叶轮整体加工

叶轮整体加工
叶轮整体加工

基于UG NX6.0的整体叶轮的多轴加工技术

摘要:叶轮加工是当今多轴联动数控加工最常见的实例,也是数控加工的难点之一。本文详细地介绍了叶轮加工的全过程及加工过程的注意事项,为复杂产品的模型建立和多坐标数控编程提供了设计思路和方法。

关键词:UG;整体叶轮;多轴加工

Multi Axis NC Machining for Whole Impeller Based on UG NX4.0

The machining for whole impeller is very universal today, and how to machine it effectively and accurately has been a chanllenge in cnc machining. It has been introduced detailedly the whole process of machining for the impeller in this paper. it can give a good advice to machining the complex part in the multi-axis NC.

Key words: UG; whole impeller; multi axis machining

引言

作为动力机械的关键部件,整体式叶轮广泛应用于航天航空等领域,其加工技术一直是制造业中的一个重要课题。叶轮的加工质量直接影响整机的动力性能和机械效率,数控加工是目前国内外广泛采用的加工整体三元叶轮的方法。整体叶轮的加工难点主要表现在: ①三元整体叶轮的形状复杂,其叶片多为非可展扭曲直纹面。②整体叶轮相邻叶片的空间较小,而且在径向上设有半径的减小通道越来越窄,因此加工叶轮叶片曲面时除了刀具与被加工叶片之间发生干涉外,刀具极易与相邻叶片发生干涉。③刀位规划时的约束条件多,自动生成无干涉刀位轨迹较困难[ 1 ] 。前国外一般应用整体叶轮的五坐标加工专用软件,如美国NREC公司的MAX25,MAX2AB 叶轮加工专用软件等。目前,我国大多数生产叶轮的厂家多数采用国外大型CAD/CAM软件,如UG NX、CATIA、MasterCAM等来加工整体叶轮[ 2 ] 。本文选用目前流行且功能强大的UG NX6.0 对复杂曲面整体叶轮进行加工仿真研究。

1 整体叶轮数控加工工艺

根据叶轮的几何结构特征和使用要求(如图1) ,其基本加工工艺流程为: ①在锻压铝材上车削加工回转体的基本形状;②外型整体粗加工;③流道粗加工;④叶片精加工;⑤对底部倒圆进行清根。

图1 叶轮几何结构特征

2 机床准备

DMU-100T是从德国DMG 公司引进的一台全闭环五轴联动数控加工中心, 采用主轴摆动+圆工作台旋转结构。行程参数为: X轴1080mm, Y轴710mm, Z轴710mm, B轴(主轴摆动)103°, C 轴( 工作台旋转)360°。该机床具有转速高、联动结构稳定性高、五轴联动技术成熟的特点。机床控制系统采用HEIDENHAIN iTNC 530 系统。利用UG/Post Builder 软件构建DMU-100T机床专用的后置理。

3 刀具的选择

为提高加工效率,在进行流道开粗和流道半精加工过程中尽可能选用大直径球头铣刀,但是也要注意使刀具直径小于两叶片间最小距离;在叶片精加工过程中,应在保证不过切的前提下尽可能选择大直径球头刀,即保证刀具半径大于流道和叶片相接部分的最大倒圆半径。在对流道和相邻叶片的交接部分进行清根时,选择的刀具半径小于流道和叶片相接部分的最小倒圆半径。

4 数控编程

4.1 粗加工

粗加工是以快速切除毛坯余量为目的,其考虑的重点是加工效率,要求大的进给量和尽可能大的切削深度。以便在较短的时间内切除尽可能多的余量,粗加工对表面质量的要求不高,因此,提高粗加工效率对曲面加工效率及降低加工成本具有重要意义。在UG加工状态下,在“创建操作”对话框中,选择类型“MIL-CONTOUR”建立机床控制操作,再选择子类型“CAVITY-MILL” 型腔铣。这是三轴联动的粗加工模式,选用直径为25R5的圆角铣刀加工,切削方式采用“ 跟随部件”,背吃刀量的0.6mm,刀具与刀具之间的步距为刀具直径的65%,部件侧面与底面留余量0.5mm。其刀具路径如图2所以示。

图2 整体粗加工路径

4.2 开槽与扩槽

叶片扭曲且包角较大, 刀具要在通道内要合理摆动,使得刀具尽可能地接近叶片的两侧面而又不过切轮毂及轮盖, 采用通常的刀轴驱动方法很难实现。刀轴插补( ToolAxis Interpolation) 这一功能对于叶轮通道加工非常有用,它通过在叶片与轮毂的交线上定义一系列的矢量以控制刀轴, 轮毂面上其余刀具位置点的刀轴矢量由U、V 双向线性插值或样条插值获得。这样, 刀轴能很好地按照加工的需要而得到控制, 在不过切的情况下, 最大限度地减少叶片面与轮毂之间的残留区。边界矢量的定义是一个十分细致的工作, 其基本原则是: 避免刀轴的突变, 保证刀轴平滑变化。本文的刀轴控制矢量如图3在创建操作对话框中,选择类型

“mill_multi_zxis” 多轴铣加工操作建立模板,选择“VARIABLE_CONTOUR”子类型变轴铣。

几何体选择整体叶轮,为了避免有过切现象,选择流道两侧的面为干涉检查面,选择驱动方式为“表面积”,刀轴选择“ 插补”,选用直径为20mm的球刀加工,选择多重深度切削,步进方式采用增量式,增量值为0.5mm,部件留余量为0.3mm。加工时需要考虑进刀退刀的问题,在非切削参数设置界面,选择“传递/快速”区域之间下拉条中定义好逼近、离开、移刀运动的设置,其中“安全设置”设置为“球”半径选择250mm. 生成的刀具路径如图4所以示。用刀路变换命令加工其余流道曲面。

图4 流道粗加工路径

4.3 叶片精加工

SWARF方法也叫侧刃或表面驱动法, SWARF驱动刀轴随叶片直纹面的U向或V向连续变化, 刀具底部接触轮毂面。侧面接触叶片表面形成单条刀路, 从而实现叶片的精加工。

在创建操作对话框中,选择类型“mill_multi_zxis” 多轴铣加工操作建立模板,选择“VARIABLE_CONTOUR”子类型变轴铣。选择驱动方式为“表面积”,为了加工到位,曲面百分比方法设置如图5。刀轴选择“侧刃驱动”,切削模式选择单向。选用直径为20mm的球刀加工,部件留余量为0。产生的刀路路径如图6所示,用刀路变换命令加工其余叶轮曲面。

图5 曲面百分比设置

图6 叶轮精加路径

4.4 流道精加工

同样选择类型“mill_multi_zxis”多轴铣加工操作建立模板,选择“VARIABLE_CONTOUR”子类型变轴铣。几何体选择整体叶轮,为了避免有过切现象,选择流道两侧的面为干涉检查面,选择驱动方式为“表面积”,刀轴选择“插补”步进方式采用“残余波峰高度”,残余高度为0.005,选用直径为20mm的球刀加工。产生的刀路路径如图7所示,用刀路变换命令加工其余流道曲面。

