线程与进程

线程与进程
线程与进程

1.进程与线程区别

从概念上:

进程:一个程序对一个数据集的动态执行过程,是分配资源的基本单位。

线程:一个进程内的基本调度单位。

线程的划分尺度小于进程,一个进程包含一个或者更多的线程。

从执行过程中来看:

进程:拥有独立的内存单元,而多个线程共享内存,从而提高了应用程序的运行效率。

线程:每一个独立的线程,都有一个程序运行的入口、顺序执行序列、和程序的出口。但是线程不能够独立的执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

从逻辑角度来看:(重要区别)

多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但是,操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理及资源分配。

2.我们写的程序,不论是C、C++、java还是其他的,其实都是一种文本,真正

运行、跑动的是进程。

程序可以分为两部分:源代码和可执行的二进制代码(经过汇编或编译)。操作系统加载这个可执行的二进制代码后,还要分配相应的内核数据结构——进程控制块(PCB:process control block),并进行一系列的初始化等过程(如:创建PID、分配时间片等)后才创建了真正可以“跑动”的进程。所以程序相当于是一个项目的计划书(或行动方案),而进程才是对该方案的实施过程。

进程对CPU来说其实就是一串可执行的指令序列,这个执行序列也叫执行线程,它是进程的控制流程。传统的用户进程只有一个执行流程,所以传统的进程都是单线程的。有了线程就是执行流程的概念后,进程模型得到了扩展,因为一个进程中完全可以设置多个执行流程,即多个执行线程。所以一个进程中可以创建多个线程,当然不创建的话,进程本身也可以看成是线程。

创建多个进程的话,每个进程都是独立的(都有自己独立的PCB数据结构,该数据结构比较大,将近1K的信息量,包括唯一的PID、上下文环境、持有的内存地址等等),内核要管理进程间的切换、内存管理等,开销相对比较大。

如果一个进程里创建多个线程的话,开销比进程要小,各线程共享进程的状态和资源,内核为线程创建的数据结构相对比进程的PCB就要小的多,当然额外的开销是CPU需要跟踪线程,同时线程间存在争用资源的问题。如果程序要完成一组相关任务,则用线程比较好。

下面再细讲下进程:

我们知道进程可以创建子进程,由于在分时系统中进程都有时间片(进程每次调度到时可以运行的时间),用户其实可以通过创建更多的子进程来获取较多的CPU时间和系统资源。

创建进程的函数有:fork()、clone()和vfork()。它们的区别是:用fork创建的子进程是父进程的一个copy(地址空间副本),但它们除了代码段外,并不共享任何内容;clone根据提供的clone_flags参数来决定父子进程应该共享的内容,当不提供该参数任何标志值时,父子进程也不共享任何内容,此时跟fork 一样的效果。如果提供了所有的标志,则父子进程共享任何内容,这也就是传统的线程;vfork不进行进程复制,它将自己的地址空间租给子进程,并将自己阻塞,等子进程运行结束时将地址空间还给父进程。vfork一般用于fork一个子进程,子进程却调用了exec()的情况(下面说明),vfork调用非常快,当然它也是一个非常危险的系统调用,因为租用期子进程可以修改父进程的地址空间信息。

为什么会有vfork呢?就是因为我fork出来的子进程往往会调用exec函数来执行新的程序(创建子进程一般就是为了执行其他程序,很少是为了执行跟父进程一样的代码),在fork时我们知道会创建跟父进程一模一样的地址空间副本,但当调用exec()执行一个新程序时,又会丢弃这个地址空间(创建和利用的其实是新程序相应的地址空间),这显然是对资源的浪费了。

一.基础知识:线程和进程

按照教科书上的定义,进程是资源管理的最小单位,线程是程序执行的最小单位。在操作系统设计上,从进程演化出线程,最主要的目的就是更好的支持SMP以及减小(进程/线程)上下文切换开销。

无论按照怎样的分法,一个进程至少需要一个线程作为它的指令执行体,进程管理着资源(比如cpu、内存、文件等等),而将线程分配到某个cpu上执行。一个进程当然可以拥有多个线程,此时,如果进程运行在SMP机器上,它就可以同时使用多个cpu来执行各个线程,达到最大程度的并行,以提高效率;同时,即使是在单cpu的机器上,采用多线程模型来设计程序,正如当年采用多进程模型代替单进程模型一样,使设计更简洁、功能更完备,程序的执行效率也更高,例如采用多个线程响应多个输入,而此时多线程模型所实现的功能实际上也可以用多进程模型来实现,而与后者相比,线程的上下文切换开销就比进程要小多了,从语义上来说,同时响应多个输入这样的功能,实际上就是共享了除cpu以外的所有资源的。

针对线程模型的两大意义,分别开发出了核心级线程和用户级线程两种线程模型,分类的标准主要是线程的调度者在核内还是在核外。前者更利于并发使用多处理器的资源,而后者则更多考虑的是上下文切换开销。在目前的商用系统中,通常都将两者结合起来使用,既提供核心线程以满足smp系统的需要,也支持用线程库的方式在用户态实现另一套线程机制,此时一个核心线程同时成为多个用户态线程的调度者。正如很多技术一样,"混合"通常都能带来更高的效率,但同时也带来更大的实现难度,出于"简单"的设计思路,Linux从一开始就没有实现混合模型的计划,但它在实现上采用了另一种思路的"混合"。

在线程机制的具体实现上,可以在操作系统内核上实现线程,也可以在核外实现,后者显然要求核内至少实现了进程,而前者则一般要求在核内同时也支持进程。核心级线程模型显然要求前者的支持,而用户级线程模型则不一定基于后者实现。这种差异,正如前所述,是两种分类方式的标准不同带来的。

当核内既支持进程也支持线程时,就可以实现线程-进程的"多对多"模型,即一个进程的某个线程由核内调度,而同时它也可以作为用户级线程池的调度者,选择合适的用户级线程在其空间中运行。这就是前面提到的"混合"线程模型,既可满足多处理机系统的需要,也可以最大限度的减小调度开销。绝大多数商业操作系统(如Digital Unix、Solaris、Irix)都采用的这种能够完全实现POSIX1003.1c标准的线程模型。在核外实现的线程又可以分为"一对一"、"多对一"两种模型,前者用一个核心进程(也许是轻量进程)对应一个线程,将线程调度等同于进程调度,交给核心完成,而后者则完全在核外实现多线程,调度也在用户态完成。后者就是前面提到的单纯的用户级线程模型的实现方式,显然,这种核外的线程调度器实际上只需要完成线程运行栈的切换,调度开销非常小,但同时因为核心信号(无论是同步的还是异步的)都是以进程为单位的,因而无法定位到线程,所以这种实现方式不能用于多处理器系统,而这个需求正变得越来越大,因此,在现实中,纯用户级线程的实现,除算法研究目的以外,几乎已经消失了。

Linux内核只提供了轻量进程的支持,限制了更高效的线程模型的实现,但Linux着重优化了进程的调度开销,一定程度上也弥补了这一缺陷。目前最流行的线程机制LinuxThreads 所采用的就是线程-进程"一对一"模型,调度交给核心,而在用户级实现一个包括信号处理在内的线程管理机制。Linux-LinuxThreads的运行机制正是本文的描述重点。

