极限法的应用

极限法的应用
极限法的应用

极限法的应用

(一)物理思想

在物理问题中,有些物理过程虽然比较复杂,但这个较为复杂的物理过程又包含在一个更复杂的物理过程中。若把这个复杂的物理过程分解成几个小过程,且这些小过程的变化是单一的。那么,选取全过程的两个端点及中间的奇变点来进行分析,其结果必然可以反映所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维法的物理思想。 极限法是一种直观、简捷的科学方法。在我们已学过的物理规律中,常能看到科学家们利用这种思维方法得到的物理规律。例如伽利略在研究从斜面上滚下的小球的运动时就运用了极限思维法将第二斜面外推到极限——水平面;开尔文把查理定律外推到压强为零这一极限制,而引入了热力学温标……这些例子说明,在物理学的发展和物理问题的研究中,极限思维法是一种重要的方法。

(二)如何应用极限法解决问题

应用极限思维法时,特别要注意到所选取的某段物理过程研究的物理量的变化应是单一的。如增函数或减函数。但不能在所选过程中既包含有增函数,又包含有减函数的关系,这种题目的解答是不能应用极限法的。因此,在解题时,一定要先判定物理量间的变化关系是否为单调变化。若物理量间的变化关系为单调变化,可假设某种变化的极端情况,从而得出结论或作出判断。

极限法常见用于解答定性判断题和选择题,或者在解答某些大题时,用极限法确定“解题方向”。在解题过程中,极限法往往能化难为易,达到“事半功倍”的效果。

如图所示,用轻绳通过定滑轮牵引小船靠岸,若收绳的速度为v 1,则在绳与水平方向夹角为θ的时刻,船的速度v 有多大?(阻力不计)

分析:

假设小船在?t 时间内从A 点移过?s 到C 点,这时出现了三个距离:小船前进的位移?s ,绳收缩的距离?s 1以及?s 2,这个运动可设想为两个分运动所合成:小船先被绳拉过?s 1到B 点,再随绳绕滑轮O 点做圆周运动到C 点,位移为s 2。若?t 很小,?θ→0,即?s 1与?s 2垂直,此时有??s s 1=cos θ,可得:????s t s t 1=cos θ,则v v 1=cos θ。

∴=v v 1c o s

θ 例题2:如图,光滑水平桌面上放着一个长木板A ,其上放有一个遥控滑块B ,已知木板与滑块的质量均为m kg =08.,滑块与木板间的动摩擦因数μ=02.,开始时AB 均静止,突然启动滑块B ,使滑块得到4.8N 的向右的牵引力,0.5s 后又用遥控解除滑块B 的牵引力,在木板A 运动到桌边沿前,AB 已达到共同速度,求整个过程中,摩擦力对A 做的功。(g m s =102/)

解:由牛顿第二定律,得滑块B 的加速度

a F mg m m s 12

4=-=μ/

木板A 的加速度:a g m s 222==μ/

经过0.5s 时,B 的速度为v a t m s 112==/

A 的速度为v a t m s 221==/

故有mv mv mv 122+=

A 、

B 共同速度v v v m s =+=+=12212215./

由动能定理知:摩擦力对A 做的功

W mv J ==??=121208150922...

极限法在初中物理中的应用

教学内容:极限法初中物理教学中的应用 教学重点:极限法初中物理教学中的应用 教学难点:对极限法的理解与运用 引入:问在雨中,一个人从A走到B,是走的快被淋水多,还是走的慢被淋水多?如果说走的慢被淋的水少的话,一下利用极限法就可以排除了,慢的极限就为0,这个人速度为0,那么相当于这个人一直在雨水中淋着。这是生活对极限法很好的诠释。 进行新课:极限法的实质 有些物理问题涉及的因素较多,过程复杂,我们往往难以洞察其变化规律并对其作出迅速准确的判断.但是,如果我们将问题推想到极端状态或极端条件下进行分析,问题有时会顿时变得明朗而简单. 极限法定义:将问题从一般状态推到特殊状态进行分析处理的解题方法就是极限法,又称极端法. 教学重点:极限法的应用 教学难点:极限法的理解 极限法听起来似乎陌生,但这只是在中学教学中没有对学生具体的给以定义,事实上在初中阶段, 很多地方都应用到了极限法,刚刚接触物理时就将这种方法渗透到教学中, 以便于发展学生的科学思维能力。 教材从第二章《声现象》的第一节就开始渗透极限法 .在探究声音的传播是否需要介质时,用另一个手机拨通玻璃罩内的手机,随着罩内空气的不断抽出,听到手机铃声越来越弱,利用极限法,假设罩内被抽成真空,将不能听到铃声.由此得出结论,声音

