地幔流体交代作用的系列成矿效应(刘显凡,刘家铎,张成江,阳正熙,吴德超,李佑国,《矿床地质》2002.S1)

地幔流体交代作用的系列成矿效应(刘显凡,刘家铎,张成江,阳正熙,吴德超,李佑国,《矿床地质》2002.S1)
地幔流体交代作用的系列成矿效应(刘显凡,刘家铎,张成江,阳正熙,吴德超,李佑国,《矿床地质》2002.S1)

流体地球化学 报告

《流体地球化学》 题目:地幔流体及其成矿作用 读书报告 教师:张成江教授 指导老师:何明有教授 姓名: 张建军 学号: 2011050169 学院:核自学院 专业:核能与核技术工程 2011年12月15日

地幔流体及其成矿作用 1 地幔流体组成和特点 地幔流体是指赋存于地球内部由原始气体元素(He3、A r36等)、挥发分(幔 源CO 2、S、H2O等) 所组成的气体、稀溶液及具挥发分的富碱的硅酸盐熔体。 现代火山喷气、玄武岩圈闭气体、地幔镁铁质和超镁铁质包体成分分析及金刚石 包裹体分析表明, 地幔流体是以C2H2O 为主的体系, 并且含有一定的金属氧化 物〔6〕, 其流体种类受地幔氧逸度f O 2 及深度的制约〔7〕, 当f O 2 在Q FW —MW (氧缓冲反应限定的范围) 时, 流体种类以CO 22H2O 为主; 接近IW 时以CH42H2O为主。W yllie〔8〕用微量CO 2、H2O 和橄榄岩(假定地幔中CO 2?(CO 2+ H2O ) = 018) 进行的成岩试验表明, H2O、CO 2 含量在深度上是分层的, 以地 盾区地热曲线、固相线位置、矿物稳定组合区间三者之间关系, 推测120 km 深 度以下时金云母、白云石、橄榄石与富H2O 气相共存; 较浅处(约90 km ) 时, 随 着角闪石等含水矿物形成, 大量的H2O 被消耗, 气相中CO 2 与H2O 含量比值 随之增大, 形成上地幔中相对富CO 2 的区域; 在260~120 km 之间则为碳酸盐、金云母、C2H2O 挥发分溶解于熔体中, 无独立的H2O 和CO 2 相存在。Sh iano 等〔9〕在研究Kerguelen 地区超镁铁质捕虏体时发现了富硅质熔体、富碳酸盐 的熔体和富CO 2 流体包裹体共生, 显示是地幔深部均一的熔融相在到达上地幔 温压条件时形成不混溶的三相, 并充填于橄榄岩形成的裂隙中。这同样证明了 C2H2O 随深度变化的推断。包裹体一直被作为了解深部流体的重要窗口, 然而 已有的资料表明地幔流体包裹体在随寄主岩上升过程中已发生了次生变化, 并 且显示出几乎所有的捕虏体中多为纯CO 2 包裹体,缺少甚至没有H2O 的成分。 对此认为主要由4 种原因引起: ①在硅酸盐熔体中H2O 的溶解度比CO 2 更大, 熔融时H2O 比CO 2 优先进入熔体中, 形成相对富集的CO 2 相; ②氢的扩散作 用引起在低f O 2 时流体主要成分是CH4, 在达到一定温度和压力时H 发生迁移, 留下相对较富的CO 2; ③与围岩发生水岩反应再平衡的结果,H2O 比CO 2 更易 与含氧的硅酸盐发生反应, 剩下相对较富的CO 2; ④变形过程中H2O 比CO 2 更 易进入位错而被泄漏掉。因此, 多数地幔包体中的流体包裹体在被寄主岩从深 部带到地表过程中已发生了次生变化, 其成分已有所改变。由于我们对地幔流 体还缺乏详细研究和了解, 大多数地幔流体性质仍是有待研究的前沿课题。 2 地幔流体的来源及成矿作用 按照目前的了解, 地幔流体主要以两种方式形成: 一种由地核及下地幔脱 气作用; 另一种为洋壳俯冲作用带入大量富含挥发分物质的再循环〔1, 3, 4〕。 稀有气体的He2A r 同位素体系研究表明地幔流体主要有3 种源区〔10〕: ①地 幔柱型源区; ②洋中脊玄武岩型源区; ③岛弧型源区。其中最值得一提的是地 幔柱源区, 推测地幔柱构造起源于地幔深部热边界层, 具有800~ 1 200km 直 径的头部和100~200 km 的尾部〔11, 12〕, 由地幔深部穿越不同的上覆圈层 直抵地表, 且因直接来自富集地幔, 含有大量挥发分和不相容元素, 其成矿意 义值得重视。流体在上地幔的富集是地幔流体成矿的基础, 前已述及流体是由 深部地幔或地核脱气作用和再循环物质脱水作用形成, 形成的流体可能在上地 幔顶部附近富集, 特别是在软流圈上隆引起减压变薄时, 溶解于地幔橄榄岩高 压围岩矿物相中的挥发分出溶, 形成细小的早期流体包裹体, 并在地幔蠕变过 程中往有利的部位运移〔13〕, 从而促进流体的更进一步富集。聚集的挥发分

