浅谈用组合数学解决汉诺塔问题

浅谈用组合数学解决汉诺塔问题
浅谈用组合数学解决汉诺塔问题

标题:浅谈用组合数学解决汉诺塔问题—暨对组合数学的认识

学号:102335 姓名:周志勇班级:电子1班

汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。

对于这个问题,我们先来考虑盘子数为2的情形:此时,只需将上面的一个盘子从A搬到B上,再将A柱的最下面的盘子从A搬到C柱上,最后把B上面的盘子搬到C柱上即可。整个过程搬运次数为3次;同理,我们考虑盘子数为3,可推得搬运次数为7次;

将问题一般化,假定盘子数为n,我们现在把A上面的n-1个盘子看成一个整体,并设把A柱上的n-1个盘子搬到B上,设需要的搬运次数为H(n-1),则n个盘子的搬运过程类似于2个盘子,即把A柱上的n-1个盘子从A搬到B柱上,搬运次数为H(n-1),再把A柱的最下面的盘子从A搬到C柱上,搬运次数为1次,最后把B上的盘子搬到搬到C柱上,搬运次数同样也为H(n-1),总共的搬运次数为H(n)=2*H(n-1)+1;

对于上述问题,可能以前会无从下手。但学过组合数学以后,我们知道,这是一个递推关系的求解过程;对于此类递推关系可有两种求解思路,下面我来一一讲述:

思路1:上式递推关系可用数列的相关思想来进行解答;

H(n)=2*H(n-1)+1;

H(n)+1=2(H(n-1)+1);

故{H(n)-1}为以2为公比的等比数列,首项为H(2)=3;

所以H(n)+1=2*2n-1,故H(n)=2n-1;

这是用数列的思想,构造一个等比数列继而求得该递推关系。

思路2:利用组合数学中生成函数的有关内容,求出该递推关系H(n)的生成函数A(x),进而容易得到H(n)的表达式:

其中,我们定义,对于H(n)构成的序列,H(0),H(1),(假设存在,此处不考虑其

实际意义),H(2),H(3),……H(n)……,则生成函数A(x)定义如下

A(x)=H(0)+H(1)*X1+H(2)*X2+……H(n)*X n+……

那么,容易看出,只需求出A(x)这一生成函数,那么根据X n项系数即可得到递

推关系H(n)的式子;

接下来就是需要重点解决A(x)函数的求法;

我们不妨H(n)+1=2*2n-1两边同乘X k,并求和H(X)-X=2*X*H(X)+X2(1-X)

化简X+X^2/(1-X)=(1-2X)H(X)

X/(1-X)(1-2X)=H(X)

H(x)=a/(1-2x)+b/(-x);

再由待定系数法得a=1,b=-1;

所以H(X)=(1+2X+2^2*X2+…)-(1+X+X2+…)

所以H(n)=2n-1;

OK,这就是著名的汉诺塔问题以及利用组合数学的思想解决该问题的方法;

那么,组合数学是一门什么学科呢?下面我结合这半个学期学习组合数学的感觉谈谈对这门学科的简单认识。

组合数学,首先,顾名思义,组合,即一些离散数据的相互组合关系;我们利用数学上的符号甚至公式,将现实问题具体数学化;以方便人们的研究及应用。这是在网上找到的关于组合数学的一般描述:组合数学是研究离散结构的存在,计数,分析,和优化等问题的一门学科。拿上面所述汉诺塔问题来说,这样的一个实际问题,对于盘子数很大的情况,我们是无法用类似盘子数为2,3时的枚举法得出结果的,而这时研究此问题中这些数据间的离散关系就显得尤为重要了。而组合数学正是研究离散数据关系的强有力工具!正如上述组合法解答过程,我们可以看到,组合可以给我们提供一个简单的看问题的角度,而我们正可以通过这一简单的角度窥视到深层,进而通过某种相对简单的方法得到我们想要的解答!

现今一种说法,组合数学是也将持续是未来计算机领域发展的重要依托。细想下,的确!现今数学可以主要分为两大类,一类是一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。计算机程序是计算机的大脑思维,而程序的本质就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。组合数学的产生恰好满足了编写计算机程序的需求。所以,身为计算机专业的学生,组合数学的重要性就不言而喻了!而许多组合问题的解决常常需要某些特别的例证,而且有时需要结合使用一般的理论。我们必须学会建立数学模型,研究模型,抓住问题的要害,灵活的应用智慧来解决问题。我们必须把组合数学的学习放在一个重要的位置上来,掌握基本的组合数学原理,培养专业的数学思维,这样才能在以后的工作学习中掌握主动和先机。才能在将来为中国的计算机软件事业做出自己的贡献。