不能在真空中传播。只不过在这时,我们给它定义为“理想化模型法”,或“建立在实验基础上的推理法”而已。 教材第八章第一节《牛顿第一定律》实验“探究阻力对物体运动的影响”时发现,小车受到的阻力越小,小车运动的路程越远,应用极限法,设想小车在绝对光滑的水平面上运动,即不受到阻力作用小车将永远沿直线运动下去。著名的物理学家牛顿在伽利略等科学家研究的基础上,多次试验,深入研究,最终总结出著名的“牛顿第一定律”。 教材第十二章第三节《机械效率》中,在探究影响斜面机械效率的因素时,先让学生猜想,斜面的机械效率与斜面的倾斜程度有什么关系?由于学生的知识有限很难进行合理的猜想。不妨引导学生利用极限法的思想,让斜面无限制的倾斜以至于水平,将发现总功无限大,机械效率将减小。 教材第十八章《电学》中,实际上也应用到了极限法,就如何认识电路的串联和并联时,由于电压表的内阻很大,将电压表的内阻看作无限大,致使电流无法通过,相当于断路,而电流表的内阻很小,则趋向于零,电流表相当于纯导线,从而使一个既有电压表,又有电流表的复杂电路简化为只有用电器的电路。 1.极限法在速度中的应用 一艘小船以速度V I从上游A点到B点再返回A点用时为t1(河水流动速度为V2),若河水静止,这艘船还是以速度V1从A 点到B点再返回A点用时为t2,则t1与t2的关系是:() At1t2 Ct1=t2 D无法判断 常规解题:t1=s/(V I+V2)+s/(V I-V2) t2=s/V I+s/V I=2s/V I 若利用极限法假设V I与V2相同,则船逆水向上时速度为0,将永远向上运动,故t1

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

高中物理:力学模型及方法知识归纳

╰ α 高中物理知识归纳(二) ----------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用( 如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 +

F 'A 'B V 2V = ? ' A V = gR 53 ; ' A ' B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

物理竞赛极限法

五、极限法 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大。所以速最大时有 mg = kx ① 由机械能守恒有:mg (h + x) = E k +1 2kx 2 ② 联立①②式解得:E k = mgh -22 m g 2k 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。求该直轨道与竖直方向的夹角β 。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为: a = gcos β 该质点沿轨道由静止滑到斜面所用的时间为t ,则: 12 at 2 =OP 所以: ① 由图可知,在ΔOPC 中有: o OP sin(90)-α=o OC sin(90) +α-β 所以:OP = OC cos cos() α α-β ② 将②式代入①式得: 显然,当cos(α-2β) = 1 ,即β =2 α 时,上式有最小值。 所以当β = 2 α 时,质点沿直轨道滑到斜面所用的时间最短。 图5—1 图5—2

高中物理整体法和隔离法试题演示教学

整体法和隔离法 1. 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 2.有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( ) A .N 不变,T 变大 B .N 不变,T 变小 C .N 变大,T 变大 D .N 变大,T 变小 3.如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动? 4.将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少? 5.如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为( ) A .4mg 、2mg B .2mg 、0 C .2mg 、mg D .4mg 、mg 6.如图所示,两个完全相同的重为G 的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。问当F 至少多大时,两球将发生滑动?

高三物理巧用极限法分析临界问题(附答案)

