归纳柯西不等式的典型应用

归纳柯西不等式的典型应用
归纳柯西不等式的典型应用

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用

【摘要】:柯西不等式是一个非常重要的不等式,本文用五种不同的

方法证明了柯西不等式,介绍了如何利用柯西不等式技巧性解题,在证明不等式或等式,解方程,解三角形相关问题,求函数最值等问题的应用方面给出几个典型例子。最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。

【关键词】:柯西不等式 ;证明;应用

【引言】:本人通过老师在中教法课上学习柯西不等式时,老师给出

了一些有关的例题并讲解,由于柯西不等式是一个非常重要的不等式,如果巧妙利用它,在高考可以节省很多宝贵时间,而且得分率高。因此,本文介绍归纳了柯西不等式的典型应用,经过收集及整理资料,得到四类的典型题。

【正文】:

1.柯西不等式的一般形式为:

对任意的实数 n n b b b a a a ,,,,,,2121??????

()(

)

222112

22212

222

1

)(n n n n b a b a b a b b b a a a

??????++≥+??????+++??????++

其中等号当且仅当λ===

n

n

b a b a b a 2211时成立,其中R ∈λ 变式:()()222112121)(n n n n y x y x y x y y y x x x ??????++≥+??????+++??????++

2. 柯西不等式的证明:

证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法: 1)配方法:

作差:因为22211

1

()()()n

n

n

i

j

i i i j i a b a b ===-∑∑∑

221

1

1

1

()()()()n n

n n

i

j

i i j j i j i j a b a b a b =====-∑∑∑∑

2211

11

n n n n

i j

i i j j i j i j a b a b a b =====-∑∑∑∑

2222

111111

1(2)2n n n n n n

i j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑ 2222

11

1(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑ 211

1()02n n

i j j i i j a b a b ===-≥∑∑

所以222

1

1

1

()()()n n n i

j

i i i j i a b a b ===-∑∑∑0≥,即2221

1

1

()()()n n n

i

j

i i i j i a b a b ===≥∑∑∑

即222222*********()()()n n n n a b a b a b a a a b b b +++≤++++++……………… 当且仅当0(,1,2,,)i j j i a b a b i j n -==……

即(1,2,,;1,2,,;0)j

i j i j

a a i n j n

b b b ===≠…………时等号成立。 2)用数学归纳法证明

i )当1n =时,有2221112()a b a b =,不等式成立。

当2n =时,22222112212221122()2a b a b a b a b a b a b +=++

222222222222

121211221221()()a a b b a b a b a b a b ++=+++。

因为2222122111222a b a b a b a b +≥,故有2222211221212()()()a b a b a a b b +≤++ 当且仅当1221a b a b =,即

12

12

a a

b b =时等号成立。 ii )假设n k =时不等式成立。即

222222

211221212()()()k k k k a b a b a b a a a b b b +++≤++++++………………

当且仅当

12

12n n

a a a

b b b ===……时等号成立。 那么当1n k =+时,

2112211()k k k k a b a b a b a b ++++++……

222

112211112211()2()k k k k k k k k a b a b a b a b a b a b a b a b ++++=++++++++…………

22222222121211112211()()2()k k k k k k k k a a a b b b a b a b a b a b a b ++++≤+++++++++++………………

2222222222222222121211111111

()()k k k k k k k k k k a a a b b b a b b a a b b a a b ++++++≤++++++++++++………………222222121121()()k k a a a b b b ++=++++++………… 2222221212()()n n a a a b b b =++++++…………

当且仅当1111212111,,,k k k k k k k k a b b a a b b a a b b a ++++++===……时等号成立, 即

112

121

k k k k a a a a b b b b ++====……时等号成立。 于是1n k =+时不等式成立。

由i )ii )可得对于任意的自然数n ,柯西不等式成立。

3. 柯西不等式在解题中的应用

3.1证明恒等式

利用柯西不等式来证明恒等式,主要是利用其取等号的充分必要

条件来达到目的,或者是利用柯西不等式进行夹逼的方法得证。 例3.1.1 已知,11122=-+-a b b a 求证:122=+b a 。 证明:由柯西不等式,得