以上即通过利用组合数学解决汉诺塔问题,浅谈对于组合数学的认识全文。

2011.11.27

参考文献

维普《利用组合数学化简汉诺塔问题》、《组合数学》等。

2020年整理学习组合数学心得体会.doc

组合数学学习心得体会 学习数学我感觉是一件很有味道的事情,令人思维变得敏捷活跃。学习组合数学更是令人思维更严谨更具逻辑性。组合数学不仅在基础数学研究中具有极其重要的地位,在其他的学科中也有重要的应用,如在计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。如果说微积分和近代数学的发展为近代的工业革命奠定了基础,那么组合数学的发展则是奠定了21世纪计算机革命的基础。经过课堂学习和课外阅读我了解到组合数学的一些应用实例: 我们组合数学这一门课程在吴克俭老师的指导下,经过半学期的学习,我们主要学习了包括排列和组合,二项式系数,调和数、Fibonacci数与Catalan数,第二类Stirling数和Bell数,第一类Stirling数,正整数的分拆,Bernoulli 数与Euler数,递归数列,形式幂级数等知识内容。老师教会了我数学思维和方法非常重要,而且组合数学学习的思维方法是解决有关的其他数学问题的一个很好的借鉴。 著名的组合数学家 Thomas Tutte 在组合数学界是泰斗级的大师。Tutte 从德军的两条情报密码出发,用组合数学的方法,重建了敌人的密码机,确定了德军密码的内部结构,从而获得了极为重要的情报;在美国有一家公司用组合数学的方法来提高企业管理的效益,这家公司办得非常成功;在美国已有专门的公司用组合设计的方法开发软件,来解决工业界中的试验设计问题;德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注;1962年中国组合数学家管梅谷教授提出了著名的“中国邮递员问题”。等等 我国著名数学家吴文俊院士指出,每个时代都有它特殊的要求,使得数学出现一个新的面貌,产生一些新的数学分支,组合数学这个新的分支也是在时代的要求下产生的。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。计算机程序是计算机的大脑思维,而程序的本质就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。组合数学的产生恰好满足了编写计算机程序的需求。 组合数学可以一般描述为:组合数学是研究离散结构的存在,计数,分析,和优化等问题的一门学科。经验证发现的组合数学最有力的工具之一为数学归纳法。归纳是一个强有力的过程,在组合数学中尤其是如此。用数学归纳法证明一个结果常常比证明一个弱结果更容易。许多组合问题的解决常常需要某些特别的例证,而且有时需要结合使用一般的理论。我们必须学会建立数学模型,研究模型,抓住问题的要害,灵活的应用智慧来解决问题。 组合数学涉及将一个集合的物体排列成满足一些指定规则的格式。以下两种问题反复出现:排列的存在性,排列的计数和分类。虽然对任何组合数学问题都可以考虑其存在性和计数问题,但在实际问题中如果存在性问题需要广泛的研究那么计数问题则是非常困难的。“排列和组合”是组合数学所研究的最简单、最基本的课题,学好“排列和组合”也是学好组合数学的开始,下面我举例说明:排列主要分为四种:可重复排列、不可重复排列、限定型排列和圆排列。 限定型排列的定义为:设n元集 {} 12 ,,..., n S a a a = ,如果在S上取若干元素 的排列中允许1 a出现1m次,2a出现2m次,,n a出现2m次,称这种排列为

汉诺塔c++程序

void Hanoi(int platesCount, int from, int dest, int by) { if (platesCount==1) { printf( "Move the plate from %d to %d through %d" , from, dest, by); }else { Hanoi(platesCount -1, from, by, dest); Hanoi(1, from, dest, by); Hanoi(platesCount -1, by, dest, from); } } // Advance one step to solve Hanoi void HanoiDrawer::SolveNextStep() { int platesCount , source , destination , intermediate; if(listSavedState.size()==0) { this->Hanoi(this->iPlatesCount, HanoiDrawer::SOURCE , HanoiDrawer::DESTINATION, HanoiDrawer::INTERMEDIATE); } if(listSavedState.size() % 4 != 0 ) { return; } platesCount = listSavedState.front(); listSavedState.pop_front(); source = listSavedState.front(); listSavedState.pop_front(); destination = listSavedState.front(); listSavedState.pop_front(); intermediate = listSavedState.front(); listSavedState.pop_front();