高三物理巧用极限法分析临界问题 临界问题的分析是中学物理中较为常见,也是很多同学感到困难的问题之一,这就要求我们在教学中能不断探索这类问题的分析方法。 极限法分析临界问题,是通过分析把关键物理量同时推向极大和极小时的物理现象,从而找出解决问题的突破口的一种方法。下面通过几种情况的分析来体会: 一、关键物理量“力F ” 【例1】如图1所示,物体A 的质量为2kg ,两轻绳AB 和AC(L AB =2L AC )的一端连接在竖直墙上,另一端系在物体A 上,今在物体A 上另施加一个与水平方向成α=600角的拉力F 。要使两绳都能伸直,试求拉力F 的大小范围。(g=10m/s 2) 分析与解 如果F 很小,由竖直方向平衡知轻绳AB 中必有张力,当AC 中张力恰为零时,F 最小;如果F 很 大,由竖直方向平衡知轻绳AC 中必有张力,当AB 中张 力恰好为零时,F 最大。 设物体的质量为m ,轻绳AB 中的张力为T AB ,AC 中的张力为T AC ,F 的最小值为F 1,最大值为F 2 L AB =2L AC ,有∠CAB=600 由平衡条件有: F 1sin600+T AB sin600=mg , F 1cos600=T AB cos600 F 2sin600=mg 以上各式代入数据得:F 1=20√3/3N ,F 2=40√3/3N 因此,拉力F 的大小范围:20√3/3N <F <40√3/3N 此题也可由平衡条件直接列方程,结合不等式关系T AB >0,T AC >0求解。 二、关键物理量“加速度a ” 【例2】质量为0.2kg 的小球用细绳吊在倾角θ=600的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图2所示,不计摩擦,求当斜面体分别以(1)2√3m/s 2, (2)4√3m/s 2的加速度向右加速时,线对小球的拉力。 分析与解 很多同学看到题目就会不加分析的列方程 求解,从而出现解出的结果不符合实际。其实,如果我们 仔细审题就会发现题目设问的着眼点是加速度。当小球向 图1 图2—1

极限思维法、特殊值法、量纲法、等解高中物理选择题

高中物理“超纲”选择题解题方法 1.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示,质量为M、倾角为θ的滑块A放于水平地面上。把质量为m的滑块B放在A的斜面上。忽略 一切摩擦,有人求得B相对地面的加速度a = M+m gsinθ,式中g为重力加速度。 M+msin2θ 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。 他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都 是“解可能是对的”。但是,其中有一项是错误 ..的。请你指出该项。 () A.当θ=0?时,该解给出a=0,这符合常识,说明该解可能是对的 B.当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C.当M≥m时,该解给出a=gsinθ,这符合预期的结果,说明该解可能是对的

D .当m ≥M 时,该解给出a =sin g θ ,这符合预期的结果,说明该解可能是对的 2.某个由导电介质制成的电阻截面如图所示。导电介质的电阻率为ρ、制成内、外半径分别为a 和b 的半球壳层形状(图中阴影部分),半径为a 、电阻不计的球形电极被嵌入导电介质的球心为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。设该电阻的阻值为R 。下面给出R 的四个表达式中只有一个是合理的,你可能不会求解R ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,R 的合理表达式应为 ( ) A .R= ab a b πρ2) (+ B .R= ab a b πρ2) (- C .R=) (2a b ab -πρ D .R= ) (2a b ab +πρ 3.图示为一个半径为R 的均匀带电圆环,其单位长度带电量为η。取环面中心O 为原点,以垂直于环面的轴线为x 轴。设轴上任意点P 到O 点的距离为x ,以无限远处为零电势,P 点电势的大小为Φ。下面给出 Φ的四个表达式(式中k 为静电力常量),其中只有一个是合理的。你 可能不会求解此处的电势Φ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,Φ的合理表达式应为 ( ) I

高中物理-整体法.doc

整 体 法 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 好题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向,不 计滑轮质量及摩擦,若人和车保持相对静止,且水平地面 是光滑的,则车的加速度为 。 解析:要求车的加速度,似乎需将车隔离出来才能求 解,事实上,人和车保持相对静止,即人和车有相同的加 速度,所以可将人和车看做一个整体,对整体用牛顿第二 定律求解即可。 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力。在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F = (M + m)a ,解得:a =2F M m 例2:用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是( ) 解析:表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a + m b )g ,作用在两个小球上的恒力F a 、F b 和上端细线对系统的拉力T 1 。因为系统处于平衡状态,所受合力必为零,由于F a 、F b 大小相等,方向相反,可以抵消,而(m a + m b )g 的方向竖直向下,所以悬线对系统的拉力T 1的方向必然竖直向上。再以b 球为研究对象,b 球在重力m b g 、恒力F b 和连线拉力T 2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T 2的方向必与恒力F b 和重力m b g 的合力方向相反,如图 所示,故应选A 。