二.Linux 2.4内核中的轻量进程实现

最初的进程定义都包含程序、资源及其执行三部分,其中程序通常指代码,资源在操作系统层面上通常包括内存资源、IO资源、信号处理等部分,而程序的执行通常理解为执行上下文,包括对cpu的占用,后来发展为线程。在线程概念出现以前,为了减小进程切换的开销,操作系统设计者逐渐修正进程的概念,逐渐允许将进程所占有的资源从其主体剥离出来,允许某些进程共享一部分资源,例如文件、信号,数据内存,甚至代码,这就发展出轻量进程的概念。Linux内核在 2.0.x版本就已经实现了轻量进程,应用程序可以通过一个统一的clone()系统调用接口,用不同的参数指定创建轻量进程还是普通进程。在内核中,clone()调用经过参数传递和解释后会调用do_fork(),这个核内函数同时也是fork()、vfork()系统调用的最终实现:

int do_fork(unsigned long clone_flags, unsigned long stack_start,

struct pt_regs *regs, unsigned long stack_size)

其中的clone_flags取自以下宏的"或"值:

#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */

#define CLONE_VM 0x00000100 /* set if VM shared between processes */

#define CLONE_FS 0x00000200 /* set if fs info shared between processes */

#define CLONE_FILES 0x00000400 /* set if open files shared between processes */

#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */

#define CLONE_PID 0x00001000 /* set if pid shared */

#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */

#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */

#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */

#define CLONE_THREAD 0x00010000 /* Same thread group? */

#define CLONE_NEWNS 0x00020000 /* New namespace group? */

#define CLONE_SIGNAL (CLONE_SIGHAND | CLONE_THREAD)

在do_fork()中,不同的clone_flags将导致不同的行为,对于LinuxThreads,它使用(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND)参数来调用clone()创建"线程",表示共享内存、共享文件系统访问计数、共享文件描述符表,以及共享信号处理方式。本节就针对这几个参数,看看Linux内核是如何实现这些资源的共享的。

1.CLONE_VM

do_fork()需要调用copy_mm()来设置task_struct中的mm和active_mm项,这两个mm_struct数据与进程所关联的内存空间相对应。如果do_fork()时指定了CLONE_VM开关,copy_mm()将把新的task_struct中的mm和active_mm设置成与current的相同,同时提高该mm_struct的使用者数目(mm_struct::mm_users)。也就是说,轻量级进程与父进程共享内存地址空间,由下图示意可以看出mm_struct在进程中的地位:

2.CLONE_FS

task_struct中利用fs(struct fs_struct *)记录了进程所在文件系统的根目录和当前目录信息,do_fork()时调用copy_fs()复制了这个结构;而对于轻量级进程则仅增加fs->count计数,与父进程共享相同的fs_struct。也就是说,轻量级进程没有独立的文件系统相关的信息,进程中任何一个线程改变当前目录、根目录等信息都将直接影响到其他线程。

3.CLONE_FILES

一个进程可能打开了一些文件,在进程结构task_struct中利用files(struct files_struct *)来保存进程打开的文件结构(struct file)信息,do_fork()中调用了copy_files()来处理这个进程属性;轻量级进程与父进程是共享该结构的,copy_files()时仅增加files->count计数。

这一共享使得任何线程都能访问进程所维护的打开文件,对它们的操作会直接反映到进程中的其他线程。

4.CLONE_SIGHAND

每一个Linux进程都可以自行定义对信号的处理方式,在task_struct中的sig(struct signal_struct)中使用一个struct k_sigaction结构的数组来保存这个配置信息,do_fork()中的copy_sighand()负责复制该信息;轻量级进程不进行复制,而仅仅增加signal_struct::count计数,与父进程共享该结构。也就是说,子进程与父进程的信号处理方式完全相同,而且可以相互更改。

do_fork()中所做的工作很多,在此不详细描述。对于SMP系统,所有的进程fork出来后,都被分配到与父进程相同的cpu上,一直到该进程被调度时才会进行cpu选择。

尽管Linux支持轻量级进程,但并不能说它就支持核心级线程,因为Linux的"线程"和"进程"实际上处于一个调度层次,共享一个进程标识符空间,这种限制使得不可能在Linux上实现完全意义上的POSIX线程机制,因此众多的Linux线程库实现尝试都只能尽可能实现POSIX的绝大部分语义,并在功能上尽可能逼近。

三.LinuxThread的线程机制

LinuxThreads是目前Linux平台上使用最为广泛的线程库,由Xavier Leroy (Xavier.Leroy@inria.fr)负责开发完成,并已绑定在GLIBC中发行。它所实现的就是基于核心轻量级进程的"一对一"线程模型,一个线程实体对应一个核心轻量级进程,而线程之间的管理在核外函数库中实现。

1.线程描述数据结构及实现限制

LinuxThreads定义了一个struct _pthread_descr_struct数据结构来描述线程,并使用全局数组变量__pthread_handles来描述和引用进程所辖线程。在__pthread_handles中的前两项,LinuxThreads定义了两个全局的系统线程:__pthread_initial_thread和__pthread_manager_thread,并用__pthread_main_thread表征__pthread_manager_thread的父线程(初始为__pthread_initial_thread)。

struct _pthread_descr_struct是一个双环链表结构,__pthread_manager_thread所在的链表仅包括它一个元素,实际上,__pthread_manager_thread是一个特殊线程,LinuxThreads仅使用了其中的errno、p_pid、p_priority等三个域。而__pthread_main_thread所在的链则将进程中所有用户线程串在了一起。经过一系列pthread_create()之后形成的__pthread_handles数组将如下图所示:

图2 __pthread_handles数组结构

新创建的线程将首先在__pthread_handles数组中占据一项,然后通过数据结构中的链指针连入以__pthread_main_thread为首指针的链表中。这个链表的使用在介绍线程的创建和

释放的时候将提到。

LinuxThreads遵循POSIX1003.1c标准,其中对线程库的实现进行了一些范围限制,比如进程最大线程数,线程私有数据区大小等等。在LinuxThreads的实现中,基本遵循这些限制,但也进行了一定的改动,改动的趋势是放松或者说扩大这些限制,使编程更加方便。这些限定宏主要集中在sysdeps/unix/sysv/linux/bits/local_lim.h(不同平台使用的文件位置不同)中,包括如下几个:

每进程的私有数据key数,POSIX定义_POSIX_THREAD_KEYS_MAX为128,LinuxThreads使用PTHREAD_KEYS_MAX,1024;私有数据释放时允许执行的操作数,LinuxThreads与POSIX一致,定义PTHREAD_DESTRUCTOR_ITERATIONS为4;每进程的线程数,POSIX定义为64,LinuxThreads增大到1024(PTHREAD_THREADS_MAX);线程运行栈最小空间大小,POSIX未指定,LinuxThreads使用PTHREAD_STACK_MIN,16384(字节)。