()[]()[]

111)11(2222222=-+-+≤-+-b b a a a b b a

由已知,11122=-+-a b b a 则可知上式取等号,当且仅当

a b a b

2211-=-时 ,1122b a ab -?-=∴

()()

,112222b a b a --=

于是 122=+b a 。

3.2证明不等式

很多重要的不等式都可以由柯西不等式导出,而利用柯西不等式的技

巧有很多。如常数的巧拆、结构的巧变、巧设数组等,下面略举一、二说明怎样利用柯西不等式证明不等式。

例3.2.1已知12,,,n a a a ……为互不相等的正整数,求证:对于任意的正

整数n ,有不等式

12222

11

1122n a a a n n

+++≥+++…………。 证明:由柯西不等式:

211(1)2n +++ (122)

12(n n a a a a a a =++ (1222212111)

(

)()12n n

a a a n a a a ≤++++++…………

于是12

222

12111112(1)111

122n n

a a a n n n a a a +++

+++≥++++++……………………。 又因为12,,,n a a a ……为互不相等的正整数,故其中最小的数不小于1,次小的数不小于2,最大的不小于n ,这样就有

1211

121111n

n a a a +++≥+++…………。 所以有1211

111112(1)111122n n n n

a a a +++

+++≥++++++……………………。 因为12

222

1211

1112(1)111

122n n a a a n n n a a a +++

+++≥++++++…………………… 而1211

111112(1)111122n

n n n

a a a +++

+++≥++++++…………………… 所以有12222

11

1122n a a a n n

+++≥+++…………。

例3.2.2:设a,b,c 为正数且不相等到,求证:

c

b a a

c c b b a ++>

+++++9

222

证明:我们利用9与2这两个常数进行巧拆,9=()2111++,

()()()()a c c b b a c b a +++++=++2

这样就给我们利用柯西不等式提供了条件。

2

()()()()[]()(

)(

)

()c

b a a

c c b b a a c a c c b c b b a b a a c c b b a a c c

b b a a

c c b b a a c c b b a a c c b b a c b a ++≥

+++++∴

=++=????

??+?+++?+++?+≥???

????????? ??++???? ??++???? ??+??????

?+++++=?

?

? ??+++++?+++++=??

?

??+++++?++9

2229

111111111111

1112

2

2

222

2

2

因为a,b,c 各不相等,

∴ 等号不可能成立,从而原不等式成立。

因此,有些问题本身不具备运用柯西不等式的条件,但是我们只要改变一下多项式的形态结构,认清其内在的结构特征,就可以达到利用柯西不等式解题的目的。下面略举一例加以说明。

3.3证明条件不等式

柯西不等式中有三个因式∑=n i i

a 1

2 ,∑=n i i

b 1

2 ,∑=n

i i i b a 1

而一般题目中

只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一。又柯西不等式中诸量i a ,i b 具有广泛的选择余地,任意两个元素 i a ,j a (或i b ,j b ) 的交换,可以得到不同的不等

式,因此在证题时根据需要重新安排各量的位置,这种形式上的变更往往会给解题带来意想不到的方便。这种变换也是运用柯西不等式的一种技巧,下面我们简单举例说明怎样利用上述技巧运用柯西不等式来证明条件不等式。

例 3.3.1 设R d c b ∈,,,a ,且5632a 3,d c b a 2222=+++=+++d c b ,求证:

21≤≤a

解:由3d a =+++c b 则 a d c b -=++3 由2222563b 2a d c -=++

且应用柯西不等式 2222)()6

13121

)(632(d c b d c b ++≥++++ 即 ()()22315a a -≥?- 故 21≤≤a

例3.3.2 已知b a ,+∈R ,1=+b a ,,,21+∈R x x 求证:()()212121x x ax bx bx ax ≥+?+

分析:如果对不等式左端用柯西不等式,就得不到所要证明的结论。若把第二个小括号内的前后项对调一下,情况就不同了。

证明:()()2121ax bx bx ax +?+ =()()1221bx ax bx ax +?+ ()2

2121x x b x x a +≥

=()21212x x x x b a =+ 。 3.4解方程组

用柯西不等式解无理方程,是先把方程的(含有无理式的)运用柯西不等式化为不等式,然后结合原方程把不等式又化成等式,在判定为等式后再利用柯西不等式取等号的特性,得到与原方程同解的且比原方程简单的无理方程,进而得到简单的整式方程,从而求得原方程的解。