图7 流道精加工刀具路径

4.5 叶片底部圆角清根加工

同样选择类型“mill_multi_zxis”多轴铣加工操作建立模板,选择“VARIABLE_CONTOUR”子类型变轴铣。几何体选择根部圆角部位,选择驱动方式为“表面积”,刀轴选择“相对于驱动体”步进方式采用数字控制模式,步数为15步,设置非切削移动参数→传递/连接选项→区域之间→“安全设置”为“球”,半径选择200mm,刀具使用R8的球刀。产生的刀路路径如图8所示用刀具路径,变换命令加工其余叶片底部圆角。

图8 叶片底部圆角清根刀具路径

4.6 机床模拟加工仿真

UG系统自带有三种类型的五轴机床,本论文选用其中的回转/摆动型机床进行虚拟仿真加工,摆头旋转轴是B轴,转台旋转轴是C轴。通过机床导航器调入机床组件和刀具组件,叶轮零件安放在转台上面即可进行加工仿真。

5 结论

本文利用UG NX6. 0软件对整体叶轮进行了加工仿真,合理选择了加工使用的刀具和机床,并针对流道和叶片的几何特征确定了刀轴的控制方式,过选择了适当的刀具轨迹驱动方法进行了流道和叶片的加工,生成的加工轨迹。

文中介绍的对流道的加工采用刀具轴插补刀具轴加工,这种方式可以通过在指定的点定义矢量方向来控制刀具轴。当驱动或零件几何体非常复杂,又没有附加刀具轴控制几何体时,插补刀具轴可以控制剧烈的刀具轴变化,调节刀轨,避免碰到障碍物。指定的矢量越多,对刀具轴的控制越多。使用这种方法时,驱动几何体引导刀具侧刃,零件几何体引导刀具底部。可以控制输出很好的加工刀轨,加工出来的曲面质量相当高。

五轴加工是最难也是最重要的是避免发生干涉,本文对对流道和底部圆角加工时对刀具的进退倒进行了控制,依据叶轮的特征,区域之间快速移动时以球的方式控制刀轴的移动,使刀轨变的更清晰,这样不仅提高加工效率,而且使加工变的更加安全。

高温合金切削特点

切削特点 a、切削力大:比切削45号钢大2~3倍。 b、切削温度高:比切削45号钢高50%左右。 c、加工硬化严重:切削它时的加工表面和已加工表面的硬度比基体高50~100%。 d、刀具易磨损:切削时易粘结、扩散、氧化和沟纹磨损。 刀具材料 a、高速钢:应选用高钒、高碳、含铝高速钢。 b、硬质合金:应采用YG类硬质合金。最好采用含TaC或NbC的细颗粒和超细颗粒硬质合金。如YG8、YG6X、YG10H、YW4、YD15、YGRM、YS2、643、813、712、726等。 c、陶瓷:在切削铸造高温合金时,采用陶瓷刀具也有其独特的优越性。 刀具几何参数 变形高温合金(如锻造、热轧、冷拔)。刀具前角γ0为10°左右;铸造高温合金γ0为0°左右,一般不鐾负倒棱。刀具后角一般α=10°~15°。粗加工时刀倾角λs为-5°~-10°,精加工时λs =O~3°。主偏角κr为45°~75°。刀尖圆弧半径r为0.5~2mm,粗加工时,取大值。 切削用量 a、高速钢刀具:切削铸造高温合金切削速度Vc为3m/min左右,切削变形高温合金Vc=5~10m/min。 b、硬质合金刀具:切削变形高温合金Vc:40~60m/min;切削铸造高温合金Vc=7~10m/min。进给量f和切削深度αp均应大于0.1mm,以免刀具在硬化后的表面进行切削,而加剧刀具磨损。 切削液 粗加工时,采用乳化液、极压乳化液。精加工时,采用极压乳化液或极压切削油。铰孔时,采用硫化油85~90%+煤油10~15%,或硫化油(或猪油)+CCl4。高温合金攻丝十分困难,除适当加大底孔直径外,应采用白铅油+机械油,或氯化石蜡用煤油稀释,或用MoS2油膏。 高温合金钻孔

模具数控加工考试试题

浙江省2012年1月高等教育自学考试 模具数控加工试题 课程代码:01628 一、填空题(本大题共8小题,每空1分,共15分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.机床的运动是指刀具和工件之间的相对运动,在编程时一律假定______是静止的, ______相对于其运动。 2.所谓编程,就是把零件的______、______、机床的运动及刀具的位移量等信号,用数控语言记录在程序单上的全过程。 3.数控车床的切削用量包括主轴转速、______和______等。 4.铣削编程时,取消孔固定加工方式用______指令,另外______等指令也能起撤销作用。 5.数控铣床操作面板由______和______构成。 6.坐标系平移变换称为______,数控铣削编程时采用______指令来设定。 7.普通加工中心的分辨率为______,最大快速移动速度可达15-25m/min。 8.电火花线切割加工英文简称为______,快走丝线切割目前能达到的加工精度为______mm。 二、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.数控机床的标准坐标系是以______来确定的。() A.右手直角笛卡尔坐标系B. 绝对坐标系 C. 相对坐标系?D.极坐标系 2.数控机床的旋转轴之一的B轴是绕______直线轴旋转的轴。( ) A.X轴B.Y轴 C.Z轴 D.W轴 3.程序中指定了______时,刀具半径补偿被撤消。( ) A. G40 B. G41 C. G42 ? D.G49 4.G00的指令最大移动速度值是由( )

离心通风机叶轮工艺规程

离心通风机叶轮工艺规程 1、备料:备齐叶轮的所有零部件,外购件和标准件,检查材料、旋向是否正确。 2、定位后盘:将后盘固定于平台上; 3、点叶片:将叶片按重量选配,对称放置,找正垂直度,确定旋向正确后点焊;任意三个 相邻叶片,出口端的两弦长之差8#及以下<1.5mm,8#以上<3mm。 4、检验:检验叶片垂直度,叶尖尺寸、叶片外圆符合图纸; 5、点焊前盘:找正、压紧后点焊; 6、检验:检验叶轮旋向、尺寸符合要求; 7、焊接;先焊接叶片和后盘的角焊缝,再焊叶片和前盘的角焊缝,对称施焊以保证后盘平 面度; 8、铆轮毂:后盘与轮毂配做孔,铆轮毂,铆接件间隙在两倍铆钉直径范围内不得大于0.1mm, 其余部位不得大于0.3mm。铆钉严禁松动,其头部应光滑平整。 8、校形:校正前后盘平面度、圆跳动符合要求。 9、振动时效处理。 10、车(割):加工叶轮外圆、进口处直径、端面符合要求。 11、检验:检验叶轮尺寸符合要求; 12、标识:在轮毂上进行标识。 13、平衡:叶轮动平衡校正轮盘轮盖外圆分别为左右校正平面,平衡配重在同一平面不得超 过两块,相对相位差不得大于90%%d,平衡配重块外边缘与叶轮校正平面外边缘 距离为10mm。配重块厚度不得大于被焊盘厚度,外形整洁,材质与母材相同。 14、检验:跟踪检验平衡过程,叶轮平衡达到要求精度要求。 15、叶轮的超速试验(可以在整机检验时进行)。 16、表面喷涂:清除风机上的油污,多肉、毛刺、锈蚀,按要求进行表面喷涂,并符合产 品要求。 17、检验:检验表面喷涂符合产品要求 离心通风机前盘压制工艺规程 1、下料:按图样要求选择材质及材料厚度,依据相应的工艺图样尺寸进行划线及割制,并 进行去刺及铁瘤处理。 2、卷锥:按相应的工艺图样要求卷锥,并保证台锥对接口处对接平齐,然后方可两个面均 应进行满焊,焊接要求依据JB/T10213-2000之转动件的焊接标准进行。焊接完 毕后两面应磨平。 3、校锥:按照相应的工艺图样要求进行校整型处理,保证工件对称,上下圆的◎≤5‰,

基于UG的整体叶轮加工工艺..