2.管理线程

"一对一"模型的好处之一是线程的调度由核心完成了,而其他诸如线程取消、线程间的同步等工作,都是在核外线程库中完成的。在LinuxThreads中,专门为每一个进程构造了一个管理线程,负责处理线程相关的管理工作。当进程第一次调用pthread_create()创建一个线程的时候就会创建(__clone())并启动管理线程。

在一个进程空间内,管理线程与其他线程之间通过一对"管理管道(manager_pipe[2])"来通讯,该管道在创建管理线程之前创建,在成功启动了管理线程之后,管理管道的读端和写端分别赋给两个全局变量__pthread_manager_reader和__pthread_manager_request,之后,每个用户线程都通过__pthread_manager_request向管理线程发请求,但管理线程本身并没有直接使用__pthread_manager_reader,管道的读端(manager_pipe[0])是作为__clone()的参数之一传给管理线程的,管理线程的工作主要就是监听管道读端,并对从中取出的请求作出反应。

创建管理线程的流程如下所示:

(全局变量pthread_manager_request初值为-1)

图3 创建管理线程的流程

初始化结束后,在__pthread_manager_thread中记录了轻量级进程号以及核外分配和管理的线程id,2*PTHREAD_THREADS_MAX+1这个数值不会与任何常规用户线程id冲突。管理线程作为pthread_create()的调用者线程的子线程运行,而pthread_create()所创建的那个用户线程则是由管理线程来调用clone()创建,因此实际上是管理线程的子线程。(此处子线程的概念应该当作子进程来理解。)

__pthread_manager()就是管理线程的主循环所在,在进行一系列初始化工作后,进入while(1)循环。在循环中,线程以2秒为timeout查询(__poll())管理管道的读端。在处理请求前,检查其父线程(也就是创建manager的主线程)是否已退出,如果已退出就退

出整个进程。如果有退出的子线程需要清理,则调用pthread_reap_children()清理。

然后才是读取管道中的请求,根据请求类型执行相应操作(switch-case)。具体的请求处理,源码中比较清楚,这里就不赘述了。

3.线程栈

在LinuxThreads中,管理线程的栈和用户线程的栈是分离的,管理线程在进程堆中通过malloc()分配一个THREAD_MANAGER_STACK_SIZE字节的区域作为自己的运行栈。

用户线程的栈分配办法随着体系结构的不同而不同,主要根据两个宏定义来区分,一个是NEED_SEPARATE_REGISTER_STACK,这个属性仅在IA64平台上使用;另一个是FLOATING_STACK宏,在i386等少数平台上使用,此时用户线程栈由系统决定具体位置并提供保护。与此同时,用户还可以通过线程属性结构来指定使用用户自定义的栈。因篇幅所限,这里只能分析i386平台所使用的两种栈组织方式:FLOATING_STACK方式和用户自定义方式。

在FLOATING_STACK方式下,LinuxThreads利用mmap()从内核空间中分配8MB空间(i386系统缺省的最大栈空间大小,如果有运行限制(rlimit),则按照运行限制设置),使用mprotect()设置其中第一页为非访问区。该8M空间的功能分配如下图:

图4 栈结构示意

低地址被保护的页面用来监测栈溢出。

对于用户指定的栈,在按照指针对界后,设置线程栈顶,并计算出栈底,不做保护,正确性由用户自己保证。

不论哪种组织方式,线程描述结构总是位于栈顶紧邻堆栈的位置。

4.线程id和进程id

每个LinuxThreads线程都同时具有线程id和进程id,其中进程id就是内核所维护的进程号,而线程id则由LinuxThreads分配和维护。

__pthread_initial_thread的线程id为PTHREAD_THREADS_MAX,__pthread_manager_thread的是2*PTHREAD_THREADS_MAX+1,第一个用户线程的线程id为PTHREAD_THREADS_MAX+2,此后第n个用户线程的线程id遵循以下公式:

tid=n*PTHREAD_THREADS_MAX+n+1

这种分配方式保证了进程中所有的线程(包括已经退出)都不会有相同的线程id,而线程id

的类型pthread_t定义为无符号长整型(unsigned long int),也保证了有理由的运行时间内线程id不会重复。

从线程id查找线程数据结构是在pthread_handle()函数中完成的,实际上只是将线程号按PTHREAD_THREADS_MAX取模,得到的就是该线程在__pthread_handles中的索引。

5.线程的创建

在pthread_create()向管理线程发送REQ_CREATE请求之后,管理线程即调用pthread_handle_create()创建新线程。分配栈、设置thread属性后,以pthread_start_thread()为函数入口调用__clone()创建并启动新线程。pthread_start_thread()读取自身的进程id号存入线程描述结构中,并根据其中记录的调度方法配置调度。一切准备就绪后,再调用真正的线程执行函数,并在此函数返回后调用pthread_exit()清理现场。

6.LinuxThreads的不足

由于Linux内核的限制以及实现难度等等原因,LinuxThreads并不是完全POSIX兼容的,在它的发行README中有说明。

1)进程id问题

这个不足是最关键的不足,引起的原因牵涉到LinuxThreads的"一对一"模型。

Linux内核并不支持真正意义上的线程,LinuxThreads是用与普通进程具有同样内核调度视图的轻量级进程来实现线程支持的。这些轻量级进程拥有独立的进程id,在进程调度、信号处理、IO等方面享有与普通进程一样的能力。在源码阅读者看来,就是Linux内核的clone()没有实现对CLONE_PID参数的支持。

在内核do_fork()中对CLONE_PID的处理是这样的:

if (clone_flags & CLONE_PID) {

if (current->pid)

goto fork_out;

}

这段代码表明,目前的Linux内核仅在pid为0的时候认可CLONE_PID参数,实际上,仅在SMP初始化,手工创建进程的时候才会使用CLONE_PID参数。

按照POSIX定义,同一进程的所有线程应该共享一个进程id和父进程id,这在目前的"一对一"模型下是无法实现的。

2)信号处理问题

由于异步信号是内核以进程为单位分发的,而LinuxThreads的每个线程对内核来说都是一个进程,且没有实现"线程组",因此,某些语义不符合POSIX标准,比如没有实现向进程中所有线程发送信号,README对此作了说明。

如果核心不提供实时信号,LinuxThreads将使用SIGUSR1和SIGUSR2作为内部使用的restart和cancel信号,这样应用程序就不能使用这两个原本为用户保留的信号了。在Linux kernel 2.1.60以后的版本都支持扩展的实时信号(从_SIGRTMIN到_SIGRTMAX),因此不存在这个问题。

某些信号的缺省动作难以在现行体系上实现,比如SIGSTOP和SIGCONT,LinuxThreads 只能将一个线程挂起,而无法挂起整个进程。

3)线程总数问题

LinuxThreads将每个进程的线程最大数目定义为1024,但实际上这个数值还受到整个系统的总进程数限制,这又是由于线程其实是核心进程。

在kernel 2.4.x中,采用一套全新的总进程数计算方法,使得总进程数基本上仅受限于物理内存的大小,计算公式在kernel/fork.c的fork_init()函数中:

max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8

在i386上,THREAD_SIZE=2*PAGE_SIZE,PAGE_SIZE=2^12(4KB),mempages=物理内存大小/PAGE_SIZE,对于256M的内存的机器,mempages=256*2^20/2^12=256*2^8,此时最大线程数为4096。