例3.4.1解方程组

486

)()(6

922222224=+++++=+=++w y w w z y x x w x z y x

解:原方程组可化为

486

))((6

922222=+++=+=++w x z y x w x z y x

运用柯西不等式得

()()

2

222111)(z y x z y x ++≥++++, 222)()11)((w x w x +≥++

即()

39222

≥++z

y x 27=,()

182

6222=≥+w x 两式相乘,得

()()

486

22222

≥+?++w x z y x

当且仅当w z y x ===时取等号。 故原方程组的解为3====w z y x 。

例3.4.2解方程组:设z y ,,x >3,解方程366

)6(4)4(2)2(2

22=-++-+++-++y x z x z y z y x

解:

??

?

???=++-+++-++6-y )6(4)4(22x 222

x z x z y z y )([]

)6()4()2(-++-++-+?y x x z z y

()2

642+++++≥z y x

即 36[])6()4()2(-+

+-++-+?y x x z z y ≥()

2

12x +++z y

→ 36?2()6-++z y x ()

2

12y +++≥z x

令=s z y ++x ,则 72()6-s ()212+≥s

→ 0244822≤+-s s

即 0)24(02≤-≤s

→ ()0242

=-s

24`=s z y x ++= 等

成立 则有

2

2

2

2

)

4()4()

2()2(-++=

-++x z y z y x ()2

2

)

6(6z -++=

y x 1λ=

11224212

2412)(212664422x 2=-?+=-+++++==-++=-++=-++z y x z y x y x z x z y z y λ

16

246

42442242=--+=--+=--+z z y y x x

故 10=x 8=y 6=z

3.5求函数的极值

柯西不等式也可以广泛应用于求函数的极值或最值。事实上,由

2222222

11221212()()()n n n n a b a b a b a a a b b b +++≤++++++………………可得

22222211221212()()n n n n a b a b a b a a a b b b +++≤++++++………………

边当作一个函数,而右边值确定时,则可知1122n n a b a b a b +++……的最大

222222

12

12()()n n a a a b b b ++++++…………与

222222

1212()()n n a a a b b b -++++++…………且取最大值与最小值的充要条件

12

12n n

a a a

b b b ===……。 反过来,如果把柯西不等式右边的一个因式或两个的积当作函数,而其他的因式已知时,则可求出此函数的最小值。

下面略举例加以说明怎样利用柯西不等式来求解一些极值问题。 例3.5.1:求函数sin cos y a x b x =+的极值,其中,a b 是常数。 解:由柯西不等式:

22222222(sin cos )()(sin cos )y a x b x a b x x a b =+≤++=+

故有2222a b y a b -+≤≤+ 当且仅当

sin cos x x a b =

时,即arctan ()a

x k k Z b

π=+∈时, 函数sin cos y a x b x =+有极小值22a b -+22a b +

例3.5.2 已知,,,a b c R 为常数,当2222x y z R ++=时,求函数

(,,)f x y z ax by cz =++的最大值与最小值。

解:由柯西不等式:

22(,,)()f x y z ax by cz =++222222()()a b c x y z ≤++++2222()a b c R =++

故222(,,)f x y z a b c ≤++ 当且仅当x y z

t a

b c

=

==,即,,x at y bt z ct ===(t 为常数)时等号成立。 将,,x at y bt z ct ===代入2222x y z R ++=得22222()a b c t R ++= 则2

2

2

t a b c

++,即当2

2

2

(,,),,)x y z a b c a b c

=++时,

222(,,)f x y z R a b c =±++

3.6利用柯西不等式解三角问题与几何问题

三角问题包括三角不等式,三角方程。三角极值等到,对于一些三角问题,我们为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决。 例3.6.1 在ABC ?中 ,求证:

40

)

3201(2012198sin 5sin sin ++≤

++C B A

证明:C B A sin 5sin sin ++

).