磁光材料简介

磁光材料的研究现状 1. 综述 磁光材料是具有磁光效应的材料,磁光效应包括法拉第效应、磁光克尔效应、塞曼效应和磁致线双折射效应(科顿-穆顿效应和瓦格特效应)等。磁光材料需要同时具备一定的光学特性和磁学特性。 法拉第效应 法拉第效应指偏振光通过磁场下的介质后,偏振面因磁场作用而发生偏转。 6 f = VBd| 其中是沿着光线传播方向看去偏振面的旋转角,叫做法拉第转角;V是Verdet 常数,与材料性质有关;B是磁感应强度在光线传播方向上的投影;d是光在介质中传播的距离。当磁感应强度投影B与光线传播方向同向时,偏振面右旋,|e t <0;反之,偏振面左旋,阡>0。 与普通旋光效应不同的是,光线通过介质后再反射,原路返回再次通过介质,偏振面会在原来的基础上再旋转角,而不是恢复原状。这为利用法拉第效应的磁致旋光材料提供了一种新的应用空间,如磁光调制器、磁光隔离器等。 目前,对法拉第效应磁光材料的研究相对透彻,应用也相对广泛。以钇铁石榴石(¥才忧0口,简称YIG)为代表的稀土铁石榴石(R材料是常见的法拉第效应磁光材料 [1]。 磁光克尔效应 磁光克尔效应指线偏振光在磁化的介质表面反射后,在磁场作用下偏振面发生偏转,偏转角度称为磁光克尔转角戸。根据磁场强度方向的不同,磁光克尔效应分为三种:极向克尔效应:磁场方向垂直于介质表面,通常,° k随入射角的减小而增大; 横向克尔效应:磁场方向平行与介质表面且垂直于入射面,光线的偏振方向不会发生变化,p偏振光入射时会发生微小的反射率变化; 纵向克尔效应:磁场方向平行与介质表面且平行于入射面,随入射角的减小而减小,纵向克尔效应的强度比极向克尔效应小几个数量级,不易观察。 应用最广的是极向克尔效应,可用来进行磁光存储和观察磁体表面或磁性薄膜的磁 畴分布。 塞曼效应

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

某铀矿成矿因素及找矿远景浅谈

某铀矿成矿因素及找矿远景浅谈 王 * (********任公司,浙江 ** ******) 摘要:根据《核工业十一五规划》提出的建设要求,为了促进我国铀矿采矿事业的可持续发展,某铀矿床列入持续开发计划项目当中。矿床位于**地区某山I类远景区内,有着优越的成矿地质背景和较丰富的铀资源。而且在该远景区内还发现了某3矿床和某2矿点以及其他一系列的异常点,所以,摸清某矿床的成矿条件及找矿远景对该矿床的开发利用和在同一远景区其他矿床、矿点的进一步找矿勘查都有着深远的意义。 关键词:铀矿;成矿因素;找矿远景;深远意义 A Uranium Mineralization Factors And Prospecting Vision Discussion Abstract: According to the construction requirement proposed by “The nuclear industry 11 planning”, in order to promote our country uranium mining enterprise's sustainable development, a uranium deposits has included in the sustainable development of the project. Deposit is located in one class vision region of the Luzong Kunshan area ,it has superior geological background and rich uranium resources. And a three deposits and a two mine sites and a host of other outliers have been found from the vision in the area, therefore, finding out the conditions of a deposit mineralization and mine Vision to the developmental use of a deposit ,and further prospecting of the same vision of other deposits and mining point, have far-reaching significance. Keywords: Uranium; Forming factors; Prospecting; Far-reaching significance 一、区域地质背景 庐枞地区位于扬子准地台、秦岭地槽褶皱系和中朝准地台三大构造单元的交汇部位,属于扬子准地台下扬子台拗中的次级构造单元。郯庐断裂和长江构造带在本区相交。某铀矿床产于庐枞火山岩盆地东南缘黄梅尖岩体外带中侏罗统罗岭组砂岩中(见图1)。 本区地层以中新生界为主。上三迭统、中下侏罗统为一套巨厚的海陆交互相和陆相含煤碎屑岩沉积建造。上侏罗统和下白垩统发育一套巨厚的中偏碱性火山岩系,使得区域内岩浆岩极为发