但为了保证每个用户(除了root)的进程总数不至于占用一半以上物理内存,fork_init()中继续指定:

init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;

init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;

这些进程数目的检查都在do_fork()中进行,因此,对于LinuxThreads来说,线程总数同时受这三个因素的限制。

4)管理线程问题

管理线程容易成为瓶颈,这是这种结构的通病;同时,管理线程又负责用户线程的清理工作,

因此,尽管管理线程已经屏蔽了大部分的信号,但一旦管理线程死亡,用户线程就不得不手工清理了,而且用户线程并不知道管理线程的状态,之后的线程创建等请求将无人处理。

5)同步问题

LinuxThreads中的线程同步很大程度上是建立在信号基础上的,这种通过内核复杂的信号处理机制的同步方式,效率一直是个问题。

6)其他POSIX兼容性问题

Linux中很多系统调用,按照语义都是与进程相关的,比如nice、setuid、setrlimit等,在目前的LinuxThreads中,这些调用都仅仅影响调用者线程。

7)实时性问题

线程的引入有一定的实时性考虑,但LinuxThreads暂时不支持,比如调度选项,目前还没有实现。不仅LinuxThreads如此,标准的Linux在实时性上考虑都很少。

进程与线程的区别 进程的通信方式 线程的通信方式

进程与线程的区别进程的通信方式线 程的通信方式 进程与线程的区别进程的通信方式线程的通信方式2011-03-15 01:04 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车 而同一辆马车可以有很多匹马来拉--这些马就是线程 假设道路的宽度恰好可以通过一辆马车 道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)--即最小的运行单位 每辆马车马匹数=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度 马匹数1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执 行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序 的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行 的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在 应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可 以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程 的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的 能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中 必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的 其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以 并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有 独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响, 而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线 程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程 的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者 《操作系统的设计与实现》。对就个问题说得比较清楚。 +++ 进程概念

操作系统第二章进程和线程复习题

第二章练习题 一、单项选择题 1.某进程在运行过程中需要等待从磁盘上读入数据,此时该进程的状态将( C )。 A. 从就绪变为运行; B.从运行变为就绪; C.从运行变为阻塞; D.从阻塞变为就绪 2.进程控制块是描述进程状态和特性的数据结构,一个进程( D )。 A.可以有多个进程控制块; B.可以和其他进程共用一个进程控制块; C.可以没有进程控制块; D.只能有惟一的进程控制块。 3.临界区是指并发进程中访问共享变量的(D)段。 A、管理信息 B、信息存储 C、数 据 D、程序 4. 当__ B__时,进程从执行状态转变为就绪状态。 A. 进程被调度程序选中 B. 时间片到 C. 等待某一事件 D. 等待的事件发生 5. 信箱通信是一种( B )通信方式。 A. 直接通信 B. 高级通信 C. 低级通信 D. 信号量 6. 原语是(B)。

A、一条机器指令 B、若干条机器指令组成 C、一条特定指令 D、中途能打断的指令 7. 进程和程序的一个本质区别是(A)。 A.前者为动态的,后者为静态的; B.前者存储在内存,后者存储在外存; C.前者在一个文件中,后者在多个文件中; D.前者分时使用CPU,后者独占CPU。 8. 任何两个并发进程之间存在着(D)的关系。 A.各自完全独立B.拥有共享变量 C.必须互斥D.可能相互制约 9. 进程从运行态变为等待态可能由于(B )。 A.执行了V操作 B.执行了P操作 C.时间片用完 D.有高优先级进程就绪 10. 用PV操作管理互斥使用的资源时,信号量的初值应定义为(B)。 A.任意整数 B.1 C.0 D.-1 11. 现有n个具有相关临界区的并发进程,如果某进程调用P操作后变为等待状态,则调用P操作时信号量的值必定为(A)。 A.≤0 B.1 C.n-1 D.n

实验一 进程与线程

实验:进程与线程 一、实验目的 通过函数调用掌握进程之间的通信。 体会线程的存在,了解线程与进程的关系。 二、实验环境 PC+Win7操作系统 三、实验方法和实验步骤 1.准备工作 打开VC++6.0环境。 2.在程序编辑区内输入程序,实现两个数互换。 3. 在VC环境下建立一个控制台应用程序P1。系统启动一个进程(因为支持线程,OS会在进程中主动创建一个主线程)来运行该程序。输出该进程的ID号、以及该进程下面主线程的ID号。多运行几次,观察结果。 四、实验结果

补充:在VC环境下建立一个控制台应用程序P1。系统启动一个进程(因为支持线程,OS会在进程中主动创建一个主线程)来运行该程序。 在进程中,我们自己再创建一个子线程(子线程1),该子线程做的事情很简单,就是让它不停地输出如下信息: 子线程1正在运行第1次,其进程的ID号=~, 子线程1的ID号=~ 子线程1正在运行第2次,其进程的ID号=~, 子线程1的ID号=~ 。。。。。。 。。。。。。 子线程1正在运行第20次,其进程的ID号=~, 子线程1的ID号=~ 只要启动了一个子线程,实际上系统中是主线程和子线程1在并发执行。 主线程的功能是输出这样形式的内容: 主线程正在运行第1次,其进程的ID号=~,主线程的ID号=~ 主线程正在运行第2次,其进程ID号=~, 主线程的ID号=~ 。。。。。。 。。。。。。 主线程正在运行第20次,其进程ID号=~, 主线程的ID号=~ 多运行几次,观察主线程和子线程并发调动的次序。每次调度都一样吗?为什么?进程ID、主线程ID和子线程ID每次都一样吗? 体会操作系统中并发的异步性。 程序代码如下: #include #include DWORD WINAPI Thread1(LPVOID lpparameter){ int i; for(i=1;i<=20;i++){ printf("子线程1在运行中,它正在运行第%d times,所属进程的ID号=%ld, 本线程的ID号=%ld\n",i,GetCurrentProcessId(),GetCurrentThreadId());} return 0;} int main(){ int j; printf("一个进程在运行中\n"); printf("主线程在运行中\n"); HANDLE hThread1=CreateThread(NULL,0,Thread1,NULL,0,NULL); for(j=1;j<=20;j++){ printf("主线程正在运行第%d次;进程的ID号=%ld,线程ID号=%ld\n", j,GetCurrentProcessId(),GetCurrentThreadId()); Sleep(500); } return 0; } 多次运行的结果显示,每次调度是不一样的,因为操作系统中程序并发运行时的异步性原则,进程ID、主线程ID和子线程ID每次也都是不一样的。

