电动力学习题解答2

电动力学习题解答2
电动力学习题解答2

第二章 静电场

1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;

(4)求该带电介质球产生的静电场总能量。 解:(1)P ?-?=p ρ2222/)]/1()/1[()/(r K r r K r K -=??+??-=??-=r r r

)(12P P n -?-=p

σ

R K R

r r /=?==P

e

(2))/(00εεεε-=+=P P E D 内

2

00)/()/(r K f εεεεεερ-=-??=??=P D 内

(3))/(/0εεε-==P D E 内内

r r f

r

KR r

V

e e D E 2

002

00)(4d εεεεπερ

ε-=

=

=

?外

r

KR r )(d 00εεεε?-=?=?∞

r E 外外

)(ln

d d 0

εεεε?+-=

?+

?=

?

?

∞r R K

R

R

r

r E r E 外内内

(4)?

?

?∞

-+

-=

?=

R

R

r

r r R

K r

r r K

V W 4

2

2

0022

2

2

2

2

02

d 4)

(21

d 4)

(21d 2

1

πεεεεπεεεE D

2

))(

1(2εεεεπε-+

=K

R

2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:

(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q

解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。

当0R R >时,电势?满足拉普拉斯方程,通解为

++

=

n

n n n n

n P R

b R a )(cos )(1

θ?

因为无穷远处 0E E →,)(cos cos 10000θ?θ??RP E R E -=-→ 所以 00?=a ,01E a -=,)2(,0≥=n a n

当 0R R →时,0Φ→?

所以 01

01000)(c o s )(c o s Φ=+-∑

+n

n n n P R

b P R E θθ

?

即: 002

010000/,/R E R b R b =Φ=+?

所以 )

2(,0,

),

(3

010000≥==-Φ=n b R E b R b n ?

??

?≤Φ>+-Φ+-=)()

(/cos /)(cos 00

02

30000000R R R R R R E R R R E θ?θ??

(2)设球体待定电势为0Φ,同理可得

??

?≤Φ>+-Φ+-=)()

(/cos /)(cos 00

02

30000000R R R R R R E R R R E θ?θ??

当 0R R →时,由题意,金属球带电量Q

φθθθ?θε?εd d sin )cos 2cos (d 2

000

0000

R E R E S n

Q R R ??+-Φ+

=??-=

=

)(40000?πε-Φ=R

所以 00004/)(R Q πε?=-Φ

??

?≤+>++-=)(4/)

(cos )/(4/cos 00002

300000R R R

Q R R R R E R Q R E πε?θπεθ??

3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求

空间电势,把结果与使用高斯定理所得结果比较。

提示:空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。 解:(一)分离变量法

空间各点的电势是点电荷f Q 的电势R Q f πε4/与球面上的极化电荷所产生的电势的迭加。设极化电荷产生的电势为?',它满足拉普拉斯方程。在球坐标系中解的形式为:

)()(内θ?cos 1

n n

n n n

n P R b R a ∑

++=' )()(外

θ?cos 1

n

n

n n

n

n P R

d R c ∑

++=' 当∞→R 时,0→'外

?,0=∴n c 。 当0→R 时,内

?'为有限,0=∴n b 。 所以 )(内

θ?c o s n

n

n

n P R a ∑

=' , )(外θ?cos 1

n

n

n n P R

d ∑

+=' 由于球对称性,电势只与R 有关,所以

)1(,0≥=n a n )1(,0≥=n d n

0a ='内

?, R d /0='外? 所以空间各点电势可写成R Q a f πε?40+=内

R Q R d f πε?40+=外

当0R R →时,由 外内??= 得: 000/R d a =

由 n

n

??=??外内?ε?ε

得:

2

02

02

44R d R Q R Q f

f επεεπ+

=

,)1

1

(

40

επ

-

=

f Q d

则 )11

(40

00ε

επ-

=R Q a f

所以 )(

内εεππε?1

1

4400

-

+

=

R Q R

Q f

f )(

外ε

εππε?1

1

440

-

+

=

R

Q R

Q f f R

Q f 04πε=

(二)应用高斯定理

在球外,R>R 0 ,由高斯定理得:f p f Q Q Q Q d =+==??总外s E 0ε,(整个导体球的束缚电荷0=p Q ),所以 r f R

Q e E 2

04πε=

外 ,积分后得:

R

Q dR R

Q d f R

R

f

02

44πεπε

??

?∞

=

=

?=

R E 外外

在球内,R

r f R

Q e E 2

4πε=

内 ,积分后得:

R

Q R Q R

Q d d f f f R R R

00

4440

πεπεπε?+

-

=

?+

?=

?

?

R E R E 外内内 结果相同。

4. 均匀介质球(电容率为1ε)的中心置一自由电偶极子f p ,球外充满了另一种介质(电

容率为2ε),求空间各点的电势和极化电荷分布。

解:以球心为原点,f p 的方向为极轴方向建立球坐标系。空间各点的电势可分为三种电

荷的贡献,即球心处自由电偶极子、极化电偶极子及球面上的极化面电荷三部分的贡献,其中电偶极子产生的总电势为3

14/R f πεR p ?。所以球内电势可写成:

314/'R f i i πε??R p ?+=;球外电势可写成:3

1o o 4/'R f πε??R p ?+=

其中i '?和o '?为球面的极化面电荷激发的电势,满足拉普拉斯方程。由于对称性,i '?和o '?均与φ无关。考虑到0→R 时i '?为有限值;∞→R 时0'o →?,故拉普拉

斯方程的解为:

)(cos 0R R P R a n

n

n

n i ≤='∑)(θ?

)(cos 01

o

R R P R

b n

n

n n ≥='∑

+)(θ?

由此 )(c o s 4/03

1R R P R a

R n

n

n

n

f i ≤+

?=∑)(θπε?R p (1) )(cos 4/013

1o R R P R

b

R n

n n

n f ≥+

?=+-∑)()

(θπε?R p (2)

边界条件为:0

o

R R R R i

===?? (3)

o 2

1

R R R R i R

R

==??=???ε?ε (4)

将(1)(2)代入(3)和(4),然后比较)cos θ(n

P 的系数,可得: )1(0

,

0≠==n b a n n

3

0211211)2(2/)(R p a f

εεπεεε+-=

)2(2/)(211213

011εεπεεε+-==f p R a b

于是得到所求的解为:

)

()2(2)(4)2(2cos )(403

211213

13

211213

1R R R

R

R R p R

f f f f i ≤?+-+

?=

+-+

?=

R

p R p R p εεπεεεπεεεπεθεεπε?

)

()2(43)2(2)(4)2(2cos )(403

213

211213

12

211213

1o R R R

R

R

R

p R

f f f f f ≥+?=

?+-+

?=

+-+

?=

εεπεεπεεεπεεεπεθεεπε?R p R p R p R p 在均匀介质内部,只在自由电荷不为零的地方,极化电荷才不为零,所以在球体内部,只有球心处存在极化电荷。

f

p ρ

εεεε

εεεεερ)1/()1(][])[(101010101-=??-=-?-?=-?-?=?-?=D

D E P

所以 f p p p )1/(10-=εε

在两介质交界面上,极化电荷面密度为

o 020121)()()(E e E e p p e ?--?-=-?=r i r r p εεεεσ

o 0201)

()

(R R i R

R

??-+??--=?εε?εε

由于0

o 21

R R i R R

??=???ε?ε,所以 θεεπεεεε??εσcos )2(2)(3)

(

3

211210o 00

R p R

R

f R i p +-=??-??=

5. 空心导体球壳的内外半径为1R 和2R ,球中心置一偶极子p 球壳上带电Q ,求空间各点的电势和电荷分布。

解:以球心为原点,以p 的方向为极轴方向建立球坐标系。在1R R <及2R R >两均匀区域,电势满足拉普拉斯方程。通解形式均为

)()(θcos 1

n

n

n n n

n P R b R a ∑

++ 当∞→R 时,电势趋于零,所以2R R >时,电势可写为

)(θ?cos 1o n

n

n n

P R b ∑

+=

(1) 当0→R 时,电势应趋于偶极子p 激发的电势:

2

0304/cos 4/R p R f πεθπε=?R p

所以1R R <时,电势可写为

)(θπεθ?cos 4cos 2

0n

n

n

n

i P R a

R

p ∑+

=

(2) 设球壳的电势为s ?,则

s n

n

n n R P R

b ?θ?==

+)(cos 1

2

o

2

(3) s n

n

n

n

R i

P R a

R p ?θπεθ?=+

=∑)(cos 4/cos 12

101

(4) 由(3)得: 20R b s ?= ;)0(0

≠=n b n

由(4)得: s a ?=0 ;3

1014/R p a πε-= ;)1,

0(0

≠=n a n

所以 R R s /2o ??= (5)

3

102

04/cos 4/cos R pR R p s i πεθ?πεθ?-+= (6)

再由

Q R R

R R

s S

==????2

2

20

o 0

4d π?ε?εS 得:

204/R Q s πε?= (7)

将(7)代入(5)(6)得:

R Q 0o 4/πε?= )(2R R >

)(

414cos 44cos 3

1

2

3

3

102

02

0R R Q R

R pR R Q R

p i R p R p ?-

+

?=

-

+

=

πε

πεθπεπεθ?

在2R R =处,电荷分布为:

2

2

o 0

42

R Q

R

D R n π?εσ=

??-==

在1R R =处,电荷分布为:

3

1

4cos 3'1

R p R

D R i n πθ?εσ-

=??=-=

6. 在均匀外电场0E 中置入一带均匀自由电荷f ρ的绝缘介质球(电容率为ε),求空间各点的电势。

解:以球心为原点,以0E 的方向为极轴方向建立球坐标系。将空间各点的电势看作由两

部分迭加而成,一部分1?为绝缘介质球内的均匀自由电荷产生,另一部分2?为外电

场0E 及0E 感应的极化电荷产生。前者可用高斯定理求得,后者满足拉普拉斯方程。由于对称性,2?的形式为

)(cos )()

1(θn n

n n n n

P R

b R a

∑+-+

对于1?,当0R R >时,由高斯定理得:

2

3

013/R R D f ρ= , 2

03

013/R R E f ερ=

当0R R <时,由高斯定理得:

3/2R D f ρ= , ερ3/2R E f =

1?的球外部分: ?

?

+

=

2

03

1o )3/(d )3/(R R

R f f dR R R R R ερερ?

ερερερ6/3/3/2

002

003

0R R R R f f f --= (1)

1?的球内部分: ερερ?6/)3/(d 2

21R dR R R E f R

f R

i -==

?=

?

?

(2)

对于2?,当∞→R 时,θ?cos 02R E -→,所以

)(cos cos 01

0o2R R P R

b R E n n

n n >+

-=∑

+)(θθ?

当0→R 时,2?为有限,所以

)(cos 02R R P R a

n

n

n

n

i <=

∑)(θ?

边界条件为:0R R =时,2o2i ??=,0

22o 0

R i R R

R

??=???ε

?ε。即:

??

???=+--=+-∑∑∑∑-+-+-)(cos )(cos )1(cos )

(cos )(cos cos 1

0)2(0

0000)1(000θεθεθθθθn n n n n n n n n n

n n n n n n P R na P R b n R E P R a P R b R E 比较)(cos θn P 的系数,解得:

)2/(30001εεε+-=E a )2/()(03

0001εεεε+-=R E b

)1(0

≠==n b a n n

所以 )()2/(cos )(cos 02

030000o2R R R

R E R E >+-+-=εεθεεθ? (3)

)()

2/(cos 300002R R R E i <+-=εεθε? (4)

由(1) (2) (3) (4)得:

???

?

??

?≤+--≥+-+-++-=)(2cos 36)

()2(cos )(cos 3)21

1(300002

02

03

0000030020R R R E R

R R R R E R E R R R f f f εεθεερεεθεεθερεερ?

7. 在一很大的电解槽中充满电导率为2σ的液体,使其中流着均匀的电流J f 0。今在液体中

置入一个电导率为1σ的小球,求稳恒时电流分布和面电荷分布,讨论21σσ>>及

12σσ>>两种情况的电流分布的特点。

解:本题虽然不是静电问题,但当电流达到稳定后,由于电流密度J f 0与电场强度E 0成正比(比例系数为电导率),所以E 0也是稳定的。这种电场也是无旋场,其电势也满足拉普拉斯方程,因而可以用静电场的方法求解。

(1)未放入小球时,电流密度J f 0是均匀的,由J f 002E σ=可知,稳恒电场E 0也是一个均

匀场。因此在未放入小球时电解液中的电势0?便是均匀电场E 0的电势。放入小球后,以球心为原点,E 0的方向为极轴方向,建立球坐标系。为方便起见,以坐标原点为电势零点。在稳恒电流条件下,0/=??t ρ,所以:

0=??J (1)

由(1)式可推出稳恒电流条件下的边界条件为:

0)(12=-?J J n (2) 设小球内的电势为1?,电解液中的电势为2?,则在交界面上有:

2

1R R ??= (3)

22

11

R R R R R

R

==??=???σ?σ (4)

将E J σ=及?-?=E 代入(1),得:

0)(2

=?-=??=???σσE J

可见?满足拉普拉斯方程

考虑到对称性及∞→R 时0E E →,球外电势的解可写成:

)(cos cos 01

2

2R R P R

b R J

n n

n n f >+

-

=∑

+)(θθσ? (5)

其中利用了020E J σ=f 。

考虑到0→R 时电势为有限值,球内电势的解可写成:

)(cos 01R R P R a

n

n

n

n

<=

∑)(θ? (6)

因为选0=R 处为电势零点,所以00=a ,将(5) (6)代入(3) (4)得:

)()(θθθσcos cos cos 010

02

n

n

n

n n

n

n n f P R a

P R b R J

∑∑

=+

-+ (7) )()(θσθθσσcos ]cos )

1(cos [1

012

2

2n

n

n n n n

n n f P R na P R

b n J

∑∑

-+=+-

-

(8) 由(7)(8)两式可得:

)2/(32101σσ+-=f J a , 2

213

00

211)2/()(σ

σσσσ+-=R J

b f

)1(0

,

0≠==n b a n n

所以: )2/(3)2/(cos 32102101σσσσθ?+?-=+-=R J f f R J (0R R ≤)

2

22130021202)2/(cos )(/cos R R J R J f f σσσθσσσθ?+-+-=

3

22103

02120)2/()(/R R f f σσσσσσ+?-+?-=R J R J (0R R ≥)

由此可得球内电流密度:

)2/(3)2/()(3210

1210

111111σσσσσσ?σσ+=+??=?-==f f J

R J E J

电解液中的电流密度为: 22222?σσ?-==E J

])(3[)2()(3

050213

0210

R

R R f f f J R

R J J

-?+-+=σσσσ

(2)两导体交界面上自由电荷面密度

)()(12012E E e D D e -?=-?=r r f εω)//(11220σσεJ J e -?=r 2

210

021)2/(cos )(3σσσθεσσ+-=f J

(3) 当21σσ>>,即球的电导率比周围电解液的电导率大的多时,

1

)2/()(2121≈+-σσσσ ,

3

)2/(3211≈+σσσ

所以, 0

13f J

J ≈

]/)(3)[/(0

2

3

3

00

2f f f R R R J

R R J

J J -?+≈

2

0/cos 3σθεω

f f

J ≈

当21σσ<<时,同理可得:

01≈J

]/)(3)[2/(0

2

3

300

2f f f R R R J

R R J

J J -?-≈

2

02/cos 3σθεω

f f

J -≈

8. 半径为0R 的导体球外充满均匀绝缘介质ε,导体球接地,离球心为a 处(a >0R )置

一点电荷f Q ,试用分离变量法求空间各点电势,证明所得结果与电象法结果相同。 解:以球心为原点,以球心到点电荷的连线为极轴建立球坐标系。将空间各点电势看作由两部分迭加而成。一是介质中点电荷产生的电势

θπε

?cos 24/2

21Ra a R Q f -+=,

二是球面上的感应电荷及极化面电荷产生的2?。后者在球内和球外分别满足拉普拉斯方程。考虑到对称性,2?与φ无关。

由于0→R 时,2?为有限值,所以球内的2?解的形式可以写成

∑=

n

n n

n

i P R a

)(cos 2θ? (1)

由于∞→R 时,2?应趋于零,所以球外的2?解的形式可以写成

∑+=

n

n n n

P R

b )(cos 1

2o θ? (2)

由于

∑=-+n

n n

P a R a Ra a R (cos))/()/1(cos 22

2

θ

∑=n

n n

f P a R a Q (cos))/()4/(1πε? (3)

当0R R ≤时,21i ???+=内

∑∑+

=n

n n

n

n

n n

f P R a

P a R a Q )(cos (cos))/()4/(θπε (4)

当0R R >时,21o ???+=外

∑++

=n

n n n n

n n

f P R

b P a R a Q )(cos (cos))/()4/(1

θπε (5)

因为导体球接地,所以 0=内? (6)

00

==R R 内

?? (7)

将(6)代入(4)得: 1

4/+-=n f n a

Q a πε (8)

将(7)代入(5)并利用(8)式得: 1

1

20

4/++-=n n f n a

R Q b πε (9)

将(8)(9)分别代入(4)(5)得:

)(00R R ≤=内? (10)

]/cos 2)/(cos 2[

4120

2

2

2

02

2

a

RR a R R a Q R Ra a R Q f

f

θθ

πε

?++-

-+=

外,

)(0R R ≥ (11)

用镜像法求解:设在球内r 0处的像电荷为Q ’。由对称性,Q ’在球心与Q f 的连线上,根据边界条件:球面上电势为0,可得:(解略)

a R r /2

00=, a Q R Q f /'0-= 所以空间的电势为

]/cos 2)/(cos 2[41

)'(4120220202221a RR a R R a Q R Ra a R Q r Q r Q f f f θθπεπε?++--+=+=外 )(0R R ≥

9. 接地的空心导体球的内外半径为1R 和2R ,在球内离球心为a 处(a <1R )置一点电荷Q 。用镜像法求电势。导体球上的感应电荷有多少?分布在内表面还是外表面?

解:假设可以用球外一个假想电荷'Q 代替球内表面上感应电荷对空间电场的作用,空心导体球接地,球外表面电量为零,由对称性,'Q 应在球心与Q 的连线上。

考虑球内表面上任一点P ,边界条件要求:

0'/'/=+R Q R Q (1)

式R 为Q 到P 的距离,R’为'Q 到P 的距离,因此,对球面上任一点,应有

=-=Q Q R R /'/'常数 (2)

只要选择'Q 的位置,使OPQ P OQ ??~',则

==a R R R //'1常数 (3)

设'Q 距球心为b ,则a R R b //11=,即a R b /2

1= (4) 由(2)(3)两式得: a Q R Q /'1-=

'

]/cos 2//cos 2[

4121

2

41

2

12

2

a

R R a R R a

Q R Ra a R Q

θθ

πε

?-+-

-+=

导体内电场为零,由高斯定理可知球面上的感应电荷为Q -,分布于内表面。 由于外表面没有电荷,且电势为零,所以从球表面到无穷远没有电场,0=外?。 10. 上题的导体球壳不接地,而是带总电荷0Q ,或使具有确定电势0?,试求这两种情况的

电势。又问0?与0Q 是何种关系时,两情况的解是相等的?

解:由上题可知,导体球壳不接地时,球内电荷Q 和球的内表面感应电荷Q -的总效果是

使球壳电势为零。为使球壳总电量为0Q ,只需满足球外表面电量为0Q +Q 即可。因此,导体球不接地而使球带总电荷0Q 时,可将空间电势看作两部分的迭加,一是Q 与内表面的Q -产生的电势1?,二是外表面0Q +Q 产生的电势2?。

]/cos 2//cos 2[

4121

2

4

1

2

12

2

1a

R R a R R a

Q R Ra a R Q

θθ

πε

?-+-

-+=

内,)(1R R <

01=外?, )(1R R ≥; 20024/)(R Q Q πε?+=内, )(2R R <; R Q Q

4/)(πε?+=, )(R R ≥,所以 由以上过程可见,球面电势为2004/)(R Q Q πε+。

若已知球面电势0?,可设导体球总电量为0'Q ,则有:

02004/)'(?πε=+R Q Q ,即:200

04/)'(R Q Q ?πε

=+

当11. b

1z b

1b

2z b

2

Q Q -=3,z b e r -=3,所以

)

,

20(,]

cos 2

cos 2

cos 21

cos 21

[

42

2

42

2

2

42

2

2

2

2

a R R b

a

b

a R

b a

R b

a

b

a R

b a Rb b R Rb b R Q ><≤-+

+

+++

++-

-+=

πθθ

θ

θ

θ

πε

?

12. 有一点电荷Q 位于两个互相垂直的接地导体平面所 围成的直角空间内,它到两个平面的距离为a 和b , 求

空间电势。

解:用电像法,可以构造如图所示的三个象电荷来代替两导

体板的作用。

--+-+-=

2

2

2

00

)

()()(1

[

4b z a y x x Q πε

?

2

2

2

0)

()()(1

b z a y x x ++-+--

)0,(,

])

()()(1

)

()()(1

2

2

2

02

2

2

0>++++-+-+++--

z y b z a y x x b z a y x x

13. 设有两平面围成的直角形无穷容器,其内充满电导率为σ的液

体。取该两平面为xz 面和yz 面在),,(000z y x 和),,(000z y x -两点分别置正负电极并通以电流I ,求导电液体中的电势。 解:本题的物理模型是,由外加电源在A 、B 两点间建立电场,使

溶液中的载流子运动形成电流I ,当系统稳定时,属恒定场,即0/=??t ρ,0=??J 。对于恒定的电流,可按静电场的

方式处理。于是在A 点取包围A 的高斯面,则

ε/Q d =??S E ,

由于??=S j d I

,E j σ=,所以

εσ//Q I =

可得:σε/I Q = 。

同理,对B 点有: Q I Q B --=σε/ 又,在容器壁上, 0=n j ,即无电流穿过容器壁。

由E j σ=可知,当0=n j 时,0=n E 。 所以可取如右图所示电像,其中上半空间三个像电荷Q ,下半空间三个像电荷 -Q ,

容器内的电势分布为:

(0(-

000

000)

,0z ,(0x Q )

,0z -(000x Q -

=???? ??=

8

1

41i i

i r Q πε

?202020)()()(1[4z z y y x x I -+-+-=πσ2

02

02

0)()()(1

z z y y x x ++-+--2

02

02

0)

()()(1

z z y y x x -+++-+

2

02

02

0)()()(1

z z y y x x ++++--

2

02

02

0)

()()(1

z z y y x x -+++++

2

02

02

0)()()(1

z z y y x x +++++-

2

02

02

0)

()()(1

z z y y x x -+-+++])

()()(1

2

02

02

0z z y y x x ++-++-

14. 画出函数dx x d /)(δ的图,说明)()(x p δρ??-=是一个位

于原点的偶极子的电荷密度。

解:(1)?

??=∞≠=0,0,0

)(x x x δ

x

x x x dx x d x ?-?+=→?)