排列组合论文

排列组合论文 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

排列组合体系重建 制作:星哥 摘要 排列组合是高中数学中相对独立的内容,对学生分析问题、解决问题能力有较高要求,师生普遍反映难学难教。产生困难的原因很多,比如题目变化多,结构复杂,思考过程容易出错,很难找到一个简明而又全面的问题归类方式;解答思路灵活,简繁不一,答案检验也不容易;师生仅凭书面交流难以真正了解彼此的想法,更不用说纠正和改正错误了。 该论文在文献研究的基础上,通过对部分高三学生的测试与学生的访谈,意在揭示高中生学习排列组合时的常见认知错误,分析其产生原因,并基于实证研究,为改进排列组合教学提供具体建议。 本文中,我对排列组合问题提出了一个新的分类,先将排列组合问题分为选取模型和分配模型两大类,再依次分为4个小类,部分小类中还有进一步的划分。希望通过新的分类,更清晰地梳理问题类型,帮助学生更容易地找到解决问题的方法。 通过对测试结果的分析,我将学生常见的错误归为三种类型:题意理解错误、模式选择错误、操作技术错误。在这三大类错误中包含的具体错误情况共有11种。对于每种错误,我都根据学生的访谈内容、文献研究等对学生的出错原因进行了分析。通过访谈,我还发现,在解决陌生问题、解决限制条件多的问题时学生普遍存在困难,而且很多学生不知道如何自我检查答案。 针对学生普遍存在的困难和常见错误,我的建议是:(1)帮助学生认识学习目的;(2)多采用直观图示的方法;(3)重视读题过程,推敲问题特征,列式之后再次读题,检查是

否有遗漏和重复;(4)利用学生错误,开展有意义的学习;(5)适当变式,如改换背景和增加限制条件,提高学生的理解水平;(6)引导学生用“缩小数据”和“一题多解”的方法检验解法的正确性。 关键词:排列组合,常见错误,高中生,数学学习 目录 第一章引言 (4) 研究背景 (4) 研究问题 (5) 研究意义 (5) 第二章文献综述 (6) 关于排列组合问题模型 (6) 选取模型 (6) 分配模型 (6) 课程中的排列组合知识及其要求 (6) 课程标准及考纲要求 (6) 教材要求 (7) 关于排列组合常见错误类型及其成因 (8) 关于排列组合教学 (9) 第三章研究的设计和实施 (10) 研究对象 (10) 测试题的设计 (10) 按排列组合模型设计 (10)

数学排列组合的体会

数学排列组合的体会李达科 数学的排列组合本来很是简单,听了优酷网中的北京四中的老师的课以后,觉得这位老师讲太复杂了!照这位老师讲法,那个学生能听明白? 例子1:假设为一维根,又设1a =1A =为二维数,那么2a a a d +== 是一维的排列组合解法。它做到了左边用求和,右边用系数2乘以实数求积, a d d 2===. 例子2: 假设 为一维根宽,1a =1A =为二维乘积数,2d =为一维根长,2B =为二维乘积数,那么2A A A +==B 是二维非线性的排列组合解法。它做到了左边用加法求和得到二维长方形面积,右边用系数乘以二维实数2A ,B 是它的二维面积计算结果。 假设 为一维根宽,1a =1A =为二维乘积数,2d =为一维线性根长,2B =为二维乘积数,那么是二维非线性的排列组合解法。它做到了左边求和得到二维长方形面积,右边用根长乘以根宽a ,B 是它的二维面积计算结果。因A A d a B +=×=d A A B +=,()a a a a a a a d a B ×+×=+×=×=, 2A A A +==B 都是解. 例子3:假设 为一维根长,为一维根宽,1a =1a =2d =为一维线性立方根高,'1A =为三维乘积数, '2 B =为三维乘积数,那么''A A a a a a a a + =××+××()a a a a =+××'d a a B =××=是三维非线性的排列组合解法。它做到了左边用求和得到三维长方体体积,左边用立方根长乘以立方根宽再乘以立方根高, d a a 'B 是它的三维体积计算结果。(本题是用传统数学计算,若用达科格位数论解法更简单些) 以上三道题的计算得出了:一维线性的长度2a a a d +== 对应于11212+= ×= 对应于 = = == 的解. 二维非线性的面积对应于11A A d a B +=×=212+=×=对应于 ()A A a a a a a a a d a B +=×+×=+×=×=的解.. 三维非线性的体积''2''A A A B +==对应于11212+=×=对应于 ''()'A A a a a a a a a a a a d a a B +=××+××=+××= ××=的解.