查看程序的进程和线程实验报告

查看程序的进程和线程实验报告 篇一:程序实验2:11-多线程编程---实验报告 程序实验二:11-多线程编程实验 专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c) 1、软件功能描述 创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。 2、程序流程设计 3.部分程序代码注释(关键函数或代码) #include #include #include #define T_NUMBER 3 #define P_NUMBER 5 #define TIME 10.0

void *thrd_func(void *arg ) { (本文来自:https://www.360docs.net/doc/9e11109759.html, 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg; int delay_time =0; int count =0; printf("Thread %d is staraing\n",thrd_num); for(count=0;count { delay_time =(int)(rand()*TIME/(RAND_MAX))+1; sleep(delay_time); printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time); } printf("%d finished\n",thrd_num); pthread_exit(NULL); } int main()

北大操作系统高级课程-陈向群作业-XV6进程线程

阅读代码: 1.基本头文件: types.h param.h memlayout.h defs.h x86.h asm.h mmu.h elf.h 2.进程线程部分: vm.c proc.h proc.c swtch.S kalloc.c 以及相关其他文件代码 强调一下:由于内存管理部分还没有学到,所以请同学们遇到相关的代码和问题时,先将问题记录下来,到学过之后,再结合进程线程管理部分进行深入学习,最后要求对XV6有整体的理解。 请大家围绕如下一些问题阐述原理课的相关内容,以及XV6中是如何实现的。 1.什么是进程,什么是线程?操作系统的资源分配单位和调度单位分别是什么?XV6中的 进程和线程分别是什么,都实现了吗? 答:进程是在多道程序系统出现以后,为了描述系统内部各作业的活动规律而引进的概念。进程有3个基本状态,运行状态、就绪状态和等待状态(或称阻塞状态);进程只能由父进程建立,系统中所有的进程形成一种进程树的层次体系;挂起命令可有进程自己和其他进程发出,但是解除挂起命令只能由其他进程发出。进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的独立单位。 线程可称为轻量级的进程,是操作系统可以运行调度的最小单位。线程是进程内的一个相对独立的可执行的单元。若把进程称为任务的话,那么线程则是应用中的一个子任务的执行。 不论操作系统中是否引入了线程,操作系统中资源分配的基本单位都是进程。如果操作系统没有引入线程那么进程就是调度的基本单位。线程并不独立拥有资源,它仅仅分配了一些运行必备的资源。一个进程中的多个线程共同分享进程中的资源。在引入了线程的操作系统中,线程就变成了调度的基本单位,进程中的部分线程阻塞并不代表该线程被阻塞。 xv6操作系统实现了一个基于进程(没有实现线程)的简单进程管理机制。通过对proc.h 文件的阅读了解到xv6的进程中定义了一个context结构,一个枚举类型proc_state定义了UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE 这6种进程的状态,proc结构定义了进程控制块的内容,cpu结构定义了寄存器和栈指针。 2.进程管理的数据结构是什么?在Windows,Linux,XV6中分别叫什么名字?其中包含哪 些内容?操作系统是如何进行管理进程管理数据结构的?它们是如何初始化的? 答:进程管理的数据结构是进程控制块(PCB)。在Linux中进程控制块的结构是由一个叫task_struct的数据结构定义的,ask_struct存在/include/ linux/sched.h中,其中包括管理进程

操作系统--进程和线程实验报告

一.进程的创建 1.编辑源程序。 2. 编辑结果如下。 3.编译和运行程序。 4.运行解释结果 在语句p1=fork()之前,只有一个进程在执行这段代码,但在这条语句之后,就变成两个进程在执行了.这两个进程的几乎完全相同,将要执行的下一条语句都是if(p1==0). 而fork函数有三种返回值。(1)在父进程中,fork返回新创建子进程的进程ID; (2)在子进程中,fork返回0; (3)如果出现错误,fork返回一个负值; 所以,子进程中p1==0,输出I am child。父进程p1>0,输出I am parent。

1.编辑源程序。 2.编辑结果如下。 3.编译和运行程序。 4. 运行解释结果 在语句p1=fork()之前,只有父进程执行,putchar(‘x’)语句将x放入父进程的缓冲区。当成功创建子进程后,子进程复制父进程的缓冲区。接着子进程运行输出xby,父进程输出xay。

1.编辑源程序。 2.编辑结果如下。 3.编译和运行程序。 4. 运行解释结果 在语句p1=fork()之前,只有父进程执行,putchar(‘x’)语句将x放入父进程的缓冲区。当成功创建子进程后,子进程复制父进程的缓冲区。接着子进程输出b后,执行exit(0)系统调用终止执行。父进程输出a 后继续输出y。所以父进程输出xay而子进程输出xb。

1.编辑源程序。 2.编辑结果如下。 3.编译和运行程序。 4. 运行解释结果 语句while(p1=fork()==-1)创建了子进程和父进程。父进程执行到wait()时,等待子进程的终止信号,当子进程执行完exit(0)后,父进程才继续执行。实现了父进程等待子进程。

进程和线程的CPU亲和性

进程和线程的亲缘性(affinity)是指可以将进程或者是线程强制限制在可用的CPU子集上运行的特性,它一定程度上把进程/线程在多处理器系统上的调度策略暴露给系统程序员。 CPU的数量和表示在有n个CPU的Linux上,CPU是用0...n-1来进行一一标识的。CPU的数量可以通过proc文件系统下的CPU相关文件得到,如cpuinfo和stat: $ cat /proc/stat | grep "^cpu[0-9]\+" | wc -l 8 $ cat /proc/cpuinfo | grep "^processor" | wc -l 8 在系统编程中,可以直接调用库调用sysconf获得: sysconf(_SC_NPROCESSORS_ONLN); 进程的亲缘性Linux操作系统在2.5.8引入了调度亲缘性相关的系统调用: int sched_setaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); int sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask); 其中sched_setaffinity是设定进程号为pid的进程调度亲缘性为mask,也就是说它只能在mask中指定的CPU 之间进行调度执行;sched_getaffinity当然就是得到进程号为pid的进程调度亲缘性了。如果pid为0,则操纵当前进程。 第二个参数指定mask所指空间的大小,通常为sizeof(cpu_set_t)。 第三个参数mask的类型为cpu_set_t,即CPU集合,GNU的c库(需要在include头文件之前定义 __USE_GNU)还提供了操作它们的宏: void CPU_CLR(int cpu, cpu_set_t *set); int CPU_ISSET(int cpu, cpu_set_t *set); void CPU_SET(int cpu, cpu_set_t *set); void CPU_ZERO(cpu_set_t *set); 如果我们所关心的只是CPU#0和CPU#1,想确保我们的进程只会运作在CPU#0之上,而不会运作在CPU#1之上。下面程序代码可以完成此事: cpu_set_t set; int ret, i; CPU_ZERO(&set); CPU_SET(0, &set); CPU_CLR(1, &set); ret = sched_setaffinity(0, sizeof(cpu_set_t), &set); if( ret == -1) { perror("sched_se"); } for( i=0; i < 3; i++) { int cpu; cpu = CPU_ISSET(i, &set); printf("cpu = %i is %s/n", i, cpu? "set" : "unset"); } Linux只提供了面向线程的调度亲缘性一种接口,这也是上面只提调度亲缘性而不直言进程亲缘性的原因。当前Linux系统下广泛采用的线程库NPTL(Native Posix Thread Library)是基于线程组来实现的,同一个线程组中的线程对应于一组共享存储空间的轻量级进程,它们各自作为单独调度单位被内核的调度器在系统范围内调度,这种模型也就是我们通常所说的1-1线程模型。正因如此,目前线程的调度范围