地幔流体的稳定同位素地球化学综述

地幔流体的稳定同位素地球化学综述 王先彬 吴茂炳张铭杰 (中国科学院兰州地质研究所,兰州,730000) 摘 要 总结了20年来国内外学者对地幔流体研究的成果和认识。主要包括地幔流体的性质和组成; 地幔 流体中同位素的含量、组成和赋存形式;同位素分馏和地幔脱气等作用对地幔组分的影响等。在不同地区和不同构造环境条件的地幔流体中,各种组分含量和同位素组成变化可以很大,从一个侧面指示地幔组分的不均一性,反映了不同地幔物质的形成历程不同或来自不同的地幔源区。此外,还讨论了目前存在的几个疑点。 关键词 地幔流体 稳定同位素地球化学 同位素分馏 地幔脱气作用 地幔源 第一作者简介 王先彬 男 1941年出生 研究员 主要从事稀有气体地球化学、非生物成因天然气及同位素地球化学等领域的研究工作 随着高精度探测技术的出现和地球科学知识的积累,人们对地球的认识进入到更深的层次。从传统的地壳到壳-幔作用,近几年来又深入到核-幔边界以至对地核的认识[1],使得对地球深部物质的研究与深部地球物理和地球化学进一步结合成为可能,并为提出全面统一的地球演化动力理论和模式准备了条件。地幔流体的研究是了解地球深部的重要手段之一。本文就地幔流体中稳定同位素方面的近期研究进展作一综述。 1 地幔流体的性质 作为地球内部的一种重要介质流体,是研究地球深部地质作用、了解深部物质的物理化学环境乃至地球发展演化的重要组分,其重要性愈来愈被更多的人所认识,是近20年来地学研究的热点。 流体,在地球科学研究中,常常是挥发组分的液相、气相及其超临界相以及硅酸盐熔体的统称,但在许多情况下不包括硅酸盐熔体。因此,地幔流体是指在地幔条件下(物相、温度、压力和氧逸度等)处于平衡并稳定共存的挥发组分[2],其形成温度大约在900℃至1400℃之间,其化学组成不均一,受多种因素控制,一般地以C、H、O、N和S(CHONS)为主要化学组分并以含较高的氢为特征,且含微量的稀有气体、F、P、Cl等。地幔挥发 1999年11月2日收稿,12月8日改回。份具有与地幔高p-t条件相适应的物理化学特性(如高的气体密度等),其地球化学性质以易溶于硅酸盐熔体(特别是富碱硅酸盐熔体)为特征,促进低熔点并且饱和挥发份的高钾原始岩浆和地幔交代熔体的形成,同时对于微量元素有高的溶解度(如大离子半径亲石元素、高价阳离子和稀土元素等),并且具有使溶质及各种微量元素产生再沉淀作用(如地幔交代作用导致地幔富集事件)。地幔流体的性质决定了它是地球内部能量和质量传输最活跃的组分,它控制着地幔岩浆作用、交代作用以及地幔变质变形等地质、地球化学作用的发生和发展,是对地球形成、发展和演化起重要作用的组分,具有重要的研究意义。 2 地幔流体的稳定同位素地球化学研究进展 自R oedder(1965)观察到全球碱性玄武岩的超镁铁质捕虏体中均找到CO2包裹体以来,地幔流体的研究工作陆续展开。许多学者采用各种测试方法(如电子探针、离子探针、激光拉曼探针、质谱计等)对认为是来自地幔的岩石矿物样品(如金刚石、金伯利岩、碳酸岩、大洋玄武岩、地幔包体等)进行了包裹体挥发组分及熔体主要元素的测定,发现不同地区、不同环境条件的地幔流体中各组分的含量变化很大,从一个侧面指示了地幔组分的不均一性。 96 2000年第28卷第3期Vol.28,No.3,2000 地 质 地 球 化 学 GEOLO GY2GEOCHEMISTR Y