()(lim )(0δδδ 1)0≠x 时,0/)(=dx x d δ

2)0=x 时,a ) 对于0>?x ,

-∞=?∞-=→?x dx

x d x 0lim

)(0

δ b ) 对于0

+∞

=?∞-=→?x

dx

x d x 0lim

)(0

δ

图象如右图所示。

()32133221

13211

1

1

1

)()()()()]()[(dx dx dx x x x x x x x p dV x p x x e e e x x ++??-=??-??δδδδ

321332211321

11

))(()()(dx dx dx x x x x x x x p x e e e ++??-=?δδδ?-=11

11

11)(dx dx x d x p x δe

应用

()dt

t d t t dt

t t d )()()(δδδ+=,即())()()(t dt

t t d dt

t d t

δδδ-=

,可得:

=-?

11

11

11)(dx dx x d x p x δe ()??+-11111111)()(dx x p x x d p x x δδe e

11111111)(x x x p p x x p e e e =+-=δ (x =0)

同理可得另外两项分别为22x p e 及33x p e ,所以,p x =?dV ρ,即 p 是一个位于原点的偶极子的电荷密度。

15. 证明:(1)a x ax /)()(δδ= )0(>a ,(若0

(2)0)(=x x δ

证明:1) 显然,当0≠x 时,a x ax /)()(δδ=成立;又

a

ax d ax a

a

ax d ax dx ax 1)()(1)()

()(=

=

=

?

?

?

+∞

-+∞

-+∞

-δδδ

1)(=?

+∞

-dx x δ

所以a x ax /)()(δδ=在全空间成立。 若0

a

ax d ax dx ax dx ax 1)()()()(-=---=

-=

?

?

?+∞

-+∞

-+∞

∞-δδδ

即,a x ax /)()(δδ-=

所以a x ax /)()(δδ=在全空间成立。 2) 由)(x δ的选择性证明。

0)()(≥=x x x x δδ ,而0)(0

==?

+∞∞

-=x x

dx x x δ

0)(=∴

x x δ ,进而0)(=x x δ 16. 一块极化介质的极化矢量为)'(x P ,根据偶极子静电势的公式,极化介质所产生的静

电势为?

?=

V

dV r

'4)'(3

0πε?r x P ,另外根据极化电荷公式)'('x P ?-?=p ρ及P

n ?=p

σ

极化介质所产生的电势又可表为?

??+

??-=S

V

r

d dV r

004')'('4)'('πεπε?S x P x P ,试证明以上

两表达式是等同的。 证明:由第一种表达式得

?

???

?

????=?=V

V dV r dV r '1')'(41

')'(410

3

0x P r x P πε

πε?

??

? ????+??=??? ????r r r 1''11'P P P ??

?

???

??

? ????+

??-=

?

?

V

V

dV

r dV r ')'('')

'('410

x P x P πε? ??

???

????

? ??+

??-=

??

')'(')

'('410S x P x P d r dV r

S V

πε

, 所以,两表达式是等同的。 实际上,继续推演有:

??

?

????+=

???

??

???+

??-=

????''41'')

'('41

00dS r dV r dS r dV r S p V p S V σρπε

πε?n

P x P 刚好是极化体电荷的总电势和极化面电荷产生的总电势之和。 17. 证明下述结果,并熟悉面电荷和面偶极层两侧电势和电场的变化。 (1)在面电荷两侧,电势法向微商有跃变,而电势是连续的。

(2)在面偶极层两侧,电势有跃变012/ε??P n ?=-,而电势的法向微商是连续的。 (各带等量正负面电荷密度±σ而靠的很近的两个面,形成面偶极层,而偶极矩密度l P σσ0

lim →∞

→=l )

证明:1)如图,由高斯定理可得:0/2εσS S E ??=??,

2/εσ=∴

E ,

0)2/()2/(0012=-=-z z εσεσ??

即,电势是连续的,但是

01112//εσ?z n n e E ==??,02222//εσ?z n n e E -==??

02211///εσ??=??-??∴

n n

即,电势法向微商有跃变 2)如图,由高斯定理可得:0/εσz E e = -σ

00

12/lim lim εσ??l n l E ?=?=-∴

→→l l z

0/εP n ?=

又 E =??n /1?,E =??n /2? 0//21=??-??∴

n n ??,即电势的法向微商是连续的。

18. 一个半径为R 0 的球面,在球坐标2/0πθ<<的半球面上电势为0?在πθπ<<2/的

半球面上电势为0?-,求空间各点电势。 提示:?+-=

-+1

01

111

2)

()()(n x P x P dx x P n n n ,1)1(=n P ,

?

?

?

??=?????-?????-==偶数)

(奇数)

(n n n n P n n ,642)

1(531)1(,0)0(2/

解:由题意,球内外电势均满足拉普拉斯方程:02

=?内?;02

=?外?

球内电势在0→r 时为有限,球外电势在∞→r 时为0,所以通解形式为:

=

n

n n

n P r a )(cos θ?内 ,∑

+=

n

n n n P r

b )(cos 1

θ?外 。

在球面上,0

0R r R r ===外

??,即 ?

??≤<-<≤===)2/(,)

2/0(,)(000

πθπ?πθ?θ?

f R r

将)(θf 按球函数展开为广义傅立叶级数,∑

=

n

n n P f f )(cos )(θθ

则 n n n n n f R b R a ==+-)

1(0

0,下面求n f 。 ?

?

+=

+=

θθθ?

θθθ0

1

1

sin )(cos 2

12cos )(cos )(2

120

d P n d P f n f n R n n

]sin )(cos sin )(cos [21

22

02

0??

-

+=π

π

π

θθθ?θθθ?d P d P n n n

])()([2

1

21

00

1

0?

?--+-

=dx x P dx x P n n n ??])()([2

121

1

0?

?-+

+=

dx x P dx x P n n n ?

由于)()1()(x P x P n n n -=-,所以

??

?++-++=

-++=

1

1

01

1

1

0)(])

1(1[2

12])()

1()([2

12dx x P n dx x P dx x P n f n n n n n n ??

当n 为偶数时,0=n f ; 当n 为奇数时,1

01101

2)

()(]

11[2

12+-++=

-+n x P x P n f n n n ?1

0110)]()([x P x P n n -+-=?

)12()

1(642)2(531)

1()]0()0([2

1

0110++?????-?????-=+-=--+n n n P P n n n ??

=

=n

n n R f a 0/)12()

1(642)2(531)

1(2

1

0++?????-?????--n n n R

n n ?

)

1(0

+=n n n R f b )12()

1(642)

2(531)

1(2

1

1

00++?????-?????--+n n n R n n ?

至此,可写出球内外的电势为

为奇数,内00

210(,

)(cos ))(12()1(642)2(531)1(R r n P R r n n n n n

n <++?????-?????-=-∑θ?? )(,

)(cos )

)(

12()

1(642)2(531)

1(01

02

1

0R r n P r

R n n n n n n >++?????-?????-=

+-∑为奇数,外θ??