高中物理极限法的应用

极限法的应用 一. 本周教学容: 物理解题方法复习专题——极限法的应用 二. 重点、难点: (一)物理思想 在物理问题中,有些物理过程虽然比较复杂,但这个较为复杂的物理过程又包含在一个更复杂的物理过程中。若把这个复杂的物理过程分解成几个小过程,且这些小过程的变化是单一的。那么,选取全过程的两个端点及中间的奇变点来进行分析,其结果必然可以反映所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维法的物理思想。 极限法是一种直观、简捷的科学方法。在我们已学过的物理规律中,常能看到科学家们利用这种思维方法得到的物理规律。例如伽利略在研究从斜面上滚下的小球的运动时就运用了极限思维法将第二斜面外推到极限——水平面;开尔文把查理定律外推到压强为零这一极限制,而引入了热力学温标……这些例子说明,在物理学的发展和物理问题的研究中,极限思维法是一种重要的方法。(二)如何应用极限法解决问题 应用极限思维法时,特别要注意到所选取的某段物理过程研究的物理量的变化应是单一的。如增函数或减函数。但不能在所选过程中既包含有增函数,又包含有减函数的关系,

这种题目的解答是不能应用极限法的。因此,在解题时,一定要先判定物理量间的变化关系是否为单调变化。若物理量间的变化关系为单调变化,可假设某种变化的极端情况,从而得出结论或作出判断。 极限法常见用于解答定性判断题和选择题,或者在解答某些大题时,用极限法确定“解题方向”。在解题过程中,极限法往往能化难为易,达到“事半功倍”的效果。 【典型例题】 例1. 如图所示电路中,当可变电阻R的阻值增大时() A. A、B两点间的电压U增大 B. A、B 两点间的电压U减小 C. 通过R的电流I增大 D. 通过R 的电流I减小 分析: 可变电阻R的变化围在零到无穷大之间连续变化。当R=0 ;当R→∞时,R断路,时,A、B间短路,此时U=0,I E R r =+ () 1 ,()。可见,当R的阻值增大时,U增大而I ==++ I U ER R R r 212 减小,因此A、D选项正确。 点拨:

高中物理整体法隔离法解决物理试题答题技巧及练习题

高中物理整体法隔离法解决物理试题答题技巧及练习题 一、整体法隔离法解决物理试题 1.a、b两物体的质量分别为m1、m2,由轻质弹簧相连。当用大小为F的恒力沿水平方向拉着 a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x1;当用恒力F竖直向上拉着 a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x2;当用恒力F倾斜向上向上拉着 a,使a、b一起沿粗糙斜面向上做匀加速直线运动时,弹簧伸长量为x3,如图所示。则() A.x1= x2= x3 B.x1 >x3= x2 C.若m1>m2,则 x1>x3= x2 D.若m1

极限法(特殊值法)在物理高考中的应用Word版

极限法(特殊值法)在物理高考中的应用 “极限法”是一种特殊的方法,它的特点是运用题中的隐含条件,或已有的概念,性质,对选项中的干扰项进行逐个排除,最终达到选出正确答案的目的。 极限法在物理解题中有比较广泛的应用,将貌似复杂的问题推到极端状态或极限值条件下进行分析,问题往往变得十分简单。利用极限法可以将倾角变化的斜面转化成平面或竖直面。可将复杂电路变成简单电路,可将运动物体视为静止物体,可将变量转化成特殊的恒定值,可将非理想物理模型转化成理想物理模型,从而避免了不必要的详尽的物理过程分析和繁琐的数学推导运算,使问题的隐含条件暴露,陌生结果变得熟悉,难以判断的结论变得一目了然。 1.(12安徽)如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出: E =2πκσ()????????+-21221x r x ,方向沿x 轴。现考虑单位面积带电量为0σ的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。则圆孔轴线上任意一点Q (坐标为x )的电场强度为 ( ) A. 2πκ0σ()2122x r x + B. 2πκ0σ()2122x r r + C. 2πκ0 σr x D. 2πκ0σx r 【解析】当→∝R 时,22x R x +=0,则0k 2E δπ=,当挖去半径为r 的圆孔时,应在E 中减掉该圆孔对应的场强)(220r x r x - 12E +=πκδ,即21220x r x 2E )(+='πκδ。选项A 正确。 2.(11福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质 量为m 1和m 2的物体A 和B 。若滑轮有一定大小,质量为m 且分布均匀,滑 轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确 的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) O R ● x P 图1 O r ● x Q 图2

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高中物理解题方法5.极限法

五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此 推理,小球所受合力为零的位置速度、动能最大。所以速最大时有 mg = kx ① 由机械能守恒有:mg (h + x) = E k +12 kx 2 ② 联立①②式解得:E k = mgh -22 m g 2k 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。求该直轨道与竖直方向的夹角β 。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β 角有关,求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为: a = gcos β 该质点沿轨道由静止滑到斜面所用的时间为t ,则: 12at 2 =OP 所以: ① 由图可知,在ΔOPC 中有: o OP sin(90)-α=o OC sin(90) +α-β 图5— 1 图5—2