磁光材料简介

磁光材料的研究现状 1.综述 磁光材料是具有磁光效应的材料,磁光效应包括法拉第效应、磁光克尔效应、塞曼效应和磁致线双折射效应(科顿-穆顿效应和瓦格特效应)等。磁光材料需要同时具备一定的光学特性和磁学特性。 1.1法拉第效应 法拉第效应指偏振光通过磁场下的介质后,偏振面因磁场作用而发生偏转。 其中是沿着光线传播方向看去偏振面的旋转角,叫做法拉第转角;V是Verdet 常数,与材料性质有关;B是磁感应强度在光线传播方向上的投影;d是光在介质中传播的距离。当磁感应强度投影B与光线传播方向同向时,偏振面右旋,<0;反之,偏振面左旋,>0。 与普通旋光效应不同的是,光线通过介质后再反射,原路返回再次通过介质,偏振面会在原来的基础上再旋转角,而不是恢复原状。这为利用法拉第效应的磁致旋光材料提供了一种新的应用空间,如磁光调制器、磁光隔离器等。 目前,对法拉第效应磁光材料的研究相对透彻,应用也相对广泛。以钇铁石榴石(,简称YIG)为代表的稀土铁石榴石()材料是常见的法拉第效应磁光材料[1]。 1.2磁光克尔效应 磁光克尔效应指线偏振光在磁化的介质表面反射后,在磁场作用下偏振面发生偏转,偏转角度称为磁光克尔转角。根据磁场强度方向的不同,磁光克尔效应分为三种:极向克尔效应:磁场方向垂直于介质表面,通常,随入射角的减小而增大; 横向克尔效应:磁场方向平行与介质表面且垂直于入射面,光线的偏振方向不会发生变化,p偏振光入射时会发生微小的反射率变化; 纵向克尔效应:磁场方向平行与介质表面且平行于入射面,随入射角的减小而减小,纵向克尔效应的强度比极向克尔效应小几个数量级,不易观察。 1 / 8

应用最广的是极向克尔效应,可用来进行磁光存储和观察磁体表面或磁性薄膜的磁畴分布。 1.3塞曼效应 塞曼效应指光源位于强磁场中时,分析其发光的谱线,发现原来的一条谱线分裂成三条或更多条。原子位于强磁场中时,破坏自旋-轨道耦合,一个能级分裂成多个能级,而且新能级间有一定的间隔,能级的分裂导致了谱线的分裂。能级分裂的方式与角量子数J和朗德因子g有关。 塞曼效应证明了原子具有磁矩,而且磁矩的空间取向量子化。塞曼效应可应用于测定角量子数和朗德因子,还可分析物质的元素组成。 1.4磁致线双折射效应 磁致线双折射效应指透明介质处于磁场中时,表现出单轴晶体的性质,光线入射能产生两条折射线。在铁磁和亚铁磁体中的磁致线双折射效应称作科顿-穆顿效应,反铁磁体中的磁致线双折射效应称作瓦格特效应[2]. 磁致线双折射效应可用于测量物质能级结构,研究单原子层磁性的微弱变化等2.研究现状 本章将介绍多种磁光材料的前沿应用和理论研究,并结合本人所学知识给出相应的评价和启发。个人评价用加粗字体给出。 2.1利用法拉第效应进行焊接检测[3] 根据法拉第效应,偏振光通过磁场中的介质后,偏振面转过一定角度,通过偏振角一定的偏振片后,就会表现为不同的亮度。工作时,将光源、起偏器、反射镜、直流电磁铁、光反射面、磁光薄膜、检偏器、CMOS成像装置和焊件按图1组装。 2 / 8