排列组合教案

数学广角 《课题一排列组合》教学设计 教学内容: 《义务教育课程标准实验教科书·数学(二年级上册)》第99页的的内容---排列、组合。 教材分析: 课标中指出数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。教学目标: 1使学生通过观察、猜测实验等活动,找出最简单的事物排列数和组合数。 2培养学生初步的观察能力、分析能力及推理能力 3初步培养学生有序的全面思考问题的意识。 情感态度与价值观:通过解决生活中的一些实际问题,感受数学与生活的密切联系培养学生积极思维的品质。 教学重点:有序排列的思想和方法 过程与方法:通过实践活动,经历找排列数与组合数的过程,体验排

列与组合的思想方法。 课时:1课时 教学设计 情景导入 师:同学们喜欢去广场吗?为什么? 走进新课 师:今天我们也要到一个有意思的地方,哪呢?课件(数学广角)对,那里没有好吃的,好玩的,但是那里有趣的数学问题等待我们开动我们聪明的小脑袋瓜儿解决他们,想去吗? 在去之前,我们先打扮一下自己,穿上漂亮的衣服,老师这有四件衣服(课件)你喜欢那套衣服,同学们有这么多的选择。那到底能搭配多少套呢?拿出手中的学具摆摆看。 学生分组讨论 汇报交流 同学们表现的真不错,你喜欢那一套,我们就在心理穿上你喜欢的衣服去数学广角了。 展开活动 1、开启大门 数学广角的大门是由1和2 这两个数字摆成的两位数,这道 门的密码可能是那些数? 生;12、21。 师:这两个数字有什么不同?

汉诺塔 java 程序

汉诺塔java 程序 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class AutoMoveDisc extends JDialog implements ActionListener{ int amountOfDisc=3; TowerPoint [] pointA,pointB,pointC; char [] towerName; Container con; StringBuffer moveStep; JTextArea showStep; JButton bStart,bStop,bContinue,bClose; Timer time; int i=0,number=0; AutoMoveDisc(Container con){ setModal(true); setTitle("自动演示搬盘子过程"); this.con=con; moveStep=new StringBuffer(); time=new Timer(1000,this); time.setInitialDelay(10); showStep=new JTextArea(10,12); bStart=new JButton("演示"); bStop=new JButton("暂停"); bContinue=new JButton("继续"); bClose=new JButton("关闭"); bStart.addActionListener(this); bStop.addActionListener(this); bContinue.addActionListener(this); bClose.addActionListener(this); JPanel south=new JPanel(); south.setLayout(new FlowLayout()); south.add(bStart); south.add(bStop); south.add(bContinue); south.add(bClose); add(new JScrollPane(showStep),BorderLayout.CENTER); add(south,BorderLayout.SOUTH); setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE); towerName=new char[3]; addWindowListener(new WindowAdapter(){ public void windowClosing(WindowEvent e){ time.stop(); setVisible(false);

【学习实践】《简单的排列组合》教学案例分析

《简单的排列组合》教学案例分析 【教学背景】 在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。 【教材分析】 “数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。 【教学目标】 .通过观察、实验等活动,使学生找出最简单的事物的

排列数和组合数,初步经历简单的排列和组合规律的探索过程; 2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力; 3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。 【教学重点】经历探索简单事物排列与组合规律的过程【教学难点】初步理解简单事物排列与组合的不同 【教学准备】多媒体、数字卡片。 【教学方法】观察法、动手操作法、合作探究法等。 【课前预习】 预习数学书99页,思考以下问题: 、用1、2两个数字能摆出哪些两位数? 2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。 3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。 【教学准备】PPT 【教学过程】 …… 一、以游戏形式引入新课 师:同学们,今天老师带大家去数学广角做游戏。在门

组合数学 课程论文

第二类stirling 数S(n ,n-7)的一个公式 数学与应用数学(师范)2班 李霞 200902114078 一、定义与符号 定义1 从n 个不同事物中取出m 个的组合数,记作m n C . 定义2 把含有n 个元素的一个集合分成恰好有k 个非空子集合的分拆数目就叫 做第二类stirling 数,并记作(,)S n k ,对于0n k ==时,定义(0,0)S =0;当(,)0n k S n k <=时,. 对于集合A,我们用|A|表示A 的基数.关于第二类stirling 数的性质与计算方法,我们给出以下几个引理. 引理 []11 1 1 1 2 11(,1)1,(,2)21,(,3)(3 1)2 , 2 ,n n n n n S n S n S n S n S n n S n n ---≥==-= +-当时,(,0)=0,(,-1)=C (,)=1. 引理 [] 12 1(,)(1,1)(1,).k n S n k S n k kS n k ≤≤=--+-当时, 为了方便下面定理1的证明,根据引理1和引理2,我们可以算出以下几个第二类stirling 数: 8 99 1(9,2)21255;(10,3)(31)29330;(11,4)145750; 2 S S S =-== +-==(12,5)1379400.S = 定理 [][][][] 2345A 344,(,2)3n n n S n n C C ≥-=+当时4566(,3)1015;n n n S n n C C C ≥-=++;当n 时, 5 6 7 8 8(,4)25105105; n n n n n S n n C C C C ≥-=+++当时, 6 7 8 9 10 10(,5)564901260945; n n n n n n S n n C C C C C ≥-=++++当时, 7 8 9 10 11 12 12(,6)119191894501732510395.n n n n n n n S n n C C C C C C ≥-=+++++当时, 二、 主要结果及其证明