分类号UDC 单位代码10644 密级公开学号xxxxxxx 本科毕业设计 压气机叶轮加工工艺 学生姓名: 二级学院:物理与机电工程学院 专业:机械工程及自动化 班级:201x级x班 学号:20110xxxxx 指导教师:xxx 完成时间:年月日 中国 达州 年月

目录 摘要 (2) Abstract (3) 1. 引言 (4) 2. 压气机叶轮结构加工工艺分析 (4) 2.1 压气机叶轮结构分析 (4) 2.2 压气机叶轮的技术要求 (6) 2.2.1对压气机叶轮的设计制作要求 (6) 2.2.2 对压气机叶轮的加工要求 (6) 2.2.3 叶轮的加工难点 (7) 3. 压气机叶轮毛坯的确定 (7) 3.1 叶轮材料的选择 (7) 3.2 叶轮毛坯的选择 (8) 4. 压气机叶轮加工工艺路线设计 (9) 4.1 加工方法的选择 (9) 4.2 加工阶段的划分 (9) 5. 压气机叶轮的工艺设计 (10) 5.1 机床选择 (10) 5.2 定位基准、夹紧方案的确定 (10) 5.3 刀具选择 (11) 5.4 进给路线和工步顺序的确定 (12) 5.4.1 加工坐标系 (12) 5.4.2 UG 加工及仿真步骤 (13) 5.4.3 UG 加工及仿真结果与模型的比较 (25) 6.总结 (26) 参考文献 (28) 致谢 (29)

压气机叶轮加工工艺 机械工程及自动化 2011级x班:xxx 指导教师:xxx 摘要:离心压缩机叶轮的加工是一个多轴数控加工中最常见的例子,现如今数控高速铣削加运用于整体叶轮加工的技术已经相对成熟,但多依赖于国外的软件。本文主要介绍了压缩机叶轮的加工工艺过程、详细分析了叶轮的仿真全过程。主要工作包括以下三个方面: (1) 本文根据实习公司实际的生产情况和研究需求,使用UG8.0软件进行压气机叶轮的工艺分析。运用UG8.0加工模块的型腔铣、可变轮廓铣、叶轮加工等方法完成对叶轮加工的编程、仿真加工及后处理。 (2) 压气机叶轮的主叶片、分流叶片呈不规则曲面状,在径向上随着半径的减小叶片的厚度越来越薄、相邻叶片流道越来越窄、叶片高度逐渐增加、叶片的曲率越来越大,这些无疑是整体叶轮加工的难点和重点。因此,加工叶轮叶片时刀具与被加工叶片之间、刀具与相邻叶片之间及易发生干涉,导致在某些区域程序自动生成时没有不碰撞的刀具轴。本文就是从该难点出发设计压气机叶轮叶片、轮毂、流道的加工工艺。 (3) 在编程过程中刀具的选择,主轴转速、进给、吃刀量、加工余量的确定,都直接影响加工效率。针对刀轴的约束条件多,自动无法生成可靠的刀轨等问题进行加工工艺分析,确定了采用瑞士米克朗公司的海德汉系统五轴加工中心作为叶轮加工设备,刀具轨迹采用"自曲面等值线”方式。 关键词:压气机叶轮;UG8.0;加工工艺;叶片

叶轮的数控加工

摘要 此设计为叶轮的制造工艺与加工程序设计,直接的目的是介绍说明叶轮制造的细节,运用UG解决制造业界中对叶轮加工程序编制的难题,同时介绍叶轮制造的思路方法。间接的目的是使数控加工更为人所知,并让更多人了解数控加工的优点,加工的范围。 关键词:加工; UG;工艺;叶轮

ABSTRACT This design for the manufacturing process of the impeller design and processing procedures, the immediate purpose is to introduce the details of the impeller manufacturing, the use of UG solve the problem in the manufacturing industry in the preparation of impeller machining program. At the same time introduced the idea of impeller manufacturing method. Indirect purpose is to make the CNC machining better known, and let more people know the advantages of CNC machining, processing range. Keywords:machining;UG;processes;impeller

第1章绪论 1.1课题的选择 整体式叶轮作为动力机械的关键部件,广泛应用于航天航空等领域,其加工技术一直是制造业中的一个重要课题。从整体式叶轮的几何结构和工艺过程可以看出:加工整体式叶轮时加工轨迹规划的约束条件比较多,相邻的叶片之间空间较小,加工时极易产生碰撞干涉,自动生成无干涉加工轨迹比较困难。因此在加工叶轮的过程中不仅要保证叶片表面的加工轨迹能够满足几何准确性的要求,而且由于叶片的厚度有所限制,所以还要在实际加工中注意轨迹规划以保持加工的质量。随着航空航天技术的发展,为了满足发动机高速、高推重的要求,在新型中小发动机的设计中大量采用整体结构叶轮。选择数控加工仿真技术,适合加工种类多、需求少、难加工的整体叶轮,减少整体叶轮加工的成本[1]。 1.2加工方法的选择 数控机床与通用机床的区别在于数控机床是采用数控装置或电子计算机,全部或部分地取代一般通用机床在加工零件时对机床的各种动作,如启动、加工顺序、改变切削用量、主轴变速、选择刀具、冷却液开停以及停车等人工控制。通常,数控机床加工零件所需的全部机械动作和控制功能都是预先按规定的字符或文字代码的形式编制成加工程序,然后再用穿孔机或键盘等把程序上的信息以数字代码的形式记载在控制介质上,通过控制介质将数字信息送入数控装置或计算机,数控装置或计算机对输入信息进行运算和处理,发出各种指令去控制机床的伺服系统或其他执行元件的各种动作,从而使数控机床自动加工出所需要的零件。 数控机床与其他自动机床的一个显著区别在于当加工对象改变时,除了重新装夹工件和更换刀具外,只需更换相应的控制介质,而不需对机床作任何调整,就可自动加工出新的工件。 由此可见,数控机床与其他机床相比,在进行小批量、复杂零件生产时,具有极其显著的优越性 数控机床与普通机床的比较分析[2],如表1-1。