所以:OP =OC cos cos() αα-β ② 将②式代入①式得: t = 显然,当cos(α-2β) = 1 ,即β = 2α时,上式有最小值。 所以当β =2 α时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度v 0水平抛出一小球,不计空气阻力,若斜面足够长,如图5—3所示,则小球抛出后,离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。以水平向右为x 轴正方向,竖直向下为y 轴正方向,则由:v y = v 0tan θ = gt ,解得运动时间为t = 0v g tan θ 该点的坐标为: x = v 0t =20v g tan θ ,y =12gt 2 =20v 2g tan 2θ 由几何关系得:H cos θ+ y = xtan θ 解得小球离开斜面的最大距离为: H =20v 2g tan θ?sin θ 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外,从喷口算起,墙高为4.0m 。若不计空气阻力,取g = 10m/s 2 ,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 根据平抛运动的规律,水流的运动方程为: 020x v cos t 1y v sin t gt 2 =α????=α?-?? 把A 点坐标(d 、h )代入以上两式,消去t ,得: 2 0v =-2 2gd 2(h d tan )cos -αα =2 gd d sin 2 h(cos 21) α- α+ 图5— 图5—4

高中物理整体法与隔离法

整体法与隔离法 1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。 运用整体法解题的基本步骤: ①明确研究的系统或运动的全过程. ②画出系统的受力图和运动全过程的示意图. ③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解 2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。 运用隔离法解题的基本步骤: ①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少. ②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来. ③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图. ④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解. 3.整体和局部是相对统一的,相辅相成的。 隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则 4.应用例析 【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力F N。

黑龙江省哈尔滨市木兰高级中学高中物理 经典复习资料 巧判液柱移动 之极限法

黑龙江省哈尔滨市木兰高级中学高中物理经典复习资料 巧判液柱移动之极限法 黑龙江省哈尔滨市木兰高级中学高中物理经典复习资料巧判液 柱移动之极限法 液柱移动问题是一类较为复杂的问题,经常涉及多个过程和研究对象。我们都知道热力学问题里面有好多参数,而且这些参数经常还要左变右变,是不是经常变糊涂了啊, 我在这儿告诉你两种方法,帮你轻而易举的解决这方面的问题。这两种方法分别是“极限法”和“假设法”,先说“极限法”。这个方法只需要你对这些参数之间的变化趋势关系有个简单的了解,而不需要精确的计算就可以用。很多判断液柱移动关系的选择填空题都可以用这个方法轻而易举的解决。 是不是很想知道这种方法啊,好,那么我们就来看看这个妙招~ 怎么来用“极限法”呢, 什么是极限法, 极限法的概念其实很简单,就是将问题的条件外推到问题成立的极限状态,然后进行判断,也就是要我们将题目中条件的变化量进行放大或缩小,然后判断结果。什么时候用极限法, 一般液柱在初始状态下是平衡的,不移动的,当某个条件改变时液柱就会移动。常见的题目中改变的条件有系统的温度T、压强P、体积V或者施加外力和改变液柱总量。 (1)判断由T、P、V的改变引起的液柱移动,正好是我们的极限法大显身手的时候。 (2)判断由外力或者改变液柱总量引起液柱的移动则可以用另外一种方法——假设

法。当然,在有些时候这些外力或总量变化没有限制,也可以采用极限法。 怎么用极限法, 对于由T、P、V引起液柱移动的极限判断方法很简单。一般题目都是让其中的某一个量变大或者变小,另两个跟着一起变,判断液柱如何移动。因此我们就可以让这个变化是无穷大,判断出液柱在这个极限条件下的状态,和初始状态相比就知道液柱怎么“跑”了。如温度减小我们可以认为减小到绝对零度,压强增加可以认为是无穷大的压强等等。 好了,说了这么多还是让我们看道题来学学怎么用。 经典体验 如图所示,两端封闭的玻璃管中间有一段水银柱将空气柱 A 分成A、B两部分,若将玻璃管周围温度减低,试分析水 A 银柱向哪端移动, B 体验思路: 按题目的要求,所需要的只是一个简单的液柱移动趋势判断 的填空型题目。在初始状态下,水银液柱将两端的空气柱分 开,也就是说处于一个平衡态。当温度发生改变后,这个平衡就被打破,从 1 而液柱就会移动。正好符合我们使用“极限法”的经典条件,因此我们可以采用极限思维的方法去分析这道题。 体验过程: 题目要求周围温度减低时水银柱的移动方向。既然题目只说了温度降低, 而没说温度降低了多少,那我们认为它降到了绝对零度也就当然可以了。 如果降到绝对零度,会怎么样呢,显然A、B两端的空气都变成固体了,这 样气体压强就变成0了,水银柱(此时也是固体了,但不影响结果的判断) 会怎么移动呢,当然是在重力的作用下往下移动了,那么题目的结果也就