汉诺塔问题的三种实现

// test_project.cpp : 定义控制台应用程序的入口点。//汉诺塔问题的 // //递归实现 /*#include "stdafx.h" #include using namespace std; int count=0;//记录移动到了多少步 void Move(int n,char From,char To); void Hannoi(int n,char From, char Pass ,char To); //把圆盘从From,经过pass,移动到To int main() { int n_count=0; cout<<"请输入圆盘个数:"; cin>>n_count; Hannoi(n_count,'A','B','C'); } void Move(int n,char From,char To)

{ count++; cout<<"第"<

/*后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放A B C; 若n为奇数,按顺时针方向依次摆放A C B。 ()按顺时针方向把圆盘从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘在柱子A,则把它移动到B;若圆盘在柱子B,则把它移动到C;若圆盘在柱子C,则把它移动到A。 ()接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。 ()反复进行()()操作,最后就能按规定完成汉诺塔的移动。 所以结果非常简单,就是按照移动规则向一个方向移动金片: 如阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。*/ /*#include "stdafx.h" #include #include

汉诺塔程序设计报告

数据结构 学院:信息学院 班级:计科高职13-2 姓名:曲承玉 学号:201303014044

汉诺塔程序设计报告 一、题目 汉诺塔(Towers of Hanoi)问题 二、设计要求 1、在窗口中画出初始时塔和碟子的状态。 2、可以以自动或手动两种方式搬移碟子。 3、自动搬移可以通过定时器或多线程的方法,每一次移动的时间间隔可以自定,以人眼观察比较舒服为宜,每一次的移动过程如能实现动画最好。 4、定义塔的描述类和碟子的描述类。 5、在程序中,碟子的数目及每次移动的时间间隔可以通过对话框设置(也应该有默认值)。 6、支持暂停功和继续的功能(在自动搬移过程中可以暂停,并继续)。 7、暂停后,可以将当前的状态保存(碟子和塔的组合关系)。 8、可以从7中保存的文件中读出某个状态,并继续移动。 三、问题分析 1、已知有三个塔(1、 2、3)和n个从大到小的金碟子,初始状态时n个碟子按从大到小的次序从塔1的底部堆放至顶部。 2、要求把碟子都移动到塔2(按从大到小的次序从塔2的底部堆放至顶部)。 3、每次移动一个碟子。

4、任何时候、任何一个塔上都不能把大碟子放到小碟子的上面。 5、可以借助塔3。(图1-1) 图1-1 首先考虑a杆下面的盘子而非杆上最上面的盘子,于是任务变成了: 1、将上面的63个盘子移到b杆上; 2、将a杆上剩下的盘子移到c杆上; 3、将b杆上的全部盘子移到c杆上。 将这个过程继续下去,就是要先完成移动63个盘子、62个盘子、61个盘子....1个盘的工作。 四、算法选择 汉诺塔程序设计算法的实质就是递归递归思想的运用。现将其算法简述如下: 为了更清楚地描述算法,可以定义一个函数hanoi(n,a,b,c)。该函数的功能是:将n个盘子从塔a上借助塔b移动到塔c上。这样移动n 个盘子的工作就可以按照以下过程进行: 1) hanoi(n-1,a,c,b);//将n-1个金盘由a借助c移到b 2) 将最下面的金盘从a移动到c上;