水泵零件机械制造工艺分析

水泵零件机械制造工艺 分析 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、机械制造工艺的重要性: 优质产品来源于优秀的设计,更是依赖于优良制造的可靠保证,而优良制造取决于完善的加工工艺。只有选择了正确的加工工艺,才能制造出高精度产品,降低生产成本,提高生产效率,为企业创造良好的效益。水泵零件的制造因品种多、结构复杂、用料广泛,以致加工难度大,工艺质量不易控制。尤以单件、小批量,品种多变的生产模式,工序相对较为集中,更加要求操作者掌握较全面的机械制造专业知识,具有良好的综合素质。 水泵零件结构复杂,铸件占80%以上,主要为铸铁件、铸钢件和铸造不锈钢件;轴类零件较少,主要为优质碳钢、铬钢或不锈钢件。水泵零件的加工,因其具有水力流道,在考虑定位装夹基准时必须找正流道的正确位置。避免装配后造成压水室与叶轮流道偏斜、错位、间隙不均甚至碰擦,影响产品质量。为了保证零件制造精度,需要设计相应的工装,并合理安排工艺流程控制工艺因素。现针对生产中容易出现的问题将工件装夹、加工要求、典型零件加工工艺浅析如下: 二、水泵零件的机械制造工艺: (一)、工件的装夹: 1、操作者必须在熟悉产品图样、工艺文件和工艺装备的基础上从事作业生产,避免盲目生产造成零件报废; 2、在机床工作台面上安装夹具时,要擦净其定位基准面,并找正加工要求的相对位置; 3、工件装夹前应将其定位面、夹紧面,夹具的定位面擦拭干净,不得有毛刺,保证定位精度; 4、按工艺规定的定位基准装夹,定位基准符合以下原则:

(1)、尽可能使设计基准、加工基准、检验基准重合,便于加工尺寸链的换算和测量; (2)、尽可能使各加工面采用同一定位基准,容易保证形位公差,如平行度、同心度、垂直度等; (3)、粗加工基准选取应结合后续工序的定位要求,有利于提高加工精度; (4)、精加工工序定位基准应是巳加工表面,使定位准确、加工精度高; (5)、选择的定位基准必须使工件定位、夹紧方便,加工时稳定可靠。 5、夹紧工件夹紧力的大小适当,夹紧力的作用点应通过支承面,尽可能靠近加工面;对刚性较差或是悬空的工件,应增加辅助支承以增强刚性; 6、夹紧精加工面应以铜皮作软垫保护,不损坏巳加工表面; 7、加工面应尽可能靠近床头箱,选取适当刀具增强系统刚性,提高加工表面粗糙度。 (二)、加工要求: 1、操作者应根据图样技术要求和工艺文件的规定,及工件材质、精度要求、机床、刀具、夹具等情况,正确选择工艺路线,合理选择切削用量; 2、对有公差要求的尺寸在加工时应尽量按中间公差加工; 3、工艺规程未规定的粗加工表面粗糙度应不大于Ra25;下道工序需淬火的表面粗糙度不大于;铰孔前的表面粗糙度不大于;磨削前的表面粗糙度应不大于; 4、粗加工的倒角、倒圆、槽深应按精加工余量加大或加深,保证精加工后达到设计要求;退刀槽切忌过深和锐角,以避免应力集中; 5、图样或工艺中未规定的倒角和自由尺寸应按相关规定制作;

如何选择刀具材料切削切削加工高温合金

如何选择刀具材料切削切削加工高温合金 一、高温合金的含义及性能 1、高温合金的含义:是指以铁、镍、钴为基,能够在600℃以上的高温及 一定应力作用下长期工作的一类金属材料,又被称为超合金,热强合金。 2、高温合金的特点:具有较高的高温强度,良好的抗氧化能和抗腐蚀性能,良好的疲劳性能、抗断裂韧性等综合性能。高温合金是单一奥氏体组织,可以 在各种温度下具有良好的组织稳定性和使用可靠性。 由于高温合金的特点,已成为制造航空航天发动机热端部件的关键材料, 是航空航天材料的重要成员,也可以广泛应用在石油化工、电力、冶金等领域。 二、高温合金的发展历程 760℃高温材料发展过程从20世纪30年代后期起,为了满足新型发动机的需要,在第二次世界大战期间,高温合金的研究进入了蓬勃发展时期。40年代初,英国首先在80镍-20钴合金中加入少量铝和钛,研制成第一种具有较高高 温强度的镍基合金。同一时期,美国为了适应航空活塞式发动机用涡轮增压器 发展的需要,开始采用钴基合金制作叶片。 此外,美国还研制出用以制作喷气发动机的燃烧室的镍基合金。以后,冶 金学家为了进一步提高合金的高温强度,在镍基合金中加入钨、钼、钴等元素,增加铝、钛含量,研制出一系列牌号的合金,但由于钴资源缺乏,钴基高温合 金发展受到限制。 40年代,铁基高温合金也得到了发展,50年代出现A-286和Incoloy901 等牌号,但因高温稳定性较差,从60年代以来发展较慢。苏联于1950年前后 开始生产镍基高温合金,后来生产变形高温合金和铸造高温合金。中国从1956 年开始试制高温合金,逐渐形成变形高温合金和铸造高温合金。70年代美国还 采用新的生产工艺制造出定向结晶叶片和粉末冶金涡轮盘,以适应航空发动机 涡轮进口温度不断提高的需要。 三、高温合金的分类 (1)按基体元素来分:铁基高温合金、镍基高温合金和钴基高温合金。其 中铁基高温合金适合的温度在600~800℃,镍基高温合金适用于650~1000℃范 围内的温度;钴基高温合金适合730~1100℃,但由于钴是一种重要的战略资源,致使钴基合金的发展受到限制。目前镍基高温合金应用较广泛。 (2)按强化方式:固溶强化型,沉淀强化型,氧化物弥散强化型以及纤维 强化型等。 (3)按制备工艺:变形高温合金,铸造高温合金以及粉末冶金高温合金。 四、高温合金的加工难点及方法 1、切削加工高温合金的难点:(1)耐高温性能直接提高了加工难度;(2)在加工时重切削力以及产生的高温的共同作用下,刀具容易产生碎片或变形, 或者导致刀具断裂;(3)大多数高温合金都会迅速产生加工硬化现象,从而影响工件的表面精度。

叶轮叶片加工

多叶片复杂曲面零件的设计与五轴模拟加工 1.1 加工任务 整体叶轮的零件视图如图1所示 图1 叶轮零件 针对本零件,本例中将进行叶轮底部圆弧面的加工。此工件的毛坯为圆棒料,材料牌号为钛合金TC4.采用专用的夹具将其底面固定安装在机床C轴上。本例中我们将完成叶轮圆弧底面的精加工。 1.2 加工工艺方案 通常情况下,在大部分制造场合,单片叶轮的叶片多采用锻造方式做成毛坯,整体式叶轮类零件的毛坯多采用铸造的方式形成,然后采用3~5轴数控机床进行半精加工或精加工,特殊情况下可能还采用人工抛光的方法,形成最后的精加工。本例中,我们就介绍整体式叶轮在5轴数控机床上的精加工工作。 (1)刀具选择:R4的球头棒铣刀(或选用锥度球头铣刀) (2)加工坐标原点的设置:工件零点取在叶轮圆弧底面大圆140的圆心点上。 (3)加工设备:五轴联动数控机床。 1.3 编程操作(设置零件加工程序) 在UG NX4软件系统中对此零件进行编程的操作步骤如下: 1.建立刀具路径文件夹 (1)单击菜单栏中的“文件”→“打开”命令,从UG NX4文件浏览器窗口选择“train11.prt”文件并单击“确定”按钮将其打开,如图2所示。