我对流体力学的认识

我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体

力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 流体力学的研究方法 进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面: 现场观测是对自然界固有的流动现象或已有工程的全尺寸流动

生活中的物理现象

生活中的物理现象 物理与生活息息相关,生活中的许多神奇的现象都能用物理知识来解释。 (1)服装的颜色 “冬不穿白,夏不穿黑。”这是人们从生活实践中总结出来的经验,你知道它包含的科学道理吗? 我们生活的自然环境,五光十色,美丽动人,有红色的花,绿色的草,蓝色的天空,白色的云朵……各种物体都具有各自的色彩。可是,这些艳丽的颜色,在漆黑的夜里就统统消失了。这说明只有在阳光(白色光)的照射下,物体才呈现出颜色。那么,为什么在同样光源的照耀下,各种物体会有不同的颜色呢? 我们知道,太阳光是由红、橙、黄、绿、蓝、靛、紫多种色光混合而成的。不同的物体,对不同颜色的光线,吸收能力和反射能力又各不相同。被物体吸收的光线,人们就看不见,只有被反射的光线,人们才能看到。因此,某种物体能反射什么颜色的光,在我们看来,它就具有什么样的颜色。如红色的花,是因为它只能反射红色的光线,把其他颜色的光线都吸收了;白色的东西能够反射所有颜色的光线,因此看起来就是白色的;而黑色的东西却能吸收所有颜色的光线,没有光线反射回来,所以看起来就是黑色的了。 太阳不仅给人们送来光明,而且还送来了大量的辐射热。对于辐射热来说,黑色也是只吸收,不反射,而白色正好相反。 一般说来,深色的东西,对太阳光和辐射热,吸收多,反射少;而浅色的东西,则反射多,吸收少。因此,夏天人们都喜欢穿浅色衣服,象白色、灰色、浅蓝、淡黄等,这些颜色能把大量的光线和辐射热反射掉,使人感到凉爽;冬季穿黑色和深蓝色的衣服最好,它们能够大量地吸收光和辐射热,人自然就感到暖和了。 人们认识了自然规律,就能在生产技术上加以利用。象大型露天煤气罐、石油罐的表面都漆成银白色,目的就是为了提高它们反射阳光和辐射热的能力,使罐的温度不致升得过高,以免引起爆炸事故。 人们还利用反向和吸收的原理来征服自然界,让它为人类服务。我国西北部有座祁连山,山上盖满了厚厚的冰雪。可是,因为山很高,上面很冷,就是炎热的夏天,强烈的阳光和辐射热照上去,也都被那白色耀眼的冰雪给反射回去了,所以积雪没法融化。结果山下大片的田地,都因缺水而荒芜了。解放后,党领导人民向大自然进军,为了叫祁连山交出水来,政府派了工作队,用飞机把碳黑撒到祁连山的积雪上,乌黑的碳黑拼命地吸收着光和热,使粘有碳黑的积雪融化了,祁连山终于献出了滔滔的雪水。 (2)生蛋和熟蛋 两个相同的鸡蛋,一个生蛋一个熟蛋,不把鸡蛋打破如何区分? 把两个鸡蛋放在相对平滑的桌面上后,用大致相同的力同时转动鸡蛋,先停下的是生蛋、后者是熟蛋。小学时我们在电视上就知道了这种方法。那么原理是什么哪?生熟鸡蛋的区别在于蛋的内容物分别是液态和固态物。当用力转动蛋壳时,蛋壳受力开始转动而液态的内容物由于惯性仍保持静止状态,二者间存在一定的摩擦阻力,同时蛋壳与桌面间也存在摩擦阻力,所以很快停止转动。熟蛋内容物成固态物与蛋壳自成一体,当用力转动蛋壳时,蛋壳与内容物一并转动,二者间不发生相对运动,只需克服较小的桌面摩擦力,所以能长时间转动。 (3)神奇的磁化水 磁化水是一种被磁场磁化了的水。让普通水以一定流速,沿着与磁感线平行的方向,通过一定强度的磁场,普通水就会变成磁化水。磁化水有种种神奇的效能,在工业、农业和医学等领域有广泛的应用。 在工业上,人们最初只是用磁场处理少量的锅炉用水,以减少水垢。现在磁化水已被广泛用