组合数学教学大纲

《组合数学》课程教学大纲 课程英文名Combinatorics 执笔人:晁福刚编写日期:2010.7.9 一、课程基本信息 1. 课程编号:07010132 2. 课程性质/类别:限选课/专业基础课 3. 学时/学分:48学时/ 2学分 4. 适用专业:数学与应用数学信息与计算科学专业 二、课程教学目标及学生应达到的能力 组合数学主要研究一组离散对象满足一定条件的安排的存在性,以及这种安排的构造、枚举计数及优化等问题,这是整个离散数学的一个重要组成部分。 《组合数学》课程的教学目标是通过本课程的学习,使学生初步掌握组合数学的基本原理和思想方法。了解和掌握并会应用鸽巢原理、排列与组合、容斥原理、递推关系、生成函数等组合数学基本知识。 三、课程教学内容与基本要求 (一)鸽巢原理(8学时) 1.主要内容: 鸽巢原理的简单形式,鸽巢原理的加强形式,Ramsey问题与Ramsey数,Ramsey 数的推广。 2.基本要求 1.了解鸽巢原理的简单形式和加强形式,会用鸽巢原理解决简单的问题。 2.了解Ramsey问题的历史由来,会求简单的Ramsey数,Schur数。 3.自学内容:无 4.课外实践:无 (二)基本计数问题(10学时) 1.主要内容: 加法原则与乘法原则,排列与组合,多重集合的排列与组合,二项式系数,集合的分划与第二类Stirling数,正整数的分拆,分配问题。 2.基本要求 1.了解加法原则和乘法原则,会求简单的排列组合问题。 2.掌握多重集合的排列和组合技巧。 3.会证明组合恒等式。 4.了解集合的分划与第二类Stirling数,知道两类数之间的关系。 5.知道正整数分拆问题的递推关系及研究进展。 6.知道一些简单的分配问题的解法。 3.自学内容: 排列组合

组合数学

组合数学论文 现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好像是有思维的。组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。 广义的组合数学就是离散数学,离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。 组合数学中有几个著名的问题: 地图着色问题:对世界地图着色,每一个国家使用一种颜色。如果要求相邻国家的颜色相异,是否总共只需四种颜色?这是图论的问题。 船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、狼就会吃羊。船夫的船每次只能运送一种东西。怎样把所有东西都运过河? 这是线性规划的问题。 中国邮差问题:由中国组合数学家管梅谷教授提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个NP完全问题,存在多项式复杂度算法:先求出度为奇数的点,用匹配算法算出这些点间的连接方式,然后再用欧拉路径算法求解。这也是图论的问题。 货郎问题:一个货郎要去若干城镇卖货,然后会到出发地,给定各个城镇之间的旅行时间,应怎么样计划他的路线,使他可以去每个城镇而且所用的时间最短。这个问题至今都没有有效的算法。 这几个问题将组合数学研究的问题具体表现出来,同时也可以看出他在我们生活中有着很重要的地位。 组合数学中主要可以分成以下几个部分:排列组合与容斥原理、二项式定理、递推关系与生成函数、polya定理。下面我将以这四个部分分别介绍组合数学的各方面问题。 1、排列组合与容斥原理: 排列组合里面的4个重要的基本原理:加法原理、乘法原理、减法原理、除法原理 前面两个最为基本,后面两个是根据前两个派生出来的。乘法原理有的时候的应用很巧妙,可以作为一种打开思路的办法。

汉诺塔问题

实验二知识表示方法 梵塔问题实验 1.实验目的 (1)了解知识表示相关技术; (2)掌握问题规约法或者状态空间法的分析方法。 2.实验内容(2个实验内容可以选择1个实现) (1)梵塔问题实验。熟悉和掌握问题规约法的原理、实质和规约过程;理解规约图的表示方法; (2)状态空间法实验。从前有一条河,河的左岸有m个传教士、m个野人和一艘最多可乘n人的小船。约定左岸,右岸和船上或者没有传教士,或者野人数量少于传教士,否则野人会把传教士吃掉。搜索一条可使所有的野人和传教士安全渡到右岸的方案。 3.实验报告要求 (1)简述实验原理及方法,并请给出程序设计流程图。 我们可以这样分析: (1)第一个和尚命令第二个和尚将63个盘子从A座移动到B座; (2)自己将底下最大的盘子从A移动到C; (3)再命令第二个和尚将63个盘子从B座移动到C;(4)第二个和尚命令第三个和尚重复(1)(2)(3);以此类推便可以实现。这明显是个递归的算法科技解决的问

题。 (2)源程序清单: #include #include using namespace std; void main() { void hanoi(int n,char x,char y,char z);

int n; printf("input the number of diskes\n"); scanf("%d",&n); hanoi(n,'A','B','C'); } void hanoi(int n,char p1,char p2,char p3) { if(1==n) cout<<"盘子从"<