图2 在UG NX4 中进入造型文件的NX加工界面 (2)选择加工环境 1)单击(起始)图标,单击“加工”命令,弹出“加工环境”对话框。如图3所示。 2)在“CAM进程配置”列表框中选择“mill→multi→axis”,结果如图4所示。 图3“加工环境”对话框图4选择多轴铣加工配制 3)在“CAM设置”列表框中选择“mill→multi→axis”,单击“初始化”按钮,进入加工过程的创建界面,弹出如图5所示的“加工创建”工具栏。 2. 创建加工方法 (1)单击“加工创建”工具栏中的(创建方法)工具,弹出“创建方法”对话框,如图11→6所示。 图5“加工创建”工具栏图 6“创建方法”对话框 (2)在“类型”下拉列表框中选择“mill→multi→axis” (3)在“父级组”下拉列表框中选择“MILL→FINISH”。 (4)单击“确定”按钮,弹出“MILL→METHOD(铣削方法)”对话框,如图7所示 (5)单击“确定”按钮,系统又回到图5所示的“加工创建”工具栏。 3. 创建几何体 (1)单击“加工创建”工具栏中的(创建几何体)工具,弹出“创建集合体”对话框,如图8所示。

离心风机制作及装配工艺

离心风机制作及装配工艺 一、制作工艺: 1,进风口 1.1法兰:材料: 1.1.1下料及卷制; 按《轴流风机法兰制作工艺》中“法兰”的制作方式,可采用卷制,或整体割法兰的方式制作; 1.1.2划线、钻孔: 按图纸要求划线、钻孔; 1.1.3整形: 按平面度及圆度要求整形,校正合格; 1.2连接板:材料:Q235A 1.2.1具体方式同1.1 “法兰”, 1.2.2注意法兰孔不制作,装配时与机孔配作; 1.3进风管(锥形):材料:H62(黄铜) 1.3.1下料: 按同心锥体的展开图,冷作下料扇形; 1.3.2卷板; 1.3.3焊接中缝; 1.3.4打磨,修正 1.4组焊,按图纸要求组对,焊接牢固,整形,打磨平整;

1.5喷砂、镀锌; 2,叶轮:材料:不锈钢(1Gr18Ni9Ti ) 具体按《离心风机叶轮制作工艺》。 2.1前、后盘,下料,车(可多片夹),模板配钻孔; 2.2叶片,下料,冲制成形; 3,轮毂:材料:Q235A 具体按《离心风机叶轮制作工艺》。 米用法兰和轮毂座粗加工后焊接,再精加工的方法: 3.1粗车-焊接-精加工(车)-拉键槽; 3.2划、钻、攻丝; 3.3表面镀锌; 4,(叶轮与轮毂装配-)离心叶轮: 4.1铆接,采用铆钉材料为不锈钢,注意叶片垂直度、排列间隙一致: 4.2轮毂与后盘紧固; 4.3试验:叶轮平衡校正,配重块用铆钉铆接。 具体实施按《通风机转子平衡》JB/T1909-1999。 5,机壳:材料:Q235A 可根据需要制作成不锈钢,表面可以不进行涂漆,但外露的不锈钢表面应进行抛光或钝化处理, 5.1前后侧板加工: 等离子气割下料成形,打磨; 5.2前后环加工;

叶轮加工工艺研究

0 引言 叶轮是涡轮式发动机、涡轮增压发动机等的核心部件。现在比较常见的就是汽车的涡轮增压器。整体叶轮的形状比较复杂,叶片的扭曲大,极易发生加工干涉,因此其加工的难点在于流道、叶片的粗、精加工。本文将利用UG NX、UG/Post Builder、VERICUT对五轴编程中的三大难点(刀路轨迹的编写、后置POST的编写、仿真验证)进行详细的说明。 1 加工工艺分析 考虑到整体叶轮实际的工作情况,一般整体叶轮的曲面部分精度高,工作中高速旋转,对动平衡的要求高等诸多要求,结合叶轮的形状、结构特点、材料安排工艺路线如下:1、铣出整体外形,钻、镗中心定位孔;2、精加工叶片顶端小面;3、粗加工流道面;4、精加工流道面;5、精加工叶片面;6、清角。作者主要研究了流道开粗、精加工和叶片精加工加工轨迹规划。对于整体叶轮为叶片分布均匀的回转体类零件,应选择它的底面圆心作为工件的原点,进而简化工件的找正和后处理过程。根据整体叶轮的几何模型特征,可以基本上确定例如加工所使用机床型号、刀具参数、夹具和装夹方式等。叶轮的加工使用DMG 75V 的机床,SIEMENS 840D的控制器。该机床配备有X、Y、Z三个线性轴,B、C两个回转轴构成了一台标准的TH(Table_Head)结构的五轴联动加工中心。刀具的使用方面,五轴联动加工中优先使用球头刀和圆角R刀加工,这样可以最大程度上减少由刀具引起的过切和干涉。对于流道较窄的叶轮,在加工窄流道处时,可以适当选择锥度球头铣刀,可以有效的提高刀具的刚性。 流道开粗加工过程去除主要加工余量,直接影响着精加工的效率和质量,提高开粗加工的效率和质量对整个叶轮的加工具有重要意义。叶轮流道部分的加工余量并不随着叶轮型线均匀分布,切削过程中切削深度不断变化,刀具受力变化较为剧烈,大大缩短了刀具寿命,降低了加工质量,这需要合理规划加工轨迹。流道开粗加工通常需分成若干层渐进开粗。顺着流道面的方向分割流道区域,可使粗加工的各层厚度比较均匀,加工过程稳定。另外除以上方法之外还有三轴开粗的方式,即3+2方式。具体的方法是先按某一方向以三轴的方式开粗,完成后工件转动一个角度继续完成未加工到的区域。两种方法各有优缺点,五轴开粗后余量均匀,但刀轨的编写比较困难;三轴开粗方法简单,程序编写容易,但开粗后余量不均匀,还需做半精加工,均匀化余量。 2 加工轨迹的编制 五轴切削有着比传统切削特殊的工艺要求,除了五轴切削机床和切削刀具,具有合适的CAM编程软件也是至关重要的。一个优秀的五轴加工CAM编程系统应具有很高的计算速度、较强的插补功能、全程自动过切检查及处理能力、自动刀柄与夹具干涉检查、进给率优化处理功能、刀具轨迹编辑优化功能、加工残余分析功能等。数控编程时应首先要注意加工方法的安全性和有效性;其次要尽一切可能保证刀具轨迹光滑平稳,这会直接影响加工质量和机床主轴等零件的寿命;最后要尽量使刀具载荷均匀,这会直接影响刀具的寿命。此整