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什 么? 3.请写出相对论中能量、动量的表达式以及能量、动量和静止质量的关 系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 21 2εεθθ= t a n t a n ,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两 侧电力线与法线的夹角。(15分) 四. 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,介电常数为1ε和 2ε,今在两板上接上电动势为U 的电池,若介质是漏电的,电导率分别为1 σ和2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω和介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔内的电场(分离变量法)。(15分)

3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向是均匀的,求可能传播的波型和相应的截止频率.(15分) 4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,他看到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:2 2 022 1A A j c t μ??-=-? 222201c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμμ?π π ?? ?? ''-- ? ?? ?? ? ''= =?? 2、由于电磁辐射的平均能流密度为222 3 2 0sin 32P S n c R θπε= ,正比于2 sin θ,反比于 2 R ,因此接收无线电讯号时,会感到讯号大小与大小和方向有关。 3 、能量:2 m c W = ;动量:),,m iW P u ic P c μ?? == ??? ;能量、动量和静止质量的关系为:22 22 02 W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 1 ε

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案

第 40 页 电动力学答案 第一章 电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=?? A A A A )()(2 2 1??-?=???A 解:(1))()()(c c A B B A B A ??+??=?? B A B A A B A B )()()()(??+???+??+???=c c c c B A B A A B A B )()()()(??+???+??+???= (2)在(1)中令B A =得: A A A A A A )(2)(2)(??+???=??, 所以 A A A A A A )()()(2 1 ??-??=??? 即 A A A A )()(2 2 1??-?=???A 2. 设u 是空间坐标z y x ,,的函数,证明: u u f u f ?=?d d )( , u u u d d )(A A ??=??, u u u d d )(A A ? ?=?? 证明: (1) z y x z u f y u f x u f u f e e e ??+??+??= ?)()()()(z y x z u u f y u u f x u u f e e e ??+??+??=d d d d d d u u f z u y u x u u f z y x ?=??+??+??=d d )(d d e e e (2) z u A y u A x u A u z y x ??+ ??+??=??)()()()(A z u u A y u u A x u u A z y x ??+??+??=d d d d d d u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (e e e e e e ??=??+??+???++=

电动力学试题库十及其答案

电动力学试题库十及其答案 简答题(每题5分,共15分)。 1 .请写出达朗伯方程及其推迟势的解. 2 .当您接受无线电讯号时,感到讯号大小与距离与方向有关,这就是为什 么? 3. 请写出相对论中能量、动量的表达式以及能量、动量与静止质量的关系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足:史宜w,其中i与2分别为两种介质的介电常数,1与2分别为界面两tan 1 1 侧电力线与法线的火角。(15分) 四、综合题(共55分)。 1. 平行板电容器内有两层介质,它们的厚度分另U为11与12,介电常数为1与2,今在两板上接上电动势为U的电池,若介质就是漏电的,电导率分别为1与2,当电流达到稳包时,求电容器两板上的自由电荷面密度f与介质分界面上的自由电荷面密度f。(15分) 2. 介电常数为的均匀介质中有均匀场强为E。,求介质中球形空腔内的电场(分离变量法)。(15分) 3. 一对无限大平行的理想导体板,相距为d,电磁波沿平行丁板面的z轴方向传播,设波在x方向就是均匀的,求可能传播的波型与相应的截止频率.(15分)

电动力学试题库十及其答案 4.一把直尺相对丁坐标系静止,直尺与x轴火角为,今有一观察者以速度v 沿x轴运动,她瞧到直尺与x轴的火角' 有何变化? (10分)二、简答题r、 (2v) 1、达朗伯万程:A i 2A c t2 ,八v v 推退势的 解:A x,t v,t v,t x,t —dV v 2、由于电磁辐射的平均能流密度为S32 2 c3R2 sin2音,正比于 sin2,反比于R2, 因此接收无线电讯号时,会感到讯号大小与大小与方向有关。 2 3、能量:W :m。:. i u2c2 m 。 ,1 u2c2 v u,ic V iW …,一… P,—;能重、动重与静止 c 质量的关系为:P2W 2 c 2 2 m b c 三、证明:如图所示 在分界面处,由边值关系可得 切线方向 法线万向 v v 又DE 由⑴得: E i sin i 由⑵(3)得: i E i cos E it D in E2t D2n E2sin i 2 E2 cos (5) 由⑷(5)两式可得:

电动力学习题解答

第二章 静电场 1. 一个半径为R 的电介质球,极化强度为2 /r K r P =,电容率为ε。 (1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球的电势; (4)求该带电介质球产生的静电场总能量。 解:(1)P ?-?=p ρ2 222/)]/1()/1[()/(r K r r K r K -=??+??-=??-=r r r )(12P P n -?-=p σR K R r r /=?==P e (2))/(00εεεε-=+=P P E D 内 200)/()/(r K f εεεεεερ-=-??=??=P D 内 (3))/(/0εεε-==P D E 内内 r r f r KR r V e e D E 2002 00 )(4d εεεεπερε-= = = ?外 外 r KR r )(d 00εεεε?-= ?=?∞r E 外外 )(ln d d 0 0εε εε?+-= ?+?=??∞r R K R R r r E r E 外内内 (4)???∞-+-=?=R R r r r R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 2 0))(1(2εεεεπε-+=K R 2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势: (1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为 极轴,球心为原点建立球坐标系。 当0R R >时,电势?满足拉普拉斯方程,通解为 ∑++ =n n n n n n P R b R a )(cos )(1 θ? 因为无穷远处 0E E →,)(cos cos 10000θ?θ??RP E R E -=-→ 所以 00?=a ,01E a -=,)2(,0≥=n a n 当 0R R →时,0Φ→? 所以 010 1000)(cos )(cos Φ=+-∑+n n n n P R b P R E θθ? 即: 002010000/, /R E R b R b =Φ=+?

电动力学试题及其答案(3)

电动力学(C) 试卷 班级 姓名 学号 题号 一 二 三 四 总 分 分数 一、填空题(每空2分,共32分) 1、已知矢径r ,则 ×r = 。 2、已知矢量A 和标量 ,则 )(A 。 3、一定频率ω的电磁波在导体内传播时,形式上引入导体的“复电容率”为 。 4、在迅变电磁场中,引入矢势A 和标势 ,则E = , B = 。 5、麦克斯韦方程组的积分形 式 、 、 、 。 6、电磁场的能流密度为 S = 。 7、欧姆定律的微分形式为 。 8、相对论的基本原理 为 , 。 9、事件A ( x 1 , y 1 , z 1 , t 1 ) 和事件B ( x 2 , y 2 , z 2 , t 2 ) 的间隔为 s 2 = 。

10、位移电流的表达式为 。 二、判断题(每题2分,共20分) 1、由j B 0 可知,周围电流不但对该点的磁感应强度有贡献,而且对该点磁感应强度的旋度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波可以是横电波,也可以是横磁波。( ) 4、任何相互作用都是以有限的速度传播的。( ) 5、由0 j 可知,稳定电流场是无源场。。( ) 6、如果两事件在某一惯性系中是同时同地发生的,在其他任何惯性系中它们必同时发生。( ) 7、平面电磁波的电矢量和磁矢量为同相位。( ) 8、E 、D 、B 、H 四个物理量中只有E 、B 为描述场的基本物理量。( ) 9、由于A B ,虽然矢势A 不同,但可以描述同一个磁场。( ) 10、电磁波的亥姆霍兹方程022 E k E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性和微分性,证明 )cos()]sin([00r k E k r k E 式中r 为矢径,k 、0E 为常矢量。 2、已知平面电磁波的电场强度j t z c E E )sin(0 ,求证此平面电磁波的 磁场强度为 i t z c c E B )sin(0 四、计算题(每题10分,共30分) 1、迅变场中,已知)(0t r k i e A A , ) (0t r k i e ,求电磁场的E 和B 。 2、一星球距地球5光年,它与地球保持相对静止,一个宇航员在一年

电动力学试题库一及答案

福建师范大学物理与光电信息科技学院 20___ - 20___ 学年度学期____ 级物理教育专业 《电动力学》试题(一) 试卷类别:闭卷 考试时间:120分钟 姓名______________________ 学号____________________ 一.判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1.电磁场也是一种物质,因此它具有能量、动量,满足能量动量守恒定律。 ( ) 2.在静电情况,导体内无电荷分布,电荷只分布在表面上。 () 3.当光从光密介质中射入,那么在光密与光疏介质界面上就会产生全反射。

() 4.在相对论中,间隔2S在任何惯性系都是不变的,也就是说两事件时间先后关系保持不变。 () 5.电磁波若要在一个宽为a,高为b的无穷长矩形波导管中传播,其角 频率为 2 2 ? ? ? ? ? + ? ? ? ? ? ≥ b n a m με π ω () 二.简答题。(每题5分,共15分) 1.写出麦克斯韦方程组,由此分析电场与磁场是否对称为什么 2.在稳恒电流情况下,有没有磁场存在若有磁场存在,磁场满足什么方程 3.请画出相对论的时空结构图,说明类空与类时的区别.