简单的排列组合教学反思

《简单的排列组合》教学反思 本节课的知识是排列和组合简单的知识,但对学生来说,教师又不能直接讲解排列组合,如何讲解比较深奥的知识,这是应该正视的问题。在处理教材时,没有直接呈现排列组合原理,而是从排列组合的基本思考方法入手——科学枚举法。因为学生只有恰当的分类,将事情的各种情况能够一一列举出来,就能够保证计数时不重复不遗漏——这是本节课的重点和难点所在。所以本节课没有要求学生解决比较复杂的计数问题,也不要求发现加法原理与乘法原理,而是要求学生通过科学枚举法,感受计数方法。在教学中,为了突破重点,从多方面想办法:一是让学生认识到排列与组合学习是生活中的必须;二是让学生通过摆、画、列表等活动,学习“不重复、不遗漏”的计数的方法。本课教学后我进行了认真反思,觉得有以下可取之处和不足之处。 一、创设情境,激发学生探究的兴趣。 创设形象生动、亲近学生生活实际的教学情景,将有效地激发学生学习的兴趣。本节课通过创设“衣服的穿法、早餐搭配、数字游戏”等与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题、注意让小组合作学习从形式走向实质。 在合作探究中,保证了合作学习的时间,并深入小组中恰当地给予指导。合作探究后,教师还能够及时、正确的评价。教师从实际的学习效果出发,考虑如何组织合作学习,有利于调动广大学生参与学习的全过程,防止合作学习走过场。 二、让学生在丰富多彩的教学活动中感悟新知。 通过组织学生参与“连一连,写一写,画一画”等教学活动,充分调动了学生的多种感官协调合作,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。2、注意让小组合作学习从形式走向实质。 三、利用自主探究的学习方式。 本节课设计时,注意精选合作的时机与形式,在教学关键点、重难点时,适应地组织了同桌或四人小组的合作探究。在学生合作探究前,提出了明确的要求。

组合数学学习心得

组合数学学习心得 在进入研究生学习的第一个学期就开设了组合数学这门课程,我感到很庆幸和开心,因为我在学完这门课程之后学到了很多东西,不仅仅是课本上的,还有许多在课本上是学不到了! 组合数学,对大多数学生来说是一门十分困难的课程,由于自己本科学的是数学,所以学起来还好,也比较喜欢这门课程。组合数学可以一般描述为:组合数学是研究离散结构的存在,计数,分析,和优化等问题的一门学科。经验证发现的组合数学最有力的工具之一为数学归纳法。归纳是一个强有力的过程,在组合数学中尤其是如此。用数学归纳法证明一个结果常常比证明一个弱结果更容易。许多组合问题的解决常常需要某些特别的例证,而且有时需要结合使用一般的理论。我们必须学会建立数学模型,研究模型,抓住问题的要害,灵活的应用智慧来解决问题。“图论”是组合数学课程中比较重要的一部分。在刚接触到“图”这一章的时候我是抱着好奇之心去学习的,因为这章都是关于“图” ,想了解一下和几何图形的差别,所以觉得善长几何的我应该能够把它学好。但是不可否认,随着知识的深入,这一章一定会比前面的更难理解,更难学。因此上课的时候听得格外认真,课后还找了一些相关书籍阅览。在看过这些书籍以后,我才真正了解到它并不是枯燥乏味的,它的用途非常广泛,并且应用于我们整个日常生活中。比如:怎样布线才能使每一部电话互相连通,并且花费最小?从首府到每州州府的最短路线是什么?n 项任务怎样才能最有效地由 n 个人完成?管道网络中从源点到集汇点的单位时间最大流是多少?一个计算机芯片需要多少层才能使得同一层的路线互不相交?怎样安排一个体育联盟季度赛的日程表使其在最少的周数内完成?我们能用4种颜色来为每张地图的各个区域着色并使得相邻的区域具有不同的颜色吗?这些问题以及其他一些实际问题都涉及“图论” 。这里所说的图并不是几何学中的图形,而是客观世界中某些具体事物间联系的一个数学抽象,用顶点代表事物,用边表示各式物间的二元关系,如果所讨论的事物之间有某种二元关系,我们就把相应的顶点练成一条边。这种由顶点及连接这些顶点的边所组成的图就是图论中所研究的图。由于它关系着客观世界的事物,所以对于解决实际问题是相当有效的。总之,图论是数学科学的一个分支,而四色问题是典型的图论课题。通过对图论的初步理解和认识,我深深地认识到,图论的概念虽然有其直观、通俗的方面,但是这许多日常生活用语被引入图论后就都有了其严格、确切的含义。我们既要学会通过术语的通俗含义更快、更好地理解图论概念,又要注意保持术语起码的严格。 学习数学重要的是理解,而不是像其它科目一样死背下来,数学有一个特点,那就是”举一反三”。做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了。在做题的过程中,学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果。数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。而在日常时对于数学的学习还是有许多方法的。数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。 组合数学是一门既古老又年轻的数学分支。组合数学不仅在基础数学研究中具有极其重要的地位,在其他的学科中也有重要的应用,如在计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。如果说微积分和近代数学

