿真;COSMOSMotion 凸轮机构由凸轮、从动件和机架组成。其主要优点是结构简单、工作可靠,能够使从动件按任意复杂给定的规律运动,在工程实践中得到广泛的应用[1]。对凸轮机构进行运动分析的目的是当已知各构件尺寸参数、位置参数和原动件运动规律时,研究机构其余构件上各点的轨迹、位移、速度、加速度,构件的位置、角位移、角速度和角加速度等运动参数,从而评价机构是否满足工作性能要求,机构是否发生运动干涉。 传统的凸轮机构的运动分析方法有图解法、解析法。图解法形象直观,但作图较烦琐;解析法需要建立复杂的数学关系式,计算工作量大。本文通过Solidworks建立凸轮机构的装配模型,利用COSMOSMotion模块建立其运动仿真模型,然后进行运动学分析,仿真凸轮机构的运动状况,最后将所设置的构件的位移、速度、加速度的变化情况以图表的形式输出[2-3]。 一、滚子从动件盘型凸轮机构分析 为便于分析,首先设定坐标系。(1)凸轮机构坐标系XOY:原点为凸轮坐标轴中心,X轴、Y轴固结于机架上。该坐标轴为整个凸轮机构的总体坐标系。(2)从动件坐标系XfOfYf:原点为从动件回转中心,Xf 二、凸轮轮廓的三维建模 将凸轮回转一个周期分为400份,最后得到的400个点,利用这400个点来进行凸轮轮廓曲线的绘制的。根据建模的需要,将在Matlab中得到的曲线“导入”Soli dworks中。 打开Solidworks进入绘制,选择“插入”—“曲线”—“通过X、Y、Z点的曲线”,打开曲线文件对话框,选择对应的txt文件并打开,将数据传递到Solidworks中,以直动从动件滚子凸轮为例,如图1所示,点击“确定”便可以看到生成的轮廓曲线。选择前基准面作为基准面绘制草图,单击已经生成的凸轮轮廓曲线,选择“转换实体引用”命令,便可以得到凸轮轮廓草图,通过对该草图的拉伸操作便可以得到滚子从动件盘型凸轮的基本三维模型,如图2、图3所示。 三、基于COSMOSMotion的凸轮机构运动仿真

凸轮机构大作业 (修复的)

凸轮机构设计 摆动滚子推杆盘形凸轮机构 (题号:7-A) 班级:机制 学号:2010012447 姓名: 同组其他人员(2010012444) 完成日期:2011年11月19日

1、题目及原始数据及其要求 凸轮机构大作业题目 利用计算机辅助设计完成下列摆动滚子推杆盘形凸轮机构的设计,设计已知数据如下表所示,机构中凸轮沿着逆时针方向做匀速转动。 表1 凸轮机构的从动件运动规律 表2 凸轮机构的推杆在近休、推程、远休及回程阶段的凸轮转角 表3 摆动滚子推杆盘形凸轮机构的已知参数 要求:每两人一组,每组中至少打印出一份源程序。每人都要打印:原始数据;凸轮理论轮廓曲线和实际轮廓曲线的坐标值;推程和回程的最大压力角,以及出现最大压力角时凸轮相应的转角,凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;凸轮的基圆半径。整个设计过程所选取的计算点数N=72~120。利用计算机绘出凸轮的理论轮廓曲线和实际轮廓曲线。 凸轮大作业的内容和要求 凸轮大作业应计算正确、完整,文字简明通顺,撰写整齐清晰,并按照以下内容及顺序编写: 1、题目及原始数据; 2、推杆的运动规律及凸轮廓线方程; 3、计算程序; 4、计算结果及分析; 5、凸轮机构图(包括推杆及凸轮理论和实际廓线,并标出有关尺寸及计算结果; 6、体会及建议; 7、参考书;

8、计算程序框图。 最后作出封面和封底左侧为装订线装订成册。 注:滚子摆动推杆盘形凸轮机构的压力角α计算公式为: ) sin(])cos([tan 00????δ ? α+-+= OA AB OA AB L l l d d l 且当摆动推杆的角速度ω2与ω1异向时,上式方括号前取减号;当ω2与ω1同向时,取加号。φ0为推杆初位角,可有以下公式计算获得: AB OA AB OA l l r l l 2cos 2 0220++= ? 2、 摆杆的运动规律及凸轮轮廓线方程 理论轮廓: 理论轮廓坐标: 0sin sin() OA AB x l l δδ??=-++ 0cos cos()OA AB y l l δδ??=-++ 222 00arccos 2OA AB OA AB l l r l l ?+-= π? 15 2max = δ应分段计算 近休止阶段:

哈工大机械原理大作业二凸轮机构设计(29)