三. 证明题。(共15分) 从没有电荷、电流分布的麦克斯韦方程出发,推导真空中的E 、B 的波动方程。 四. 综合题。(共55分) 1.内外半径分别为1r 和2r 的无穷长空心导体圆柱,沿轴向流有稳恒均 匀自由电流f j ,导体的磁导率为μ,求磁感应强度和磁化电流。(15分) 2. 有一个很大的电解槽中充满电导率为2σ的液体,使其中流着均匀 的电流f j ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和 面电荷分布。(分离变量法)(15分) 3. 有带电粒子沿z 轴作简谐振动t i e z z ω-=0,设c z <<ω0,求它的辐 射场E 、B 和能流S 。(13分) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物 时,看见其避雷针跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时间差。该建筑

《电动力学(第二版)》(郭硕鸿)第二章习题

第二章 习 题 1. ε ε0 R (1) 2 2 323222323211r K r K r r K r K r r K r K r K r K P -=-?--=-?--=??-??? ? ???-=??? ????-=?-?=r r r r r P ρ ()2 P R K K R R σ∧ ∧ =?=?=r P R n r (2) E E P 0001εεεεχ??? ? ??-==e ()2 K r εε=ε= =ε-εε-ε00P r D E () 2r K f 0r D εεερ= ??-=??= (3) R r <<0 ()r K r E d r 2 2 4? ??-==?εεεπε0S D ()r K E 0εε-= R r > ()r K r E d R 2 2 04???-==?εεεπε0S D ()2 00r KR E εεεε-= ()()r KR dr r KR r out 002 00 εεεεεεεε?-=-=? ∞ ()()()()??? ? ??+??? ??-= ? ? ? ??-+-=-+-=??∞ 000000200ln ln εεεεεεεεεεεεεεεε?r R K r R K K dr r K dr r KR R R r in (4) ()()()()2 000202002 0200202 02 00212ln ln 2ln ln 2ln 24ln 2121 ? ??? ??-???? ? ?+=???? ??++--=???? ? ?++--= ???? ? ?+??? ??-= ???? ??+??? ??--== ??????εεεεπεεεεεπεεεεεπεεεεεπεπεεεεεεε?ρK R R R R R R R K dr R r K dr r R K dr r r R K r K dV W R R R in f e 0 2. (1) 边界条件:设未放置导体球时,原点电位 为0?,任意点电位则为 ?-=?-=z R E d 0 0001cos θ???0l E 球外空间0=ρ,电位?满足拉普拉斯方程 02=?? 解为:()∑∞ =+??? ? ? +=01cos n n n n n n P R b R a θ? 放入导体球后:01, ??→∞→R

电动力学习题解答5

第五章 电磁波的辐射 1. 若把麦克斯韦方程租的所有矢量都分解为无旋的(纵场)和无散的(横场)两部分,写出E 和B 的这两部分在真空中所满足的方程式,并证明电场的无旋部分对应于库仑场。 解:真空中的麦克斯韦方程组为 t ?-?=??/B E , (1) 0/ερ=??E , (2) t ??+=??/000E J B εμμ, (3) 0=??B (4) 如果把方程组中所有矢量都分解为无旋的纵场和无散的横场,并分别用角标L 和T 表示, 则:由于0=??B ,所以B 本身就是无散场,没有纵场分量,即 0=L B ,T B B =; T L E E E +=,0=??L E ,0=??T E ; ! T L J J J +=,0=??L J ,0=??T J ; 由(1)得:t T T T L ?-?=??=+??/)(B E E E (5) 由(2)得:0/)(ερ=??=+??L T L E E E (6) 由(3)得:t L L T L T ?+?++=??/)()(000E E J J B εμμ )/()/(000000t t T T L L ??++??+=E J E J εμμεμμ (7) 由电荷守恒定律t ?-?=??/ρJ 得:)/(/0t t L L ???-?=?-?=??E J ερ 又因为 )/(00t L L ???-?==??E J ε,所以 t L L ??-=/0E J ε,即 0/0=??+t L L E J ε (8) (7)式简化为t T T T ??+=??/000E J B εμμ (9) 所以麦克斯韦方程租的新表示方法为: 】 ????? ????=??+==????+=???-?=??0 /0///00 000t t t L L L L T T T T T E J B E E J B B E εερεμμ (10) 由0=??L E 引入标势?,?-?=L E ,代入0/ερ=??L E 得, 02/ερ?-=? 上式的解就是静止电荷在真空中产生的电势分布,所以L E 对应静止电荷产生的库仑场。 2. 证明在线性各向同性均匀非导电介质中,若0=ρ,0=J ,则E 和B 可完全由矢势A 决定。若取0=?,这时A 满足哪两个方程 解:在线性各向同性均匀非导电介质中,若0=ρ,0=J ,则麦氏方程表示为: t ?-?=??/B E (1) t ??=??/D H (2) 0=??D (3) 0=??B (4)

电动力学期末考试试卷及答案五

. . 20___ - 20___ 学年度 学期 ____ 级物理教育专业 《电动力学》试题(五) 试卷类别:闭卷 考试时间:120分钟 ______________________ 学号____________________ 一. 判断以下概念是否正确,对的打(√),错的打(×)(共15分,每 题3分) 1. 库仑力3 04r r Q Q F πε '=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ 。 ( )

. . 4. 在介质的界面两侧,电场强度E 切向分量连续,而磁感应强度B 法向分 量 连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 二. 简答题(每题5分,共15分)。 1.如果0>??E ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ,能流密度s 之间的关系。 三. 证明题(共15分)。

多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体、外空间的B 、H ; (2)体磁化电流密度M j ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔的电势 和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B 以及能流密度平均值S 。(15分)

电动力学第二章答案

1. 一个半径为R 的电介质球,极化强度为2 /r K r P =,电容率为ε。 (1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势; (4)求该带电介质球产生的静电场总能量。 解:(1)P ?-?=p ρ2222/)]/1()/1[()/(r K r r K r K -=??+??-=??-=r r r )(12P P n -?-=p σR K R r r /=?==P e (2))/(00εεεε-=+=P P E D 内 200)/()/(r K f εεεεεερ-=-??=??=P D 内 (3))/(/0εεε-==P D E 内内 r r f r KR r V e e D E 200200)(4d εεεεπερε-= = = ?外 外 r KR r )(d 00εεεε?-= ?=?∞r E 外外 )(ln d d 0 0εεεε?+-=?+?=??∞r R K R R r r E r E 外内内 (4)???∞-+-=?=R R r r r R K r r r K V W 42200222022 202d 4)(21d 4)(21d 21πεεεεπεεεE D 2 0))(1(2εεεεπε-+=K R 2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1) 导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为 极轴,球心为原点建立球坐标系。 当0R R >时,电势?满足拉普拉斯方程,通解为 ∑++ =n n n n n n P R b R a )(cos )(1 θ? 因为无穷远处0E E →,)(cos cos 10000θ?θ??RP E R E -=-→ 所以00?=a ,01E a -=,)2(,0≥=n a n 当0R R →时,0Φ→? 所以010 1000)(cos )(cos Φ=+-∑+n n n n P R b P R E θθ? 即:002 010000/, /R E R b R b =Φ=+? 所以) 2(,0,),(3 010000≥==-Φ=n b R E b R b n ? ?? ?≤Φ>+-Φ+-=)() (/cos /)(cos 00 02 3 0000000R R R R R R E R R R E θ?θ?? (2)设球体待定电势为0Φ,同理可得

电动力学题库

1.半径为R的均匀磁化介质球,磁化强度为,则介质球的总磁矩为 A. B. C. D. 0 答案:B 2.下列函数中能描述静电场电场强度的是 A. B. C. D.(为非零常数) 答案:D 3.充满电容率为的介质平行板电容器,当两极板上的电量(很小),若电容器的电容为C,两极板间距离为d,忽略边缘效应,两极板间的位移电流密度为: A. B. C. D. 答案:A 4.下面矢量函数中哪一个不能表示磁场的磁感强度式中的为非零常数 A.(柱坐标) B. C. D. 答案:A 5.变化磁场激发的感应电场是 A.有旋场,电场线不闭和 B.无旋场,电场线闭和 C.有旋场,电场线闭和 D. 无旋场,电场线不闭和

6.在非稳恒电流的电流线的起点.终点处,电荷密度满足 A. B. C. D. 答案:D 7.处于静电平衡状态下的导体,关于表面电场说法正确的是: A.只有法向分量; B.只有切向分量 ; C.表面外无电场 ; D.既有法向分量,又有切向分量 答案:A 8.介质中静电场满足的微分方程是 A. B.; C. D. 答案:B 9.对于铁磁质成立的关系是 A. B. C. D. 答案:C 10.线性介质中,电场的能量密度可表示为 A. ; B.; C. D.