汉诺塔程序实验报告

实验题目: Hanoi 塔问题 一、问题描述: 假设有三个分别命名为 A , B 和C 的塔座,在塔座 B 上插有n 个直径大小各不相同、从小到 大编号为1, 2,…,n 的圆盘。现要求将塔座 B 上的n 个圆盘移至塔座 A 上并仍按同样顺序 叠排,圆盘移动时必须遵守以下规则: (1 )每次只能移动一个圆盘; (2)圆盘可以插在 A , B 和C 中任一塔上; ( 3)任何时刻都不能将一个较大的圆盘压在较小的圆盘之上。 要求: 用程序模拟上述问题解决办法,并输出移动的总次数, 圆盘的个数从键盘输入; 并想 办法计算出程序运行的时间。 二、 算法思路: 1 、建立数学模型: 这个问题可用递归法解决,并用数学归纳法又个别得出普遍解法: 假设塔座B 上有3个圆盘移动到塔座 A 上: (1) "将塔座B 上2个圆盘借助塔座 A 移动到塔座C 上; (2) "将塔座B 上1个圆盘移动到塔座 A 上; (3) "将塔座C 上2个圆盘借助塔座 B 移动到塔座A 上。 其中第 2步可以直接实现。第 1步又可用递归方法分解为: 1.1"将塔座B 上1个圆盘从塔座 1.2"将塔座B 上1个圆盘从塔座 1.3"将塔座A 上1个圆盘从塔座 第 3 步可以分解为: 3.1将塔座C 上1个圆盘从塔座 3.2将塔座C 上1个圆盘从塔座 3.3将塔座B 上1个圆盘从塔座 综上所述:可得到移动 3 个圆盘的步骤为 B->A,B->C, A->C, B->A, C->B, C->A, B->A, 2、算法设计: 将n 个圆盘由B 依次移到A , C 作为辅助塔座。当 n=1时,可以直接完成。否则,将塔 座B 顶上的n-1个圆盘借助塔座 A 移动到塔座C 上;然后将圆盘B 上第n 个圆盘移到塔 座A 上;最后将塔座 C 上的n-1个圆盘移到塔座 A 上,并用塔座B 作为辅助塔座。 三、原程序 #include #include #include int times = 0; void move(char a, char b) { printf("%c > %c \n", a,b); } void hno(int n,char a , char b, char c) { if (n==1) { move(a,c); times ++; } X 移动到塔座 A ; X 移动到塔座 C ; Z 移动到塔座 C 。 Y 移动到塔座 Y 移动到塔座 X 移动到塔座 B ; A ;

组合数学课程教学大纲

《组合数学》课程教学大纲 课程编号:(研究生院统一编写) 课程名称:组合数学 英文名称:Combinatorial Mathematics 课程类别:学位(基础理论课)课 授课对象:工程硕士 学分:2 学时:40 开课学期:1 开课周次:1-20周 开课系及教研室:(保定)计算机系计算机教研室 任课教师及职称:(保定)孟建良副教授 先修课程:高等数学、离散数学 适用专业:计算机应用技术 主要内容:随着计算机性能的持续提高及其应用的深入普及,组合数学自20世纪60年代以来得到了急速的发展。组合数学的思想和技巧不仅影响着数学的许多分支,而且广泛应用于计算机科学、社会科学、信息论、生物科学以及其他传统自然科学领域。每当我们求解实际问题,编制计算机程序的时候,它往往不仅提供具体的算法而且还知道对算法运行效率和存储需求的分析。正因为如此,组合数学所包含的内容越来越广泛。本课程主要包括以下基本内容: 1.排列与组合 加法法则、乘法法则及排列与组合,圆周排列,排列的生成算法,序数法、字典序法、换位法,组合的生成,允许重复的组合,司特林公式,瓦利斯公式。 2.递推关系与母函数

母函数的性质,若干基本的母函数,指数型母函数,费卜拉契数列,解线性常系数递推关系特征根法,任意阶齐次递推关系,司特林数,卡特朗数。 3.容斥原理与鸽巢原理 容斥原理的两个基本公式,有限制的排列,棋盘多项式,有禁区的排列问题,广义的容斥原理,广义容斥原理的若干应用,错排问题的推广,容斥原理在数论上的应用,一般的鸽巢原理,鸽巢原理的推广,拉蒙赛数。 4.Burnside引理与Po/lya定理 群的概念,群的基本性质,置换群,循环、奇循环与偶循环,Burnside引理,Po/lya定理,母函数形式的波利亚定理。 使用教材:《组合数学》,卢开澄,卢华明,清华大学出版社,2002年 参考书目:《组合数学》,Richard A.Brualdi 著,冯舜玺等译,机械工业出版社,2005年。 组合数学导论》,(美)C.L.Liu著,魏万迪译,四川大学出版社,1987年。 教研室意见: 系(院、部)意见: 研究生院审核意见:

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2 类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

相关文档
最新文档