切削加工高温合金的刀具材料

切削加工高温合金的刀具材料 高温合金具有优良的高温强度、热稳定性及抗热疲劳性能,因此它广泛应用于航空航天、船舶、核工业、电站等行业,例如现代燃汽涡轮发动机的燃烧室、涡轮导向叶片与工作叶片、涡轮盘及涡轮转子结构件、航空发动机盘件、环形件等高温转动部件等等。 高温合金是最难加工的材料之一,如果45# 钢的加工性为100% ,则高温合金的相对加工性仅为5% ~20% ,其切削加工的特点有:①切削力大,是普通钢材的 2 ~ 4 倍。高温合金含有许多高熔点金属元素,构成组织结构致密的奥氏体固溶体,合金的塑性好,原子结构十分稳定,需要很大能量才能使原子脱离平衡位置,因而变形抗力大。②切削温度高,最高可达1000 ℃左右。高温合金导热系数小,仅为45# 钢的1/4 ~1/3 ,刀具与工件间摩擦强烈而导热性差,故切削温度高。③加工硬化严重,表面硬度比基体硬度高50% ~100% 。④塑性变形大,在室温下的延伸率可达30% ~50% 。⑤刀具易磨损,常见的有扩散磨损、边界磨损、刀尖塑性变形、月牙洼磨损及积屑瘤。由于这些特点,切削高温合金的刀具材料应具有高的强度、高的红硬性、良好的耐磨性和韧性、高的导热性和抗粘接能力等。 高速钢刀具材料是较早用于加工高温合金的刀具材料,现在由于加工效率等原因正被像硬质合金这样的刀具材料所替代。但在一些成形刀具以及工艺系统刚性差的条件下,采用高速钢刀具材料加工高温合金仍是很好的选择。另一方面,加工效率是一种综合的评判,高速钢刀具切削速度低,在某些特定条件下其损失的效率可以通过采用大的切削深度来弥补,因为高速钢刀具材料有更高的强度和韧性,且刃口可以更锋利,产生的切削热更低,加工硬化现象更轻。 用于加工高温合金的高速钢,常有钴高速钢、含钴超硬高速钢和粉末冶金高速钢等高性能高速钢。 在高速钢中加入适量的钴后,由于钴可促进奥氏体中碳化物的溶解作用,可以提高高速钢的热稳定性和二次硬度,高温硬度得到提高;同时钴还可促进高速钢回火时从马氏体中析出钨或钼的碳化物,增加弥散硬化效果,因而能提高高速钢的回火硬度,从而提高高速钢的耐磨性。在高速钢中增加钴量可改善其导热性,特别是在高温时更为明显,这有利于切削性能的提高,在相同条件下,刀刃温度可减小30 ~75 ℃。同时钢中加入钴后,可降低刀具与工件间的摩擦系数,并改善其加工性。如车削高温合金GH132 ,采用W2Mo9Cr4VCo8(M42) ,工件D=33mm ,n=180r/min ,ap=2mm ,f=0.15mm/r ,油冷,切削长度300mm ,后刀面磨损0.2 ~0.3 。粉末冶金高速钢是用细小而均匀的高速钢结晶粉末,在高温(1100 ℃) 、高压(100Mpa) 下直接压制成的刀具。这种工艺完全避免了碳化物的偏析,在相同硬度条件下强度比熔炼钢提高20% ~80% ,硬度则随着密度加大而提高,组织均匀,高温硬度比熔炼钢高0.5 ~ 1.0HRC ,因此有较好的切削性能。如在其中加入适当的碳化物( 如TiC 、TiCN 、NaC 等) ,可增加耐磨性、耐热性,这更有利于高温合金的切削加工,如在加工航空发动机镍基合金GH37 叶片上的孔时,粉末冶金高速钢FT15(FW12Cr4V5Co5) 钻头可钻9 孔,而M42 只能钻 1 ~ 3 孔。在镍基合金的火箭发动机零件上铣削螺纹,用9/2 "的硬质合金螺纹铣刀能够加工 5 件,用粉末治金高速钢CPM76( 美) 螺纹铣刀则可以加工33 件。

整体叶轮的五轴数控编程及加工(

整体叶轮的五轴数控编程与加工 2009-04-13 15:13:17 作者:张家口煤矿机械制造高级技工学校任涛来源:《CAD/CAM与制造业信息化》 杂志 分享到: 更多... 叶轮又称工作轮,离心式压缩机中唯一对气流作功的元件,转子上的最主要部件。一般由轮盘、轮盖和叶片等零件组成。气体在叶轮叶片的作用下,随叶片作高速旋转,气体受旋转离心力的作用,以及在叶轮里的扩压流动,使它通过叶轮的压力得到提高。 对叶轮的基本要求是: 1.能给出较大的能量源。 2.气体流过叶轮的损失要小,即气体流经过叶轮的效率要高。 3.气体流出叶轮时各参数合宜,使气体流过后面固定元件时的流动损失较小。 4.叶轮型式能使整机性能曲线的稳定工况区及高效区范围较宽。 常分为闭式、半开式和开式叶轮。 叶轮的建模可分为轮毂曲面(Hub)以及叶片曲面(Blade)两部分,叶片又包含包覆曲面(Shr oud Surface)、压力曲面(Pressure Surface)和吸力曲面(Suction Surface),如图1所示。叶轮轮毂面及叶轮盖分别由叶片中性面根部曲线和叶片中性面顶部曲线绕Z轴旋转而成。经过旋转轴Z的设计基准面为子午面。中性面是处于叶片压力面和吸力面中间位置的曲面。对于轮毂曲面和包覆曲面,可分别由叶片根部曲线和叶片顶部曲线绕Z轴回转而成,故在整体叶轮的建模过程之中,把叶片的建模放在轮毂曲面和包覆曲面建模之后。 叶轮类零件构成的一般形式是若干组叶片均匀分布在轮毂的曲面上。一组叶片中可能只有一个叶片,也可能有若干个叶片。前一种情况的叶片分布称为等长叶片,后一种的叶片形式主要指含有小叶片,一般称为交错叶片。

离心叶轮加工工艺

离心叶轮加工工艺 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

离心叶轮加工工艺一、主要材料及加工工艺: 1,前盘: 材料:LY12,数量:1件, 1.1,切割成形,尺寸精度不到可车加工到位; 1.2, 钻孔:专用分度盘钻孔; 2,叶片: 材料:LY12,数量:根据要求制作n件, 2.1,剪板长料:一般长度为1000,宽度为:展开宽度+3; 2.2落料: 落料模冲切成条形; 2.3成形: 成形模冲制成形; 2.4钻孔: 钻模钻孔; 3,后盘: 材料:LY12,数量:1件, 3.1,切割成形,内外圆车加工到位, 3.2,钻孔:专用分度盘钻孔; 4,轮毂: 组合件:轮毂本体、法兰焊接后加工: 4.1轮毂本体:材料Q235,

ФE+5)×(L+5); ФE; 4.2法兰: δ(L2+10)×ФD×ФE; 4.3焊接:组对按图示L1定位法兰焊接点,先点焊,再满环焊; 4.4车加工: 4.5划线、钻孔、攻丝完成; 4.6刨键槽; 4.7外协镀锌; 二、装配: 2.1前盘、后盘及叶片铆接:用LY12铝铆钉铆接,铆钉铆接后头部应规整、光滑,不允许有裂纹、歪斜、未铆紧及明显的铆痕缺陷; 2.2铆接件与轮毂铆接; 三、试验: 具体按试验大纲进行 3.1静、动平衡试验; 3.2超速试验; 附:DN-20双进风叶轮加工工艺: 一、主要材料及加工工艺: 1,前盘: 材料:LY12,数量:2件, 1.1,切割成形,尺寸精度不到可车加工到位;