2sin 51(2cos 2)2sin 52(cos 2cos 22cos 2sin 102cos 2sin

2C C C B A C C

C B A B A +≤+-=+-+=

当且仅当B A =时等号成立。

令)2

0)(sin 51(cos π

<<+=x x x y ,于是引进参,0>t 求

222)sin 51(cos x x y +=的最值。

由柯西不等式,

()

2

22

22sin 51cos 25sin 51cos ?

??

??+=+=x x x x y

=2

2

2

sin 51cos 25??

? ??+?x t t t

x

()

()

.sin cos 125sin 51cos 252222

2

2

222

2

2x t x t

t x t t t x ++=+????????+??? ???≤ 又由平均值不等式(),4

2

b a ab +≤

得 2

22222

2

2sin cos 125???

?

?

?+++≤x t x t t y =

()()

.41

1252

2

22

t

t t ++ (1) 当且仅当2cos x =22sin t x +时等号成立。 例3.6.2在三角形ABC 中,证明3333

sin sin sin nA nB nC ≤++≤。 证明:由柯西不等式:

22(sin sin sin )(1sin 1sin 1sin )nA nB nC nA nB nC ++=?+?+?

222222(111)(sin sin sin )

nA nB nC ≤++++

即2222(sin sin sin )3(sin sin sin )nA nB nC nA nB nC ++≤++ (1) 因为22221cos 21cos 2sin sin sin 1cos 22

nB nC

nA nB nC nA --++=-++

21

2cos (cos 2cos 2)2

nA nB nC =--+

22cos cos()cos()nA nB nC nB nC =--+-

22cos cos()cos()nA nB nC nB nC ≤-++-

22cos cos()nA nB nC ≤-++

故2222sin sin sin 2cos cos()nA nB nC nA nB nC ++≤-++ (2)

又因为22cos cos()nA nB nC -++2cos (1cos )nA nA =+-

2

cos (1cos )2[]2

nA nA +-≤+

因而21

92cos cos 244

nA nA -+≤+= (3)

将(3)代入(2)得2229sin sin sin 4

nA nB nC ++≤ (4) 将(4)代入(1)得29(sin sin sin )34

nA nB nC ++≤? 即3333

sin sin sin 22

nA nB nC -

≤++≤。 4.推导点到直线的距离公式

已知点00(,)P x y 及直线22:0(0)l Ax By C A B ++=+≠,设111(,)P x y 是l 上任意一点,点P 到1P 的距离的最小值|1PP |就是点P 到l 的距离,证明:|1PP |002

2

Ax By C A B

++=

+。

证明:因为1P 是l 上的点,所以有110Ax By C ++=。 (1)

而|1PP |221010()()x x y y =-+- (2)

由柯西不等式:

222210101010()()()()A B x x y y A x x B y y +-+-≥-+-

1010Ax Ax By By =-+-1100()Ax By Ax By =+-+

(3)

由(1)得:11Ax By C +=- (4)

将(4)代入(3),则有

2222101000()()()A B x x y y C Ax By +-+-≥--+

22100()A B PP C Ax By +≥--+00()C Ax By =++ 移项则有:|1PP |002

2

Ax By C A B

++≥

+

(5)

当且仅当1010y y B

x x A

-=-即1PP l ⊥时(5)式取等号,即点到直线的距离公式:

|1PP |002

2

Ax By C A B

++=+。

【结论】: 在许多问题中,如果我们能够利用柯西不等式去解决,往往能收到事半功倍的效果,使人耳目一新。当遇到类似的题目,应用柯西不等式时,尽量联系已知条件,转化成柯西不等式的形式来求解。

【参考文献】:

[1]王学功,著名不等式,中国物资出版社

[2]李永新李得禄,中学数学教材教法,东北师大出版社 [3]柯西不等式与排序不等式,南山,湖南教育出版社 [4]柯西不等式的微小变动,数学通报,2002 第三期

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc ≥ =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

柯西不等式的应用技巧修订稿

柯西不等式的应用技巧 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设12 12,,,R n n a a a b b b ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中 作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代 换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中 每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因 此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设 ,,R x y z ∈ ,求证:22 -≤≤. 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到 时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子 的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

柯西不等式及排序不等式及其应用经典例题透析

经典例题透析类型一:利用柯西不等式求最值1.求函数 的最大值.思路点拨:利用不等式解决最值问题,通常设法在不 等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。 解析:法一:∵且, ∴函数的定义域为,且, 当且仅当时,等号成立, 即时函数取最大值,最大值为法二:∵且, ∴函数的定义域为 由, 得 即,解得∴时函数取最大值,最大值 为. 总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键. 举一反三: 【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。 (I)证明:-3≤f(x)≤3; (II)求不等式f(x)≥x2-8x+15的解集。 【答案】 (Ⅰ) 当时,. 所以.…………5分

(Ⅱ)由(Ⅰ)可知, 当时,的解集为空集; 当时,的解集为; 当时,的解集为. 综上,不等式的解集为.……10分 【变式2】已知,,求的最值. 【答案】法一: 由柯西不等式 于 是的最大值为,最小值为. 法二: 由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值. 【答案】 根据柯西不等式 , 故。 当且仅当2x+1=3y+4=5z+6,即时等号成立, 此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑. 类型二:利用柯西不等式证明不等式

利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。如常数的巧拆、结构的巧变、巧设数组等。 (1)巧拆常数:2.设、、为正数且各不相等,求证: 思路点拨:∵、、均为正,∴为证结论正确只需证: 而,又,故可利用柯西不等式证明之。 证明: 又、、各不相等,故等号不能成立 ∴。 (2)重新安排某些项的次序:3.、为非负数,+=1,,求证: 思路点拨:不等号左边为两个二项式积, ,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。 证明:∵+=1 ∴ 即(3)改变结构:4、若>>,求证: 思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。 ,,∴,∴所证结论改为证

柯西不等式各种形式的证明及其应用培训资料

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==??==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

柯西不等式的应用技巧

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设1212,,,R n n a a a b b b ∈L L ,则 当且仅当1212n n a a a b b b ===L 或120n b b b ====L 时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因此,构造两组数:1212,,n n a a a b b b L L 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设,,R x y z ∈ ,求证:≤≤ 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++ 例7 设,1 21+>>>>n n a a a a K 求证:

练习题 1. (2009年浙江省高考自选模块数学试题)已知实数z y x ,,满足,12=++z y x 设.2222z y x t ++= (1) 求t 的最小值; (2) 当21 =t 时,求z 的取值范围 2 (2010年浙江省第二次五校联考)已知,,a b c R +∈,1a b c ++=。 (1) 求()222149a b c +++的最小值; (2) 2≥ 3 (2010年杭二中高三年级第三次月考)已知正数,,a b c 满足:1=++ca bc ab ,求 的最大值. 4 (浙江省镇海中学高考模拟试题) 已知,,x y z 是正数,且12 1,x y += 求221 2 2x x y y +++的最小值; 5 (金华十校2009年高考模拟考试)若+∈R c b a ,, , 求证:1222≥+++++b a c a c b c b a 6 (2010年宁波市高三模拟测试卷)已知,,a b c 为正实数,且3a b c ++=. 证明:222 2()()()4 ()3a c b a c b a c a b c ---++≥-,并求等号成立时,,a b c 的值. 7 (浙江省镇海中学高考模拟试题) 若0,,1,x y z <<且1xy yz zx ++= ≥ 8(2010年金华十校高考模拟考试) 设正数x ,y ,z 满足1543=++z y x 求x z z y y x +++++1 1 1 值.