设计说明书 1 设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见下表,据此设计该凸轮机构。 2、推杆升程、回程运动方程及位移、速度、加速度线图 2.1凸轮运动理论分析 推程运动方程: 01cos 2h s π?????=-?? ?Φ???? 1 00sin 2h v πωπ??? = ?ΦΦ?? 22 12 00cos 2h a πωπ???= ?ΦΦ?? 回程运动方程: ()0' 1s s h ?-Φ+Φ?? =- ??Φ ? ? 1'0 h v ω=- Φ 0a = 2.2求位移、速度、加速度线图MATLAB 程序 pi= 3.1415926; c=pi/180; h=140; f0=120; fs=45; f01=90; fs1=105; %升程 f=0:1:360; for n=0:f0

s(n+1)=h/2*(1-cos(pi/f0*f(n+1))); v(n+1)=pi*h/(2*f0*c)*sin(pi/f0*f(n+1)); a(n+1)=pi^2*h/(2*f0^2*c^2)*cos(pi/f0*f(n+1)); end %远休程 for n=f0:f0+fs s(n+1)=140; v(n+1)=0; a(n+1)=0; end %回程 for n=f0+fs:f0+fs+f01 s(n+1)=h*(1-(f(n+1)-(f0+fs))/f01); v(n+1)=-h/(f01*c); a(n+1)=0; end %近休程 for n=f0+fs+f01:360; s(n+1)=0; v(n+1)=0; a(n+1)=0; end figure(1);plot(f,s,'k');xlabel('\phi/\circ');ylabel('s/mm');grid on;title('推杆位移线图') figure(2);plot(f,v,'k');xlabel('\phi/\circ');ylabel('v/(mm/s)');grid on;title('推杆速度线图') figure(3);plot(f,a,'k');xlabel('\phi/\circ');ylabel('a/(mm/s2');grid on;title('推杆加速度线图') 2.3位移、速度、加速度线图

哈工大机械原理大作业-凸轮机构设计(第3题)

机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 院 系: 机电学院 班 级: 1208103 完 成 者: xxxxxxx 学 号: xx 指导教师: 林琳 设计时间: 2014.5.2 哈尔滨工业大学 凸轮机构设计 一、设计题目 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得:

?? ??????? ??-=512sin 215650?ππ?S ; ?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

用ADAMS进行凸轮机构模拟仿真示例讲课教案

用A D A M S进行凸轮机构模拟仿真示例

例: 尖顶直动从动件盘形凸轮机构的凸轮基圆半径mm r 600 =,已知:从动件行程mm h 40=,推程运动角为ο1500=δ,远休止角ο60=s δ,回程运动角ο1200='δ,近休止角为ο30='s δ;从动件推程、回程分别采用余弦加速度和正弦加速度运动规律。对该凸轮机构进行模拟仿真。 解: 1. 从动件推程运动方程 推程段采用余弦加速度运动规律,故将已知条件mm h 406/51500 ===、。πδ代入余弦加速度运动 规律的推程段方程式中,推演得到 ???? ?????=≤≤=-=δωπδδωδ56cos 8.28)6/50( 56sin 24)56cos 1(202a v s 2. 从动件远休程运动方程 在远休程s δ段,即6/76/5πδπ≤≤时, 0,0,===a v h s 。 3. 从动件回程运动方程 因回程段采用正弦加速度运动规律,将已知条件mm h v 403/21200===' 、πδο代入正弦加速度运动规律的回程段方程式中,推演得到 []???? ?????--=≤≤---=??????-+-?=)5.33sin(180)6/116/7( )5.33cos(160)5.33sin(212375.2402πδωππδππδωππδπδπa v s 4. 从动件近休程运动方程 在近休程s 'δ段,即πδπ 26/11≤≤时, 0,0,0===a v s 。 创建过程 1、 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名称(Model name )栏中输入:tuluen ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。

哈工大机械原理大作业凸轮机构设计第题

哈工大机械原理大作业-凸轮机构设计(第题)

————————————————————————————————作者:————————————————————————————————日期:

机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:机电学院 班级:1208103 完成者:xxxxxxx 学号:11208103xx 指导教师:林琳 设计时间:2014.5.2 哈尔滨工业大学

凸轮机构设计 一、设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。 序号 升程(mm ) 升程运动角(°) 升程运动规律 升程许用压力角(°) 回程运动角(°) 回程运动规律 回程许用压力角 (°) 远休止角(°) 近休止角 (°) 3 50 150 正弦加速度 30 100 余弦加速度 60 30 80 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?????? ??-=512sin 215650?ππ?S ; ??? ?? ???? ??-= 512cos 1601ππωv ; ω

?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5)); hold on plot(t,s); t=14*pi/9:0.001:2*pi;

相关文档
最新文档