1.2, 钻孔:专用分度盘钻孔; 2,叶片: 材料:LY12,数量:根据要求制作n件, 2.1,剪板长料:一般长度为1000,宽度为:展开宽度+3; 2.2落料: 落料模冲切成条形; 2.3成形: 成形模冲制成形; 2.4钻孔: 钻模钻孔; 3,后盘: 材料:LY12,数量:1件, 3.1,切割成形,内外圆车加工到位, 3.2,钻孔:专用分度盘钻孔; 3.3,冲孔:专用冲模冲叶片定位嵌孔; 4,轮毂: 组合件:轮毂本体、法兰焊接后加工: 4.1轮毂本体:材料Q235, ФE+5)×(L+5); ФE; 4.2法兰: δ(L2+10)×ФD×ФE;

车削加工高温合金材料的刀具材料对比

CBN刀具车削加工高温合金材料实验 (郑州华菱超硬材料有限公司刀具应用技术部供稿) 一,综述高温合金种类 高温合金是广泛应用于航天、航空、石油、华工、舰船的一种重要材料。高温合金有以下几种: 1,按基体元素:分为铁基、镍基、钴基等高温合金。镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件,与钴合金相比,镍合金能在较高温度与应力下工作,尤其是在动叶片场合, 2.按生产工艺:分为铸造高温合金,变形高温合金,粉末冶金高温合金。 二,高温合金与CBN刀具 1,不锈钢高温合金(奥氏体不锈钢)不太适合用CBN刀具加工,但其他HRC45以上耐热钢类可以用CBN刀具加工。 2,铸造类镍基、钴基高温合金非常适合用CBN刀具加工。 3,由于高温合金的种类复杂,注意针对工件的不同金属元素含量和工艺类型选择合适的CBN牌号。 4,非高温合金类的粉末冶金零件已经被证实适合用CBN刀具加工。 三,车削粉末冶金高温合金的刀具对比试验 (试验机床:CK61100,工件材料:粉末高温合金涡轮盘;硬度>HB388,工件直径610mm,刀具:焊接复合式CBN刀片) 1,当采用YT726硬质合金刀具,以切削速度v=15m/min、切削深度ap=0.2mm、进给量f=0.1mm/r的切削用量车削FGH95粉末高温合金,切削路程仅为3.6m时,后刀面磨损量VB=0.15mm,刀具的磨损使刀具的寿命仍然不能保证连续加工一个面。此时车刀的径向磨损量为0.016mm,反映在工件直径上的变化量dd=0.032mm。2,若采用CBN刀片车削粉末高温合金,切削用量:v=70m/min,ap=0.2mm, f=0.1mm/r)。切削路程l=3.6m时,后刀面磨损量几乎丈量不出。 3,用CBN车刀半精车或精车粉末高温合金材料是可行的,与硬质合金相比,不仅加工质量高,而且刀具寿命明显进步。 4,当切削温度达到1000~1200℃时,刀具表面会产生氧化与放氮现象,过高的温度还会产生CBN→HBN的转化,使CBN刀刃失往切削能力。为此,在采用CBN 刀具切削时,必须留意选择合适的切削用量和刀具几何参数,使切削温度不致过高。 5,由于CBN刀刃处会产生颗粒剥落和微崩刃,因此必须控制切削力和切削振动,并选用刚性较好的机床。 (资料来源:https://www.360docs.net/doc/9f5677543.html,)

轴流泵叶片的数控加工技术分析

轴流泵叶片的数控加工技术分析 轴流泵常用于城市给排水、农业排灌、电厂输送循环水等,具有扬程低、性能参数可调节、流量大、低水位等优点,所以得到了广泛的应用。叶片是轴流泵主要的部件之一,叶片的质量对轴流泵各项性能指标有直接影响。文章对轴流泵叶片数控加工的技术要求、工艺等进行了分析,供有关人员参考。 标签:轴流泵叶片;数控加工;技术要求;处理工艺 随着社会经济的快速发展,特别是科技水平的进步,数控加工技术发展迅速,已渗透到各个领域。在制造业中,轴流泵叶片采用数控加工技术,不仅提升了产品加工的效率,还有效保证了叶片的质量,为轴流泵各项性能指标的提升做出了巨大的贡献。 1 轴流泵叶片数控加工技术概述 立式轴流泵属于叶片式泵,具有高比转数、效率高、使用方便、扬程低、流量大、性能可调节、占地面积小等优点,并且能够适用于低水位。因此,这种水泵广泛应用于城市给排水、农业排灌等工程中。轴流泵叶片装在叶轮上,根据叶片可调性能将轴流泵分为固定式轴流泵以及可调节轴流泵。固定式轴流泵性能参数在叶轮运行过程中不能够调节,只有在叶片停止运行后,才能进行叶片的调节,具体实施为将叶片拆下,并进行安放角度的调节。可调节轴流泵通过机械或液压调节机制,能够在水泵运行中通过电动、手动等方式实现调节,无需停机拆除,方便快捷,适用性强。 叶片是轴流泵最重要的部件,对轴流泵整体的气浊性能、能量指标、水压、运行震动等性能指标具有直接的影响。对叶片的数控加工,要确保叶片各方面性能可以满足设计要求。 2 轴流泵叶片数控加工技术要求及处理工艺 2.1 叶片加工材料 2.2 数控加工技术要求 轴流泵制造项目招标文件中,对叶片数控加工的技术要求主要体现在以下几个方面:(1)叶片型线最大偏差应该控制在叶轮直径的0.15%以下。(2)对叶片正面与背面的波浪度要求为,波浪度小于0.02,叶片进出水口容易出现气浊现象的部位,波浪度需要控制在0.01。(3)叶片安放角度偏差需要控制在15°。(4)叶片表面粗糙程度应该满足设计要求,需要控制在Ra6.3以下,采用数控机床五轴联动模式实施加工。 2.3 处理工艺

整体叶轮加工实验说明书

整体叶轮加工实验说明书 一、实验目的及要求 通过对整体叶轮零件图样分析,掌握叶轮加工用工装的设计特点及定位和夹紧方法;掌握叶轮加工工序的安排以及每道工步所需刀具的种类、规格等;现场利用典型车床和五轴联动加工中心(转台+摆头)进行整体叶轮的加工实验,有助于加深了解并掌握整体叶轮的加工工艺特点。 二、实验注意事项 1.实验前要认真复习教材中有关章节所讲内容,认真阅读实验指导书,确 保叶轮加工工序安排的正确性,以避免不必要的损失等; 2.实验时严格执行实验室的规章制度,严格按操作规程操作,注意现场操 作安全; 3.爱护实验仪器与设备,压紧用螺栓应避免用力过度加力; 4.实验过程中严禁戏耍打闹,确保实验安全顺利完成。 三、整体叶轮加工工艺 整体叶轮结构尺寸示意图如下图所示。 图1 整体叶轮