磁光效应

磁光效应综合实验 【实验目的】 1、了解法拉第效应,会用消光法检测磁光玻璃的费尔德常数。 2、能够熟练应用特斯拉计测量电磁铁磁头中心的磁感应强度,并能其分析线性范围。 3、熟悉磁光调制的原理,理解倍频法精确测定消光位置。 4、学会用磁光调制倍频法研究法拉第效应,精确测量不同样品的费尔德常数。 【实验仪器】 FD-MOC-A磁光效应综合实验仪,双踪示波器 【实验原理】 概述:1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而 与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光, 从而减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用于激 光多级放大和高分辨率的激光光谱,激光选模等技术中。在磁场测量方面,利 用法拉第效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲强磁场、 交变强磁场。在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应, 可以测量几千安培的大电流和几兆伏的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是通过测量光束经 过某种物质时偏振面的旋转角度来测量物质的活性,这种测量旋光的技术在科 M.Faraday (1791-1876) 学研究、工业和医疗中有广泛的用途,在生物和化学领域以及新兴的生命科学 领域中也是重要的测量手段。如物质的纯度控制、糖分测定;不对称合成化合 物的纯度测定;制药业中的产物分析和纯度检测;医疗和生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B成正比,即: θ(1) VBd = 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。 费尔德常数V与磁光材料的性质有关,对于顺磁、弱磁和抗磁性材料(如重火石玻璃等),V为常数,即θ与磁场强度B有线性关系;而对铁磁性或亚铁磁性材料(如YIG等立方晶体材料),θ与B不是简单的线性关系。

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验 1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光 于激光多级放大和高分辨率的纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用Array激光光谱,激光选模等技术中。在磁场测量方面,利用法拉第 效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲 强磁场、交变强磁场。在电流测量方面,利用电流的磁效应和 光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏 的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是 通过测量光束经过某种物质时偏振面的旋转角度来测量物质 的活性,这种测量旋光的技术在科学研究、工业和医疗中有广 泛的用途,在生物和化学领域以及新兴的生命科学领域中也是 重要的测量手段。如物质的纯度控制、糖分测定;不对称合成 M.Faraday(1791-1876) 化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品 的费尔德常数。 二、实验原理 1、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走 d B成正比,即: 过的路程及介质中的磁感应强度在光的传播方向上的分量 θ (1) = VBd 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。附录中,表1为几种物质的费尔德常数。几乎所有物质(包括气体、液体、固体)都

磁光晶体材料的研究现状及其发展趋势(doc 14页)

磁光晶体材料的研究现状及其发展趋势(doc 14页)

磁光晶体材料的研究现状与发展趋势 摘要:简要介绍了磁光晶体材料的一些基本理论,通过对磁光晶体材料应用的器件进行了解磁光晶体材料的优势、缺点以及发展的历程。通过不同的磁光晶体材料的介绍,了解他们的结构特性,生长过程以及生产技术。通过各种方面的了解,理解其发展的方向及其困难之处,并从中思考解决的方法。 关键词:晶体材料,旋磁光晶体,研究现状,发展趋势 Magneto-optical crystal materials' Research and Development Wu zhuofu Departement of Optoelectronic Information Engineering, Jinan University,Guangzhou,China 510632 Abstract:It introduces something about magneto-optical crystal by material and device. We use it to know history of magneto-optical crystal. We can see the strong point and the weakness about it. Understand the structure of them and solve the problem. Key Words:crystalline material , magneto-optical crystal, SituationofStudy , development

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳 1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构成的微小单元。 2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律) (1)流体质点无线尺度,只做平移运动 (2)流体质点不做随即热运动,只有在外力的作用下作宏观运动; (3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性; 3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。 4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。 5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的: 6.牛顿流体:动力粘度为常数的流体称为牛顿流体。 7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。 液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。、 流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。 8.温度对粘度的影响:温度对流体的粘度影响很大。液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。 压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。 9.描述流体运动的两种方法 拉格朗日法:拉格朗日法又称为随体法。它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。 欧拉法:欧拉法又称当地法。它着眼于空间点,把流体的物理量表示为空间位置和时间的函数。空间点的物理量是指,某个时刻占据空间点的。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 10.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化。 11.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象; 12.迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线。 13.定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。 14.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。