柯西不等式的应用及推广

浅谈柯西不等式的应用及推广 【摘要】剖析柯西不等式的证明、推广以及它们在证明不等式、求函数最值、解方程等方 面的一些应用,进而对其在中学数学教学中的一些问题进行讨论。 【关键词】柯西(Cauchy )不等式;函数最值;三角函数证明;不等式教学 【Abstract 】Cauchy-inequality analyzed by proving and extending,applied by proving an inequation and finding asolution to an equation or the maximum value & minimum value of function.Then Cauchy-inequality's some questions appeared in math-teaching of middle school will be discussed. 【Key words 】Cauchy-inequality,the maximum & minimum value,inequation-teaching,func of triangle's proving 引言 中学教材和教辅读物中有不少地方都有一些高等数学知识的皱型和影子。在中学数学教学中,不等式的教学一直是一个难点,学生在学习不等式、应用不等式解题中困难重重。而柯西不等式是著名的不等式之一,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题具有重要的应用。基于此,本文拟以柯西不等式为例,从证明方法到应用技巧方面进行总结和归纳,并谈谈它在中学数学中的一些应用.。 1 柯西不等式的证明[1][2] 对柯西不等式本身的证明涉及有关不等式的一些基本方法和技巧。因此,熟练掌握此不等式的证明对提高我们解决一些不等式问题和证明其它不等式有很大帮助。本文所说的柯西不等式是指 ()n i n i i n i i n i i i b a b a , ..., 2,11 2 1 2 2 1====∑ ∑ ∑≤?? ? ?? 当且仅当 n n b a b a b a = == ...2 21 1时,等号成立。 1.1 构造二次函数证明 当021====n a a a 或021===n b b b 时,不等式显然成立 令∑ == n i i a A 1 2 ∑ == n i i i b a B 1 ∑ == n i i b C 1 2 , 当n a a a ,,,21 中至少有一个不为零时,可知A>0 构造二次函数()C Bx Ax x f ++=2 2 2,展开得:

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

柯西不等式各种形式的证明及其应用之欧阳光明创编

柯西不等式各种形式的证明及其应 用 欧阳光明(2021.03.07) 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到 的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 等号成立条件:()d c b a bc ad //== 扩展:()()()22222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: 三角形式 三角形式的证明: 向量形式 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

向量形式的证明: 一般形式 一般形式的证明: 证明: 推广形式(卡尔松不等式): 卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素 之积的几何平均之和。 或者: 或者 推广形式的证明: 推广形式证法一: 或者 推广形式证法二: 事实上涉及平均值不等式都可以用均值不等式来证, 这个不等式并不难,可以简单证明如下: 付:柯西(Cauchy )不等式相关证明方法: 等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数, n i 2,1=)现将它的证明介绍如下: 证明1:构造二次函数 ()()()2222211)(n n b x a b x a b x a x f ++++++= =()()()22222121122122n n n n n n a a a x a b a b a b x b b b +++++++++++ ()0f x ∴≥恒成立 即()()()2222211221212n n n n n n a b a b a b a a a b b b +++≤++++++

专题三 柯西不等式的应用

专题三 不等式的证明 (柯西不等式) 1.下列不等式的证明明过程: ①若a ,b ∈R ,则 ②若x ,y ∈R ,则 ; ③若x ∈R ,则 ; ④若a ,b ∈R ,ab <0,则. 其中正确的序号是 . 2.设a ,b ∈R + ,a+b=1,则+的最小值为( ) A.2+ B.2 C.3 D. 3.已知a >b >0,c <d <0,则与 的大小关系为 . 4.已知a ,b ,c ∈R ,且a+b+c=0,abc >0,则++的值( ) A.小于0 B.大于0 C.可能是0 D.正负不能确定 5.若不等式(﹣1)n a <2+ 对任意n ∈N * 恒成立,则实数a 的取值范围是( ) A.[﹣2,) B.(﹣2,) C.[﹣3,) D.(﹣3,) 6.设a ,b ,c ∈(﹣∞,0),则对于a+,b+,c+,下列正确的是 ①都不大于﹣2 ②都不小于﹣2 ③至少有一个不小于﹣2 ④至少有一个不大于﹣2. 7.定义在R 上的函数f (x )=mx 2 +2x+n 的值域是[0,+∞),又对满足前面要求的任意实数m ,n 都有不等式 恒成立,则实数a 的最大值为( ) A.2013 B.1 C. D. 8.已知a 、b 、c 是△ABC 的三边长,A=,B=,则( ) A.A >B B.A <B C.A≥B D.A≤B 9.设正实数x y z 、、满足0432 2 =-+-z y xy x ,则当 取得最小值时,2x y z +-的最大值为( )