任务、进程和线程的区别

任务、进程和线程的区别 推荐 摘: 任务(task)是最抽象的,是一个一般性的术语,指由软件完成的一个活动。一个任务既可以是一个进程,也可以是一个线程。简而言之,它指的是一系列共同达到某一目的的操作。例如,读取数据并将数据放入内存中。这个任务可以作为一个进程来实现,也可以作为一个线程(或作为一个中断任务)来实现。 进程(process)常常被定义为程序的执行。可以把一个进程看成是一个独立的程序,在内存中有其完备的数据空间和代码空间。一个进程所拥有的数据和变量只属于它自己。 线程(thread)则是某一进程中一路单独运行的程序。也就是说,线程存在于进程之中。一个进程由一个或多个线程构成,各线程共享相同的代码和全局数据,但各有其自己的堆栈。由于堆栈是每个线程一个,所以局部变量对每一线程来说是私有的。由于所有线程共享同样的代码和全局数据,它们比进程更紧密,比单独的进程间更趋向于相互作用,线程间的相互作用更容易些,因为它们本身就有某些供通信用的共享内存:进程的全局数据。 一个进程和一个线程最显著的区别是:线程有自己的全局数据。线程存在于进程中,因此一个进程的全局变量由所有的线程共享。由于线程共享同样的系统区域,操作系统分配给一个进程的资源对该进程的所有线程都是可用的,正如全局数据可供所有线程使用一样。 简而言之,一个程序至少有一个进程,一个进程至少有一个线程。线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。从逻辑角度来看,多线程的意义在于一个应用程序中,由多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配,这就是进程和线程的重要区别。 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。 进程概念

进程和线程的选择

鱼还是熊掌:浅谈多进程多线程的选择 关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,这句话应付考试基本上够了,但如果在工作中遇到类似的选择问题,那就没有这么简单了,选的不好,会让你深受其害。 经常在网络上看到有的XDJM问“多进程好还是多线程好?”、“Linux下用多进程还是多线程?”等等期望一劳永逸的问题,我只能说:没有最好,只有更好。根据实际情况来判断,哪个更加合适就是哪个好。 我们按照多个不同的维度,来看看多线程和多进程的对比(注:因为是感性的比较,因此都是相对的,不是说一个好得不得了,另外一个差的无法忍受) 看起来比较简单,优势对比上是“线程 3.5 v 2.5 进程”,我们只管选线程就是了? 呵呵,有这么简单我就不用在这里浪费口舌了,还是那句话,没有绝对的好与坏,只有哪个更加合适的问题。我们来看实际应用中究竟如何判断更加合适。 1)需要频繁创建销毁的优先用线程 原因请看上面的对比。 这种原则最常见的应用就是Web服务器了,来一个连接建立一个线程,断了就销毁线程,要是用进程,创建和销毁的代价是很难承受的

2)需要进行大量计算的优先使用线程 所谓大量计算,当然就是要耗费很多CPU,切换频繁了,这种情况下线程是最合适的。 这种原则最常见的是图像处理、算法处理。 3)强相关的处理用线程,弱相关的处理用进程 什么叫强相关、弱相关?理论上很难定义,给个简单的例子就明白了。 一般的Server需要完成如下任务:消息收发、消息处理。“消息收发”和“消息处理”就是弱相关的任务,而“消息处理”里面可能又分为“消息解码”、“业务处理”,这两个任务相对来说相关性就要强多了。因此“消息收发”和“消息处理”可以分进程设计,“消息解码”、“业务处理”可以分线程设计。 当然这种划分方式不是一成不变的,也可以根据实际情况进行调整。 4)可能要扩展到多机分布的用进程,多核分布的用线程 原因请看上面对比。 5)都满足需求的情况下,用你最熟悉、最拿手的方式 至于“数据共享、同步”、“编程、调试”、“可靠性”这几个维度的所谓的“复杂、简单”应该怎么取舍,我只能说:没有明确的选择方法。但我可以告诉你一个选择原则:如果多进程和多线程都能够满足要求,那么选择你最熟悉、最拿手的那个。 需要提醒的是:虽然我给了这么多的选择原则,但实际应用中基本上都是“进程+线程”的结合方式,千万不要真的陷入一种非此即彼的误区。

操作系统中的进程线程与Java的多线程

操作系统中的进程线程与Java 的多线程 OS ofthe Process 、ThreadandJavamultithread HuZhi qin Ningxia TV University ,Yinchuan 750002, China :This paper reports a study on detailed expositions about the relationship among the process , threading and multi-threaded java , analyzing from the basic concept of the process, threading and multi-threading , demonstrations are also offered to show the applications of thread in the procedures Java 、creation of threading and running. 1 进程与线程操作系统中进程是指特定的代码序列在指定数据集合上的一次执行活动,是指并行程序的一次执行过程,在Windows95中,就是一个EXE文件的执行过程。是一个动态概念,具有动态属性,每一个进程都是由内核对象和地址空间所组成的,内核对象可以让系统在其内存放有关进程的统计信息并使系统能够以此来管理进程,而地址空间则包括了所有程序模块的代码和数据以及线程堆栈、堆分配空间等动态分配的空间。 通俗点讲,进程就是正在计算机上运行的可执行文件针对特 定的输入数据的一个实例,从此意义上讲,进程应包含三部分内容,即:进程=PCB程序段+数据(PCB进程控制块),同一个可执行 程序文件如果操作不同的输入数据就是两个不同的进程。 进程理解为一个线程容器,线程不能独立存在,它必须隶属

进程和线程的区别

进程和线程的区别 进程和线程的概念 先了解一下操作系统的一些相关概念,大部分操作系统(如Windows、Linux)的任务调度是采用时间片轮转的抢占式调度方式,也就是说一个任务执行一小段时间后强制暂停去执行下一个任务,每个任务轮流执行。任务执行的一小段时间叫做时间片,任务正在执行时的状态叫运行状态,任务执行一段时间后强制暂停去执行下一个任务,被暂停的任务就处于就绪状态等待下一个属于它的时间片的到来。这样每个任务都能得到执行,由于CPU的执行效率非常高,时间片非常短,在各个任务之间快速地切换,给人的感觉就是多个任务在“同时进行”,这也就是我们所说的并发(并发简单来说多个任务同时执行)。 进程 计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序侧是具有某种功能的程序,程序是运行于操作系统之上的。 进程是一个具有一定独立功能的程序在一个数据集上的一次动态执行的过程,是操作系统进行资源分配和调度的一个独立单位,是应用程序运行的载体。进程是一种抽象的概念,从来没有统一的标准定义。进程一般由程序、数据集合和进程控制块三部分组成。程序用于描述进程要完成的功能,是控制进程执行的指令集;数据集合是程序在执行时所需要的数据和工作区;程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯一标志。 进程具有的特征: 动态性:进程是程序的一次执行过程,是临时的,有生命期的,是动态产生,动态消亡的; 并发性:任何进程都可以同其他进程一起并发执行; 独立性:进程是系统进行资源分配和调度的一个独立单位; 结构性:进程由程序、数据和进程控制块三部分组成。 进程的生命周期 ? 在早期只有进程的操作系统中,进程有五种状态,创建、就绪、运行、阻塞(等待)、退出。