81 法拉第磁光效应

§8.1 法拉第磁光效应 法拉第磁光效应是一种通过外加电磁场方式产生旋光现象的实验现象,充分反应了光与物质之间的相互作用。磁光效应在许多领域都有着广泛应用,如强磁场测量、磁光材料等。 【实验目的】 了解法拉第磁光效应的基本规律; 学习掌握使用光传感器及虚拟仪器软件测量Verdet 常数的方法。 【实验原理】 观察法拉第效应的装置如下图所示,由起偏器P1产生线偏振光,光线穿过带孔的电磁铁,沿着(或逆着)磁场方向透过样品,当励磁线圈中没有电流(无磁场)时,使检偏器P2的偏振方向与P1正交,这时发生消光现象。这表明,振动面在样品中没有旋转,通过励磁电流产生强磁场后,则发现必须将P2的振动方向转过角?,才出现消光,这表明,振动面在样品中转过了?,这就是磁致旋光或法拉第效应。对于给定的物质,振动面的旋转与样品的长度l 、磁感应强度B 成正比。 V l B ??=Δ? 其中比例系数V 叫做Verdet 常数。 由原子物理的有关知识,可得: 2e dn V mc d l l = 其中:e,m 为电子电荷和质量,c 为光速,n 为光在透明介质中的折射率,它是波长λ的函数n(λ),这个定义适合广泛的光谱范围。 对于重火石玻璃 14 231.810 ()dn m d l l -¥= 因此V 正比于1/λ2: 14 2 1.8102e V mc l -¥=-? (3)

荷质比e/m 可以根据纯光学测量和已知光速计算得到。在一些物质中用这种方法得到的e/m 值和理论值符合得很好,说明在这些物质中,法拉第效应是由于电子得本征振动引起的。在这个实验中,磁场的强度不足以使方程(1)和(2)发生数量级的变化。所以我们只做以下的工作。 Δ和磁场B的关系。 a)验证? b)证明Verdet常数随波长增加而减少。 将细绳交叉着系在检偏片上,并将它们装在量角器上,这样就能精确的确定光转过的角度。 所有偏振片的设置多可以通过这种方法读出。 【实验仪器】 100W 汞灯偏振片线圈高斯计单色滤光片光传感器虚拟仪器 【实验内容】 1 实验装置调整 如下图,将绳系在检偏器上,参照检偏器的量角器使绳处于正确的位置和角度,最好用丝绳。将变压器放在基坐上,使基坐的点相对。 安装汞灯:用100w的灯泡和反射器,在照片滑板上装上热绝缘的过滤片。 光路调节(图2):首先将装置安装成没有偏振片(2)透镜(4)的方式。打开汞灯,通过聚光器在墙上形成灯丝的像,调节光源和磁极使光线尽可能的通过磁极的孔,将重火石玻璃放在光路中,用两个磁极夹住它,但手不要碰到它透光面,然后将磁极固定住。在光轴上放上透镜(4)。调节带有细绳的检偏器(5)和透镜(4)的距离,使得检偏——滤光片能被照亮。插入起偏片(2)。 2 校正B=f(I);I为线圈电流 拿开重火石玻璃,用高斯计测量测量两磁极间的场强B,光传感器及虚拟仪器软件测线圈中的电流I,作B-I图。 3 磁场B和偏振盘的旋角?Δ的关系。(方程(1))。