10.设正实数z y x ,,满足04322=-+-z y xy x , ) A .0 B .1 C D .3 11.(2012?湖北)设a ,b ,c ,x ,y ,z 是正数,且a 2 +b 2 +c 2 =10,x 2 +y 2 +z 2 =40,ax+by+cz=20,则=( ) A. B. C. D. 12.用柯西不等式求函数y=的最大值为( ) A. B.3 C.4 D.5 13.若23529x y z ++=,则函数 ) 14.对任意正数x ,y 不等式(k ﹣)x+ky≥ 恒成立,则实数k 的最小值是( ) A.1 B.2 C.3 D.4 15.已知x 2+4y 2+kz 2 =36,且x+y+z 的最大值为7,则正数k 等于( ) A.1 B.4 C.8 D.9 16.设x 、y 、z 是正数,且x 2+4y 2+9z 2 =4,2x+4y+3z=6,则x+y+z 等于( ) A. B. C. D. 17.已知x ,y ,z 均为正数,且x+y+z=2,则++的最大值是( ) A.2 B.2 C.2 D. 3 18.实数a i (i=1,2,3,4,5,6)满足(a 2﹣a 1)2+(a 3﹣a 2)2+(a 4﹣a 3)2+(a 5﹣a 4)2+(a 6﹣a 5)2 =1则(a 5+a 6)﹣(a 1+a 4)的最大值为( ) A.3 B.2 C. D.1 19.设a ,b ,c ,x ,y ,z 均为正数,且a 2 +b 2 +c 2 =10,x 2 +y 2 +z 2 =40,ax +by +cz =20,则 a b c x y z ++++等于( ). A.14 B.13 C. 12 D.34

基本不等式柯西不等式知识点复习

基本不等式及应用 一、考纲要求: 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 3.了解证明不等式的基本方法——综合法. 二、基本不等式 三、常用的几个重要不等式 (1)a 2+b 2 ≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R) (3)a 2 +b 2 2≥(a +b 2)2(a ,b ∈R) (4)b a +a b ≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b. 四、算术平均数与几何平均数 设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的 算术平均数不小于它们的几何平均数. 四个“平均数”的大小关系; a , b ∈R+: 当且仅当a =b 时取等号. 五、利用基本不等式求最值:设x ,y 都是正数. (1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P. (2)如果和 x +y 是定值S ,那么当x =y 时积xy 有最大值14 S 2 . 强调:1、 “积定和最小,和定积最大”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件. 正:两项必须都是正数; +≤≤2 a b ≤+2ab a b

定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。 等:等号成立的条件必须存在. 2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.) 想一想:错在哪里? 3、已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1 y )的最小值为________. 解一:因为对a>0,恒有a +1a ≥2,从而z =(x +1x )(y +1 y )≥4,所以z 的最小值是4. 解二:z =2+x 2y 2 -2xy xy =(2 xy +xy)-2≥2 2 xy ·xy -2=2(2-1),所以z 的最小值是2(2-1). 【错因分析】 错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的. 【正确解答】 z =(x +1x )(y +1y )=xy +1xy +y x +x y =xy +1xy +x +y 2 -2xy xy =2 xy +xy -2, 令t =xy ,则0-+ =x x x x f 33 ()222 23326f x x x x x x x x x =+ ≥? -->?? =?=?-? 解:当且仅当即时,函数 的最小值是23x =+大家把代入看一看,会有 什么发现?用什么方法求该函数的 最小值?