进程和线程的管理

2. 进程和线程的管理 例题解析 例2.2.1 试说明进程和程序之间的区别和联系。 解进程和程序是既有区别又有联系的两个概念。 (1)进程是动态的,程序是静态的。程序是一组有序的指令集合,是一个静态的概念;进程则是程序及其数据在计算机上的一次执行,是一个动态的集合。离开了程序,进程就失去了存在的意义,但同一程序在计算机上的每次运行将构成不同的进程。程序可看作是电影的胶片,进程可以看作电影院放电影的过程。 (2)一个进程可以执行多个程序,如同一个电影院的一场电影可放映多部影片。 (3)一个程序可被多个进程执行,如同多个影院同时利用一个电影的胶片放映同一部电影。 (4)程序可以长期保存,进程只能存在于一段时间。程序是永久存在的,而进程有从被创建到消亡的生命周期。 例2.2.2 举例说明多道程序系统失去了封闭性和再现性。 解例如,有两个循环程序A和B,共享一个变量N。程序A每执行一次时,都要做N:=N+1操作;程序B则每执行一次时,都要执行print(N)操作,然后再将N的值置成“0”。程序A和B在多道程序系统中同时运行。假定某时刻变量N的值为n,可能出现下述三种情况: (1)N:=N+1 在print(N)和N:=0之前,此时得到N值变化过程为n+1、n+1、0; (2)N:=N+1 在print(N)和N:=0之后,此时得到N值变化过程为n 、0 、1; (3)N:=N+1 在print(N)之后和N:=0之前,此时得到N值变化过程为n、n+1、0。 所以,在A、B程序多次执行过程中,虽然其每次执行时的环境和初始条件都相同,但每次得到的结果却不一定相同。 例2.2.3 为什么将进程划分成执行、就绪和阻塞三个基本状态? 解根据多道程序执行的特点,进程的运行是走走停停的。因此进程的初级状态应该是执行和等待状态。处于执行状态的进程占用处理机执行程序,处于等待状态的进程正在等待处理机或者等待其它某种事件的发生。但

操作系统实验报告理解Linux下进程和线程的创建并发执行过程。

操作系统上机实验报告 实验名称: 进程和线程 实验目的: 理解unix/Linux下进程和线程的创建、并发执行过程。 实验内容: 1.进程的创建 2.多线程应用 实验步骤及分析: 一、进程的创建 下面这个C程序展示了UNIX系统中父进程创建子进程及各自分开活动的情况。 fork( ) 创建一个新进程。 系统调用格式: pid=fork( ) 参数定义: int fork( ) fork( )返回值意义如下: 0:在子进程中,pid变量保存的fork( )返回值为0,表示当前进程是子进程。 >0:在父进程中,pid变量保存的fork( )返回值为子进程的id值(进程唯一标识符)。 -1:创建失败。 如果fork( )调用成功,它向父进程返回子进程的PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。此时OS在内存中建立一个新进程,所建的新进程是调用fork( )父进程(parent process)的副本,称为子进程(child process)。子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。父进程与子进程并发执行。 2、参考程序代码 /*process.c*/ #include #include

main(int argc,char *argv[]) { int pid; /* fork another process */ pid = fork(); if (pid < 0) { /* error occurred */ fprintf(stderr, "Fork Failed"); exit(-1); } else if (pid == 0) { /* child process */ execlp( "/bin/ls", "ls",NULL); } else {/* parent process */ /* parent will wait for the child to complete */ wait(NULL); printf( "Child Complete" ); exit(0); } } 3、编译和运行 $gcc process.c –o processs 4、运行

进程、线程、管程三者之间的关系

进程、线程、管程三者之间的关系 首先我们先了解进程、线程、管程各自的概念:进程:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元。线程:线程是进程中的实体,一个进程可以拥有多个线程,一个线程必须有一个父进程。线程不拥有系统资源,只有运行必须的一些数据结构;它与父进程的其它线程共享该进程所拥有的全部资源。线程可以创建和撤消线程,从而实现程序的并发执行。一般,线程具有就绪、阻塞和运行三种基本状态。 管程:管程定义了一个数据结构和能为并发进程所执行的一组操作,这组操作能同步进程和改变管程中的数据。 现在我们来了解进程和线程的关系: 简而言之,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有

多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行。 下面我们用实际图解来加以分析进程和线程之间的关系:

进程与线程的区别[试题]

进程与线程的区别[试题] 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车而同一辆马车可以有很多匹马来拉----这些马就是线程 假设道路的宽度恰好可以通过一辆马车道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)----即最小的运行单位 每辆马车马匹数>=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度马匹数>1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程. 线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。这就是进程和线程的重要区别。

进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者《操作系统的设计与实现》。对就个问题说得比较清楚。 +++++++++++++++++++++++++++++++++++++++++++++++ 进程概念 进程是表示资源分配的基本单位,又是调度运行的基本单位。例如,用户运行自己的程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I,O设备等。然后,把该进程放人进程的就绪队列。进程调度程序选中它,为它分配CPU以及其它有关资源,该进程才真正运行。所以,进程是系统中的并发执行的单位。

进程线程的空间问题

进程与线程的空间问题 这两天有同学问到进程线程的地址空间的问题,提到在linux下每个进程单独占有4G的虚拟地址空间,而这个进程下的所有线程共享着它的地址空间。这只是一个概念上的理解,具体是怎么回事呢? 在说这个问题之前我们先说一下早期的内存管理机制。在早期的计算机中,程序都是直接运行在内存上的,也就是说程序中访问的内存地址都是实际的物理内存地址。当计算机同时运行多个程序时,必须保证这些程序用到的内存总量要小于计算机实际物理内存的大小。那当程序同时运行多个程序时,操作系统顺次向下分配物理内存地址例如一台计算机的内存大小是128M,现在同时运行程序A和B,A需占用内存30M,B需占用内存60M。计算机在给程序分配内存时先将内存中的前30M分配给程序A,接着再从内存中剩余的98M中划分出60M分配给程序B。这种分配方法可以保证程序A和程序B都能运行,但是这种简单的内存分配策略问题很多。首先进程地址空间不隔离。由于程序都是直接访问物理内存,恶意程序可以很容统修改别的进程的内存数据,以达到破坏的目的。即使是非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。其中一个任务失败了,可能也会影响其它的任务。其次是程序运行的地址不确定。当内存中的剩余空间可以满足程序C的要求后,操作系统会在剩余空间中随机分配一段连续的20M大小的空间给程序C使用,因为是随机分配的,所以程序运行的地址是不确定的。