高中物理整体法隔离法解决物理试题解题技巧(超强)及练习题

高中物理整体法隔离法解决物理试题解题技巧(超强)及练习题 一、整体法隔离法解决物理试题 1.在如图所示的电路中,已知电源的电动势E=5 V,内阻不计,R1=8 Ω,R2=2 Ω,R3=5 Ω,R=6 Ω,滑动变阻器的最大阻值R4=20 Ω,电容器电容C=2 μF,不计电表内阻的影响,闭合开关,在滑片从a端滑到b端的过程中,下列说法中正确的是( ) A.电流表的示数变大 B.电压表的示数变大 C.电源的总功率变大 D.电容器先放电后充电 【答案】D 【解析】 A、C、当P从a滑到b时,电路总电阻变大,总电流变小,电流表的示数变小,电源的总功率变小A、C错误; B、总电流变小,R1、R2支路的电流不变,通过R3的电流变小,故电压表示数变小,B正确;D、当P在a端时电容器与R2并联,电容器两端电压U C1=1V,上极板带正电;当P在b端时,电容器两端电压U C2=3V,上极板带负电,所以电容器先放电后充电,D正确.故选BD. 【点睛】本题考查闭合电路欧姆定律中的含容电路;要注意当无法明确电容器的串并联关系时则应先求出两端的电势,再求出两端的电势差即可求解. 2.如图所示,一个物体恰能在斜面体上沿斜面匀速下滑,可以证明出此时斜面不受地面的摩擦力作用,若沿斜面方向用力F向下推此物体,使物体加速下滑,斜面依然保持静止,则斜面受地面的摩擦力是( ) A.大小为零B.方向水平向右 C.方向水平向左D.无法判断大小和方向 【答案】A 【解析】 【详解】 对斜面体进行受力分析如下图所示:

开始做匀速下滑知压力与摩擦力在水平方向上的分力相等,当用力向下推此物体,使物体加速下滑,虽然压力和摩擦力发生了变化,但摩擦力f 始终等于N F 。知两力在水平方向上的分力始终相等,所以斜面受地面的摩擦力仍然为零。 A .斜面受地面的摩擦力大小为零,与分析结果相符,故A 正确; B .斜面受地面的摩擦力方向水平向右,与分析结果不符,故B 错误; C .斜面受地面的摩擦力方向水平向左,与分析结果不符,故C 错误; D .综上分析,可知D 错误。 3.如图,斜面体置于水平地面上,斜面上的小物块A 通过轻质细绳跨过光滑的定滑轮与物块B 连接,连接A 的一段细绳与斜面平行,系统处于静止状态.现对B 施加一水平力F 使B 缓慢地运动,A 与斜面体均保持静止,则在此过程中( ) A .地面对斜面体的支持力一直增大 B .绳对滑轮的作用力不变 C .斜面体对物块A 的摩擦力一直增大 D .地面对斜面体的摩擦力一直增大 【答案】D 【解析】 【详解】 取物体B 为研究对象,分析其受力情况,设细绳与竖直方向夹角为,则水平力: 绳子的拉力为: A 、因为整体竖直方向并没有其他力,故斜面体所受地面的支持力没有变;故A 错误; B 、由题目的图可以知道,随着B 的位置向右移动,绳对滑轮的作用力一定会变化.故B 错误; C 、在这个过程中尽管绳子张力变大,但是因为物体A 所受斜面体的摩擦力开始并不知道其方向,故物体A 所受斜面体的摩擦力的情况无法确定;故C 错误; D 、在物体B 缓慢拉高的过程中, 增大,则水平力F 随之变大,对A 、B 两物体与斜面体这个整体而言,因为斜面体与物体A 仍然保持静止,则地面对斜面体的摩擦力一定变大;所以D 选项是正确的;

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

相关文档
最新文档