流体力学问答题

第一章流体及其物理性质 1.试述流体的定义,以及它与固体的区别。 2.与气体有哪些共同的特性?它们各有什么不同的特性?试分别举例说明,在空气和水中相同与不同的一些流体力学现象。 3.何谓连续介质?引入连续介质模型的目的意义何在? 4.流体的密度、比容以及相对密度之间有何关系?这三者的单位如何? 5.流体的压缩性与膨胀性可以用哪些参量来描述? 6.完全气体的状态方程是什么?请说明方程中每一个参量的意义。 7.何谓不可压缩流体?在什么情况下可以忽略流体的压缩性? 8.何谓流体的粘性?流体的粘度与流体的压强和温度的关系如何? 9.流体的粘性力与固体的摩擦力有何本质区别? 10.试述牛顿内摩擦定律,根据此定律说明,当实际流体处于静止或相对静止状态时,是否存在切向应力?11.何谓理想流体?引入理想流体模型的意义何在? 12.试述表面张力的定义,及其产生表面张力的机理。 13.何谓附着力,何谓内聚力?试分析水和水银在毛细管中上升或下降的现象。 14.作用在流体上的力可以分为哪两种? 第二章流体静力学 1.试述流体静压强的两个重要特性。 2.静力学的全部内容适用于理想流体还是实际粘性流体?或者两者都可?为什么? 3.何谓流体的平衡状态与相对平衡状态?它们对应的平衡微分方程有何相同之处与不同之处? 4.试写出欧拉平衡微分方程式,叙述该方程的适用范围以及方程中每一项的物理意义。 5.何谓质量力有势?试写出重力的势函数。 6.不可压缩流体处于平衡状态时,对作用在它上面的质量力有什么要求? 7.试写出静止流体的压强差公式,并叙述其物理意义,此公式对于相对静止流体是否适用? 8.试写出静止流体的等压面的微分方程式,此方程式对于相对静止流体是否适用? 9.试述等压面的重要性质。 10.流体静力学的基本方程式的物理意义和几何意义各是什么? 11.何谓绝对压强、计示压强与真空?它们之间有何关系? 12.静压强的计量单位有哪几种?它们的换算关系如何? 13.在一U型管中,盛有两种不相溶的、不同密度的液体,试问,在同一水平面上的液体压强是否相同?为什么? 14.叙述帕斯卡原理,试举例说明它在工程中的应用。 15.相对平衡液体的静压强分布规律,是否满足静力学基本方程?为什么? 16.液体随所在圆柱形容器,绕轴作等角速度旋转后,液面将发生怎样的变化?它与旋转角速度有什么关系?变化后液面各点的静压强是否相同?为什么? 17.相对平衡的液体的等压面形状与什么因素有关? 18.试写出静止液体作用在平面上和曲面上的总压力计算公式。 19.一般情况下,平面图形的压力中心D为什么总在其形心C的下方?在什么情况下,这两者重合。20.何谓压力体?压力体由哪些面围成的?

生活中的流体力学

当我们观察生活时可以发现,我们生活在一个流体的世界里。生活离不开流体,同样我们也离不开流体。鹰击长空,鱼翔浅底;许许多多的现象都与流体力学有关。生活中的很多事物都在经意或不经意中巧妙地掌握与运用了流体力学的原理,让其行动变得更灵活快捷。 您发现没有,高尔夫球的表面做成有凹点的粗糙表面,而不就是平滑光趟的表面,就就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面就是做成光滑的,后来发现表面破损的旧球反而打的更远。原来就是临界Re数不同的结果。高尔夫球的直径为41、1毫米,光滑球的临界RE数为3、85×E5,相当于自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当于临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。乒乓球运动时分离则属于层流分离。 同样在游泳的时候,也受到流体的作用。游泳就是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长时

间;如果先吸足气,双臂却紧贴体侧,胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。因此,游泳不但要充分利用水的浮力,而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转 动太大,空中移臂时间宜短等。 游泳者游进时受到相反方向的阻力作用。游泳的阻力包括水的摩擦阻力、波浪阻力与物体的形状阻力。设流线型物体的阻力为1,那么其她形状物体的阻力就大几倍甚至100倍。推进力就是指做臂划水或腿打水(蹬夹水)动作时给水一个作用力,水就给人体一个力量大小相等的反作用力,这个力就叫推进力。游泳就就是靠臂绕肩关节与腿绕髋关节,以复杂的弧线做圆周运动。根据圆周运动的有关原理,角速度相等时,半径越长线速度越大。所以,游泳运动过程中,距肩与髋最远的手与脚的速度最大。臂划水的作用面就是手掌与前臂,腿打、踢水的作用面主要就是脚面与小腿前侧;腿蹬夹水的主要作用面则就是脚与小腿内侧。增加这些部位对水的横切面(如佩带蹼具等),就能产生更大的推进力。 在我们身边来来往往飞驰的汽车,更就是与流体力学的巧妙结合。汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞击,因此早期的汽车后部就是陡峭的,称为箱型车,阻力系数(CD)很大,约为0、8。实际上汽车阻力主要来自后部形成的尾流,称为形状阻力。

相关文档
最新文档