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用 【摘要】:柯西不等式是一个非常重要的不等式,本文用五种不同的 方法证明了柯西不等式,介绍了如何利用柯西不等式技巧性解题,在证明不等式或等式,解方程,解三角形相关问题,求函数最值等问题的应用方面给出几个典型例子。最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 【关键词】:柯西不等式 ;证明;应用 【引言】:本人通过老师在中教法课上学习柯西不等式时,老师给出 了一些有关的例题并讲解,由于柯西不等式是一个非常重要的不等式,如果巧妙利用它,在高考可以节省很多宝贵时间,而且得分率高。因此,本文介绍归纳了柯西不等式的典型应用,经过收集及整理资料,得到四类的典型题。 【正文】: 1.柯西不等式的一般形式为: 对任意的实数 n n b b b a a a ,,,,,,2121?????? ()( ) 222112 22212 222 1 )(n n n n b a b a b a b b b a a a ??????++≥+??????+++??????++

其中等号当且仅当λ=== n n b a b a b a 2211时成立,其中R ∈λ 变式:()()222112121)(n n n n y x y x y x y y y x x x ??????++≥+??????+++??????++ 2. 柯西不等式的证明: 证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法: 1)配方法: 作差:因为22211 1 ()()()n n n i j i i i j i a b a b ===-∑∑∑ 221 1 1 1 ()()()()n n n n i j i i j j i j i j a b a b a b =====-∑∑∑∑ 2211 11 n n n n i j i i j j i j i j a b a b a b =====-∑∑∑∑ 2222 111111 1(2)2n n n n n n i j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑ 2222 11 1(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑ 211 1()02n n i j j i i j a b a b ===-≥∑∑ 所以222 1 1 1 ()()()n n n i j i i i j i a b a b ===-∑∑∑0≥,即2221 1 1 ()()()n n n i j i i i j i a b a b ===≥∑∑∑ 即222222*********()()()n n n n a b a b a b a a a b b b +++≤++++++……………… 当且仅当0(,1,2,,)i j j i a b a b i j n -==…… 即(1,2,,;1,2,,;0)j i j i j a a i n j n b b b ===≠…………时等号成立。 2)用数学归纳法证明 i )当1n =时,有2221112()a b a b =,不等式成立。

柯西不等式的应用技巧

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设a 1,a 2L a n ,bi,b 2L b R ,则 其结构对称, 用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代换等, 方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中每 一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因此,构 造两组数:a i ,a 2L a n 和bRzL b ,便是应用柯西不等式的一个主要技巧. 例 1 已知 x,y,z R 且x 2y 2z 5,求(x 5f (y i f (z 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数, 常常需要变形,拆项就是一个变形技巧. 例3 设a 、 2 求证: a b 三、巧添项 根据柯西不等式的特点,适当添补(或加或乘)上常数项或和为常数的项等,也 是运用柯西不等式的解题技巧. 例4 a,b,c R 求证:-^ b c c a a b 四、巧变结构 有些问题本身不具备运用柯西不等式的条件, 认清其内在的结构特征, 就可达到运用柯西不等式的目的. b 为非负数,a +b=1,x i ,X 2 R 求证: (ax i bx 2)(bx i ax 2) X 1X 2 (a i 2 2 a 2 a n 2 )(bi 2 b 22 L b n 2) (aQ a 2b 2 L aQ)2 当且仅当 a i b i a 2 b 2 a —或bl b 2 L b n 0时等号成立. b n 形式优美,应用极为广泛,特别在证明不等式和求函数的最值中作 3)2的最小值. 例2 设x,y, z R ,求证:迈 2 2 2x y z_ ~~2 z 722 2 当这两组数不太容易找到时, b 、 c 为正数且各不相等, 2 2 9 b c c a a b c 形式结构, 例6 a 、 但是只要我们改变一下式子的

柯西不等式的应用技巧

柯西不等式的应用技巧 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设12 12,,,R n n a a a b b b ∈,则 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设 ,,R x y z ∈ ,求证:22 -≤≤. 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++ 例7 设,1 21+>>>>n n a a a a 求证: 练习题

相关文档
最新文档