11.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极化电荷体密度 ;与垂直的表面处的极化电荷面密度分别等于 和。答案: 0, A, -A 12.已知真空中的的电位移矢量=(5xy+)cos500t,空间的自由电荷体密度为答案: 13.变化磁场激发的感应电场的旋度等于。答案: 14.介电常数为的均匀介质球,极化强度A为常数,则球内的极化电荷密度为,表面极化电荷密度等于答案0, 15.一个半径为R的电介质球,极化强度为,则介质中的自由电荷体密度 为 ,介质中的电场强度等于. 答案: 22. 解: (1)由于电荷体系的电场具有球对称性,作半径为的同心球面为高斯面,利用高斯定理 当 0<r<时,

电动力学-第二章练习题

第二章 一、选择题 1、 静电场的能量密度等于( ) A ρ?21 B E D ?2 1 C ρ? D E D ? 2、下列函数(球坐标系a 、b 为非零常数)中能描述无电荷区电势的是( ) A a 2r B a b r +3 C ar(2r +b) D b r a + 3、真空中两个相距为a 的点电荷1q 和2q ,它们之间的相互作用能是( ) A a q q 0218πε B a q q 0214πε C a q q 0212πε D a q q 02132πε 4、电偶极子p 在外电场e E 中所受的力为( ) A (??P )e E B —?(?P e E ) C (P ??)e E D (e E ??)P 5、电导率为1σ和2σ,电容率为1ε和2ε的均匀导电介质中有稳恒电流,则在两导电介质面上电势的法向微商满足的关系为( ) A n n ??=??21?? B σ?ε?ε-=??-??n n 1122 C n n ??=??2211?σ?σ D n n ??=??122211σσ?σ 6. 用点像法求接静电场时,所用到的像点荷___________ 。 A) 确实存在;B) 会产生电力线;C) 会产生电势;D) 是一种虚拟的假想电荷。 7.用分离变量法求解静电场必须要知道__________ 。 A) 初始条件;B) 电场的分布规律;C) 边界条件;D) 静磁场。 8.设区域V 内给定自由电荷分布)(x ρ,S 为V 的边界,欲使V 的电场唯一确定,则需要给定( )。 A. S φ或S n ??φ B. S Q C. E 的切向分量 D. 以上都不对 9.设区域V 内给定自由电荷分布()ρx ,在V 的边界S 上给定电势s ?或电势的法向导数 s n ???,则V 内的电场( ) A . 唯一确定 B. 可以确定但不唯一 C. 不能确定 D. 以上都不对 10.导体的静电平衡条件归结为以下几条,其中错误的是( ) A. 导体内部不带电,电荷只能分布于导体表面 B. 导体内部电场为零 C. 导体表面电场线沿切线方向 D. 整个导体的电势相等 11.一个处于x ' 点上的单位点电荷所激发的电势)(x ψ满足方程( ) A. 2()0x ψ?= B. 20()1/x ψε?=- C. 201()()x x x ψδε'?=- - D. 201()()x x ψδε'?=- 12.对于均匀带电的球体,有( )。 A. 电偶极矩不为零,电四极矩也不为零 B. 电偶极矩为零,电四极矩不为零 C. 电偶极矩为零,电四极矩也为零 D. 电偶极矩不为零,电四极矩为零

电动力学习题集答案

电动力学第一章习题及其答案 1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普 适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y y ')j (z z ')k 为从源点指向场点的矢量 , E , k 为常矢量,则 ! (r 2 a ) =(r 2 a ) (r a 2r a , )a ) ddrr r a 2r r r 2 r i j — k (x x ') (y y ') (z z ') i j k — ! 2(x x ') (x x ') ,同理, ? x (x x ') 2 (y y ') 2 (z z ') 2 / r 2 (x x ')(y y ')(z z ') (y y ') (x x ') ( (y y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') # 2 , z 2 2 (z z ') r 【 r e e e x x x ! r (x-x') r (y-y') y (z-z') 3 z , ' x y z x x ' y y ' z z ' 0, x (a r ) a ( r ) 0 , : ) r r r r r r r 0 r rr ( r 1 1 r 《 a , , ( ) [ a (x -x' )] [ a (y - y')] … j [a (z -z')] a r i k x y z * r r r r 1 r 1 r … r 3 r 2 3 r , ( A ) __0___. r r , [E sin(k r )] k E 0 cos(k r ) __0__. (E 0e ik r ) , 当 r 0 时 , ! (r / r ) ik E 0 exp(ik r ) , [rf (r )] _0_. [ r f ( r )] 3f (r )r # s 3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内, 若已知矢量场在V 内各点的旋度和散 度,以及该矢量在边界上的切向或法向分量,则 在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满足 4. 电荷守恒定律的微分形式为 — J t J 0 . 5. 场强与电势梯度的关系式为, E .对电偶极子而言 ,如已知其在远处的电势为

电动力学习题解答6

第六章 狭义相对论 1. 证明牛顿定律在伽利略交换下是协变的,麦克斯韦方程在伽利略变换下不是协变的。 证明:根据题意,不妨分别取固着于两参考系的直角坐标系,且令t =0时,两坐标系对应 轴重合,计时开始后,'∑系沿Σ系的x 轴以速度v 作直线运动,根据伽利略变换有: vt x x -=',y y =',z z =',t t =' 1)牛顿定律在伽利略变换下是协变的 以牛顿第二定律22dt d m x F =为例,在Σ系下,22dt d m x F = Θvt x x -=',y y =',z z =',t t =' ∴'' ']',','[],,[222 22222F x x F ==+===dt d m dt z y vt x d m dt z y x d m dt d m 可见在'∑系中牛顿定律有相同的形式2 2' 'dt d m x F =,所以牛顿定律在伽利略变换下 是协变的。 2)麦克斯韦方程在伽利略变换下不是协变的 以真空中的麦氏方程t ?-?=??/B E 为例,设有一正电荷q 位于O 点并随'∑系运动,在'∑系中q 是静止的,故: r r q e E 2 0' 4'πε= , (1) 0'=B (2) 于是方程'/'''t ?-?=??B E 成立,将(1)写成直角分量形式: ])'''(')'''(')'''('[4''2 3 222'23222'2 32220z y x z y x z z y x y z y x x q e e e E ++++++++=πε 由伽利略变换关系,在∑中有: y x z y vt x y z y vt x vt x q e e E 2 3 2222 32220])[(])[({4++-+++--= πε }])[(2 3 222z z y vt x z e ++-+ ])()()[(])[(3 42 3 2220z y x y vt x vt x z z y z y vt x q e e e E --++-+-++--=??∴πε 可见E ??不恒为零。又在Σ系中观察,q 以速度x v e 运动,故产生电流x qv e J =,于是 有磁场R qv πμ2/0=B ,(R 是场点到x 轴的距离)此时,有0/=??-t B ,于是 t ?-?≠??/B E 故麦克斯韦方程在伽利略变换下不是协变的。 2. 设有两根互相平行的尺,在各自静止的参考系中的长度均为,它们以相同速率v 相对于某一参考系运动,但运动方向相反,且平行于尺子。求站在一根尺上测量另一根尺的长度。 解:根据相对论速度交换公式可得2'∑系相对于1'∑的速度大小是 )/1/(2'22c v v v += (1)