内存使用效率低。在A和B都运行的情况下,如果用户又运行了程序C,而程序C需要20M大小的内存才能运行,而此时系统只剩下8M的空间可供使用,所以此时系统必须在已运行的程序中选择一个将该程序的数据暂时拷贝到硬盘上,释放出部分空间来供程序C使用,然后再将程序C的数据全部装入内存中运行。可以想象得到,在这个过程中,有大量的数据在装入装出,导致效率十分低下。 为了解决上述问题,人们设计了间接的地址访问方法访问物理内存。按照这种方法,程序中访问的内存地址不再是实际的物理内存地址,而是一个虚拟地址,然后由操作系统将这个虚拟地址映射到适当的物理内存地址上。这样,只要操作系统处理好虚拟地址到物理内存地址的映射,就可以保证不同的程序最终访问的内存地址位于不同的区域,彼此没有重叠,就可以达到内存地址空间隔离的效果。 当创建一个进程时,操作系统会为该进程分配一个4GB大小的虚拟进程地址空间。之所以是4GB,是因为在32位的操作系统中,一个指针长度是4字节(64位系统是8字节,由cpu的寻址位数决定),而4字节指针的寻址能力是从0x00000000~0xFFFFFFFF,最大值0xFFFFFFFF表示的即为4GB大小的容量。与虚拟地址空间相对的,还有一个物理地址空间,这个地址空间对应的是真实的物理内存。如果你的计算机上安装了1G大小的内存,那么这个物理地址空间表示的范围是0x00000000~0x3FFFFFFF。当操作系统做虚拟地址到物理地址映射时,只能映射到这一范围。当进程创建时,每个进程都会有一个自己的4GB虚拟地址空间。要注意的是这个4GB的地址空间是“虚

进程线程的概念

提起程序这个概念,大家再也熟悉不过了,程序与进程概念是不可分的。程序是为了完成某项任务编排的语句序列,它告诉计算机如何执行,因此程序是需要运行的。程序运行过程中需要占有计算机的各种资源才能运行下去。如果任一时刻,系统中只有一道程序,即单道程序系统,程序则在整个运行过程中独占计算机全部资源,整个程序运行的过程就非常简单了,管理起来也非常容易。就象整个一套房子住了一个人,他想看电视就看电视,想去卫生间就去卫生间,没人和他抢占资源。但为了提高资源利用率和系统处理能力,现代计算机系统都是多道程序系统,即多道程序并发执行。程序的并发执行带来了一些新的问题,如资源的共享与竞争,它会改变程序的执行速度。就象多个人同时住一套房子,当你想去卫生间的时候,如果此时卫生间里有人,你就得等待,影响了你的生活节奏。如果程序执行速度不当,就会导致程序的执行结果失去封闭性和可再现性,这是我们不希望看到的。因此应该采取措施来制约、控制各并发程序段的执行速度。由于程序是静态的,我们看到的程序是存储在存储介质上的,它无法反映出程序执行过程中的动态特性,而且程序在执行过程中是不断申请资源,程序作为共享资源的基本单位是不合适的,所以需要引入一个概念,它能描述程序的执行过程而且可以作为共享资源的基本单位,这个概念就是进程。 进程的生命周期 进程和人一样是有生命的,从诞生到死亡要经历若干个阶段。一般说来进程有三种状态:就绪、执行、等待。由多种原因可以导致创建一个进程,例如一个程序从外存调入内存开始执行,操作系统就要为其创建进程,当然还可以有其它原因,如一个应用进程为完成一个特殊的任务,可以自己创建一个子进程。进程被创建后就是在内存中,处于就绪状态,所谓就绪状态就是具备除了CPU之外的所有资源,万事具备,只欠东风,一旦占有 了CPU,就变成了执行状态,执行中如果需要等待外围设备输入数据,则进程就沦落为 等待状态,操作系统又会从就绪状态队列中调度一个进程占有CPU。等到数据到来后, 等待状态的进程又被唤醒成为就绪状态。这些状态的转换是通过进程控制原语实现的。程序的运行是通过进程体现的,操作系统对进程进行管理和控制,那么操作系统怎么了解到进程的状态呢,怎么把资源分配给进程呢,而且进程做状态转换时CPU现场保存在那呢?这要说到PCB(进程控制快)。PCB是进程的唯一标志,在其中记录了进程的全部信息,它是一种记录型的数据结构,相当于进程的档案。操作系统就通过PCB感知进程的存在,通过PCB了解进程和控制进程的运行。PCB也是放在内存中的,如果PCB太大,有些系 统把PCB中一些不重要的信息放在外存中。 进程执行速度的制约 并发进程由于共享系统内部资源,因此导致进程执行速度上的制约,这种制约分为:间接制约与直接制约。间接制约引起进程之间的互斥执行,直接制约引起进程间的同步执行。例如一个家里如果只有一个卫生间,卫生间这个公有资源使得每个人只能互斥使用它,这就是间接制约。而直接制约是指并发进程各自执行的结果互为对方的执行条件,例如司机与售票员的关系,当司机到站停车后,售票员才能开门,而只有售票员关门后,司机才

线程与进程

1.进程与线程区别 从概念上: 进程:一个程序对一个数据集的动态执行过程,是分配资源的基本单位。 线程:一个进程内的基本调度单位。 线程的划分尺度小于进程,一个进程包含一个或者更多的线程。 从执行过程中来看: 进程:拥有独立的内存单元,而多个线程共享内存,从而提高了应用程序的运行效率。 线程:每一个独立的线程,都有一个程序运行的入口、顺序执行序列、和程序的出口。但是线程不能够独立的执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看:(重要区别) 多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但是,操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理及资源分配。 2.我们写的程序,不论是C、C++、java还是其他的,其实都是一种文本,真正 运行、跑动的是进程。 程序可以分为两部分:源代码和可执行的二进制代码(经过汇编或编译)。操作系统加载这个可执行的二进制代码后,还要分配相应的内核数据结构——进程控制块(PCB:process control block),并进行一系列的初始化等过程(如:创建PID、分配时间片等)后才创建了真正可以“跑动”的进程。所以程序相当于是一个项目的计划书(或行动方案),而进程才是对该方案的实施过程。 进程对CPU来说其实就是一串可执行的指令序列,这个执行序列也叫执行线程,它是进程的控制流程。传统的用户进程只有一个执行流程,所以传统的进程都是单线程的。有了线程就是执行流程的概念后,进程模型得到了扩展,因为一个进程中完全可以设置多个执行流程,即多个执行线程。所以一个进程中可以创建多个线程,当然不创建的话,进程本身也可以看成是线程。 创建多个进程的话,每个进程都是独立的(都有自己独立的PCB数据结构,该数据结构比较大,将近1K的信息量,包括唯一的PID、上下文环境、持有的内存地址等等),内核要管理进程间的切换、内存管理等,开销相对比较大。 如果一个进程里创建多个线程的话,开销比进程要小,各线程共享进程的状态和资源,内核为线程创建的数据结构相对比进程的PCB就要小的多,当然额外的开销是CPU需要跟踪线程,同时线程间存在争用资源的问题。如果程序要完成一组相关任务,则用线程比较好。 下面再细讲下进程:

相关文档
最新文档