整体叶轮的加工工序安排如下: 1.下料 根据零件尺寸,确定毛坯尺寸、类型、余量等。如本实验叶轮加工用的圆柱型材等; 2.车削加工中心:车定位基准面、钻削中心孔、零件外轮廓 图2是叶轮在完成车削加工这道工序之后的剖视图。一般情况下在车削加工中心上就可完成该道工序,为展示工序列划分,特将此道工序一分为二,分别如下: 车削定位基准(普车):先在车床上车削毛坯的B端面以及B端的外径,车削外径又分为粗车和精车两个工步(可加工倒角),再以此为定位基准,进一步加工叶轮中心孔(可用直径大的钻头手工去毛刺)。 叶轮中心孔一般先采用小直径钻头钻削加工,再采用大直径钻头钻削加工,最终完成中心孔的加工。 车削叶轮外轮廓(数车):在车削过程中由右向左逐层车削,完成粗加工,再通过联动完成车削精加工; 图2钻中心孔/车叶轮外轮廓 3.加工中心:打B端面两处定位销孔 图3是在加工中心上完成B端面两处定位销孔加工工序后的叶轮剖

镍基高温合金(waspaloy加工工艺)

镍基高温合金(如In718、Waspaloy等)具有热稳定性好、高温强度和硬度高、耐腐蚀、抗磨损等特点,是典型的难加工材料,常用于制作涡轮盘等发动机关键部件。由于涡轮盘是航空发动机的关键部件之一,在应力、温度和恶劣的工作环境条件下容易产生疲劳失效,因此涡轮盘材料及制造技术是研制高性能航空发动机的关键。由于涡轮盘上的异形孔由若干圆弧和直线组成,形状复杂,加工时要求各组成段位置准确、过渡圆滑而不产生加工转折痕迹,表面粗糙度符合工艺要求,因此该高温合金异形孔的加工是涡轮盘加工的难点。目前,航空发动机制造商均采用电火花加工方法加工镍铬耐热合金异形孔,但是电火花加工过程中产生的热影响层难以用普通的磨削、研磨方法去除,往往需要用磨料射流等特殊工艺去除该变质层,加工效率低,生产成本高。因此,对高效低成本的镍基高温合金异形孔加工方法的研究越来越受到人们的高度重视。 本文通过钻削、铣削与磨削工艺的不同组合、选用新型涂层刀具及适当的加工参数加工镍基高温合金异形孔的工艺试验,讨论了用铣削和磨削加工方法代替电火花方法加工镍基高温合金异形孔的可行性。 2 工艺试验与分析 1.试验条件 切削试验在加工中心上进行,被加工异形孔的形状和尺寸见图1:异形孔的截面由6段圆弧和2段直线组成,孔深10mm。试验中分别采用以下工艺:①钻削?6mm圆孔→铣削异形孔;②钻削?6mm圆孔→磨削异形孔;③钻削?6mm圆孔→铣削异形孔→磨削异形孔。三种不同工艺过程的加工条件、工艺参数见表1。

铣 削 ↓ 磨 削 长25mm,铣刀总长100mm,柄部 直径?6mm,直柄 磨削 直径?4mm、长6mm的圆柱形氧 化铝砂轮(铬刚玉),等级RA120, 柄部直径?3mm 1883330.05 工件材料:In718镍基高温合金 冷却液:浓度为9%的乳化液,压力30Bar 图1 异形孔的截面形状与尺寸 图2 采用不同工艺获得的异形孔表面粗糙度 1.分别采用工具显微镜和图像采集系统测量铣刀和砂轮的磨损,记录磨损形貌。用Taylor-HobsonSurtronic 3p型表面 粗糙度仪沿异形孔的轴线方向测量孔的表面粗糙度Ra。 2.结果与分析 a.对三种加工工艺过程获得的异形孔表面粗糙度进行对比,结果如图2所示:在三种工艺过程中,采用钻削 →铣削→磨削(钻削加工?6mm圆孔→低用量铣削加工异形孔→磨削异形孔)工艺所获得的异形孔的表面粗糙度最 小,而钻削→磨削(钻削加工?6mm圆孔→磨削异形孔)工艺所获得的异形孔表面粗糙度最大。试验证明:在该试验条件下采用铣削加工也能获得满足表面粗糙度要求的异形孔;钻孔后磨削加工比钻孔后铣削加工所获得的异形孔表面粗糙度精度低;铣削后再进行磨削加工可在一定程度上提高异形孔加工的表面粗糙度精度,但会增加成本,降低效率。 b.不同加工条件下的铣刀磨损和破损情况:在钻削→铣削过程中,铣削1个孔后,两把铣刀的转角处均产生 了严重的沟槽磨损和破损。采用低切削用量铣削异形孔时(v=52m/min,f=333mm/min),铣刀产生比较明显的破损(见图3a);而用高切削用量铣削异形孔时(v=104m/min,f=666mm/min),铣刀的沟槽磨损更为显著(见图3b)。

叶轮建模及数控加工仿真

一、UG/Modeling模块进行三维造型 (一)建立叶轮基体 1.新建文件 进入UG程序后,首先点击图标,系统显示新零件对话框,在此框中的文 件名称栏里键入impeller_modle并点击为单位,最后点击,即新建叶轮文件。 2.建立叶轮基体 (1)新建文件后,首先选择→选项。 (2)点击按钮按钮,选择 ,在对话框中点击 ,点击弹出圆锥尺寸对话框,按右 图所示尺寸填入,点击完成 (二)建立叶片形状 (1)建立基准轴 a.点击,依次选择,,在下拉菜点中选择XC,点击完 成 b.点击,选择,,打开下拉菜单点击,在图形区点选叶 轮基体顶圆相对的四分点,点击完成 (2)绘制叶片草图轮廓 点击进入草图模式,选择XC-YC作为基准平面,建立如下所示草图 点击退出草图模式,点击,在弹出对话框中选择对上一步绘制的曲线进行修剪,得到如下所示曲线

(3)拉伸叶片 点击,选择,用鼠标分别选取上图中曲线的四根线段,点击 弹出对话框,选择,在弹出对话框中点击沿Z轴方向拉伸,点击,在对话框的end distance栏中填入300,点击 ,选择,点击完成叶片拉伸操作。 (4)修剪叶片 a.建立修剪用曲面 点击,以(420,0,260),(-10,0,300)为坐标绘制直线,点击, 鼠标选取图形区中刚绘制的直线,点击,选择,在弹出对话框中点击,两次点击,确保基点坐标为零,start angle和end angle 分别填入-50和50。点击完成 b.用曲面修剪叶片 点击,在图形区点选叶片,点击,在图形区点选上一步完成的曲面,选择完成修剪叶片操作。 (5)建立圆阵列 点击,选择,在界面图形区中点击上一步完成的叶片,点击 ,阵列数为5,转角72°。 (6)建立倒圆角特征 a.在叶片底部建立12.5倒圆角 点击,在default radius处填入12.5,用鼠标分别选取图形区中 叶片和叶轮基体的交界线,点击完成。 b.建立叶片顶部变半径倒圆角 点击,在前打勾,在图形区分别点选下图 所示三点,每点的圆角半径值为1:31.25;2:12.5;3:1.5625,

相关文档
最新文档