电动力学试题及其答案

一、填空题(每空2分,共32分) 1、已知矢径r ,则 r = 。 2、已知矢量A 与标量 ,则 )(A 。 3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。 4、在迅变电磁场中,引入矢势A 与标势 ,则E = , B = 。 5、麦克斯韦方程组的微分形式 、 、 、 。 6、电磁场的能量密度为 w = 。 7、库仑规范为 。 8、相对论的基本原理为 , 。 9、电磁波在导电介质中传播时,导体内的电荷密度 = 。 10、电荷守恒定律的数学表达式为 。 二、判断题(每题2分,共20分) 1、由0 E 可知电荷就是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波就是横电磁波。( ) 4、任何相互作用都不就是瞬时作用,而就是以有限的速度传播的。( ) 5、只要区域V 内各处的电流密度0 j ,该区域内就可引入磁标势。( ) 6、如果两事件在某一惯性系中就是同时发生的,在其她任何惯性系中它们必不同时发生。( ) 7、在0 B 的区域,其矢势A 也等于零。( ) 8、E 、D 、B 、H 四个物理量均为描述场的基本物理量。( ) 9、由于A B ,矢势A 不同,描述的磁场也不同。( ) 10、电磁波的波动方程012222 E t v E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性与微分性,证明 0)( r 式中r 为矢径, 为任一标量。 2、已知平面电磁波的电场强度i t z c E E )sin(0 ,求证此平面电磁波的磁场强度为 j t z c c E B )sin(0 四、计算题(每题10分,共30分) 1、迅变场中,已知)cos(0t r K A A , )cos(0 t r K ,求电磁场的E 与B 。 2、一长度为80厘米的杆,沿其长度方向以0、8 c 的速率相对观察者运动,求该杆首、尾端通过观察者 时的时间间隔。

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当您接受无线电讯号时,感到讯号大小与距离与方向有关,这就是为什么? 3.请写出相对论中能量、动量的表达式以及能量、动量与静止质量的关系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 2 12εεθθ=tan tan ,其中1ε与2ε分别为两种介质的介电常数,1θ与2θ分别为界面两侧电力线与法线的夹角。(15分) 四、 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 与2l ,介电常数为1ε与2ε,今在两板上接上电动势为U 的电池,若介质就是漏电的,电导率分别为1σ与2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω与介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ? ,求介质中球形空腔内的电场(分离变量法)。(15分) 3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向就是均匀的,求可能传播的波型与相应的截止频率.(15分)

4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,她瞧到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:220221A A j c t μ??-=-?v v v 2222 1c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμ μ?π π ???? ''-- ? ? ??? ?''==? ? v v v v v v 2、由于电磁辐射的平均能流密度为22 232 0sin 32P S n c R θπε= v &&v v ,正比于2sin θ,反比于2R ,因此接收无线电讯号时,会感到讯号大小与大小与方向有关。 3、能量 :2W = ;动量 :),,iW P u ic P c μ?? = = ???v v ;能量、动量与静止质量的关系为:22 22 02W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 又 D E ε=v v (3) 由(1)得: 1122sin sin E E θθ= (4) 由(2)(3)得: 111222cos cos E E εθεθ= (5) 由(4)(5)两式可得: 1 ε

电动力学习题解答1

电动力学习题解答 若干运算公式的证明 ?ψψ??ψψ??ψψ??ψ?+?=?+?=?+?=?c c c c )()()( f f f f f f f ??+??=??+??=??+??=?????????)()()()()(c c c c f f f f f f f ??+??=??+??=??+??=?????????)()()()()(c c c c )()()( g f g f g f ???+???=???c c )()(g f f g ???-???=c c )()(g f g f ???-???= )()()(g f g f g f ???+???=???c c g f f g g f f g )()()()(??-??+??-??=c c c c g f f g g f f g )()()()(??-??+??-??= )()()(c c g f g f g f ??+??=??)()(c c g f f g ??+??= (利用公式b a c b a c c b a )()()(?+??=?得) f g f g g f g f )()()()(??+???+??+???=c c c c f g f g g f g f )()()()(??+???+??+???= 第一章 电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=?? A A A A )()(2 21??-?=???A 解:(1))()()(c c A B B A B A ??+??=?? B A B A A B A B )()()()(??+???+??+???=c c c c B A B A A B A B )()()()(??+???+??+???= (2)在(1)中令B A =得: A A A A A A )(2)(2)(??+???=??, 所以 A A A A A A )()()(21??-??=??? 即 A A A A )()(221??-?=???A 2. 设u 是空间坐标z y x ,,的函数,证明: u u f u f ?= ?d d )( , u u u d d )(A A ??=??, u u u d d )(A A ??=?? 证明: (1)z y x z u f y u f x u f u f e e e ??+??+??= ?)()()()(z y x z u u f y u u f x u u f e e e ??+??+??=d d d d d d u u f z u y u x u u f z y x ?=??+??+??=d d )(d d e e e

电动力学期末考试试卷及答案五

20___-20___学年度学期____级物理教育专业 《电动力学》试题(五) 试卷类别:闭卷考试时间:120分钟 姓名______________________学号____________________ 一. 判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3 分) 1. 库仑力3 04r r Q Q F πε??'=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。() 2. 电磁场有能量、动量,在真空中它的传播速度是光速。() 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为:t j ??=??/ρ? 。() 4. 在介质的界面两侧,电场强度E ?切向分量连续,而磁感应强度B ? 法向分量连续。() 5.在相对论中,粒子能量,动量以及静止质量的关系为:42022c m c P W +=。()

二. 简答题(每题5分,共15分)。 1. 如果0>??E ρ ,请画出电力线方向图,并标明源电荷符号。 2. 当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3. 以真空中平面波为例,说明动量密度g ρ,能流密度s ρ 之间的关系。 三. 证明题(共15分)。 多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -=,其中122)/1(--=c v γ;v 为光源运动速度。(15 分) 四.综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体内、外空间的B ?、H ? ; (2)体内磁化电流密度M j ? ;(15分)。

电动力学试题及参考答案

电动力学试题及参考答案 一、填空题(每空2分,共32分) 1、已知矢径r ,则 r = 。 2、已知矢量A 和标量φ,则=??)(A φ 。 3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。 4、在迅变电磁场中,引入矢势A 和标势φ,则E = , B = 。 5、麦克斯韦方程组的微分形式 、 、 、 。 6、电磁场的能量密度为 w = 。 7、库仑规范为 。 8、相对论的基本原理为 , 。 9、电磁波在导电介质中传播时,导体内的电荷密度 = 。 10、电荷守恒定律的数学表达式为 。 二、判断题(每题2分,共20分) 1、由0 ερ =??E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该 点散度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波是横电磁波。( ) 4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。( ) 5、只要区域V 内各处的电流密度0=j ,该区域内就可引入磁标势。( ) 6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。( ) 7、在0=B 的区域,其矢势A 也等于零。( ) 8、E 、D 、B 、H 四个物理量均为描述场的基本物理量。( ) 9、由于A B ??=,矢势A 不同,描述的磁场也不同。( ) 10、电磁波的波动方程012222 =??-?E t v E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性和微分性,证明 0)(=????φr 式中r 为矢径,φ为任一标量。 2、已知平面电磁波的电场强度i t z c E E )sin(0ωω -=,求证此平面电磁波的磁场强度为 j t z c c E B )sin(0ωω-=

相关文档
最新文档