高电压 气体间隙的击穿强度(2).

高电压 气体间隙的击穿强度(2).
高电压 气体间隙的击穿强度(2).

高电压工程基础

3 气体间隙的击穿强度

虽然用气体放电理论可以解释气体击穿的试验现象和规律,但理论还不完善,不能对击穿电压进行精确的计算。

实际工程上一般通过参考一些典型电极的击穿电压来选择绝缘距离;或根据实际电极的位置,通过试验来确定击穿电压。

空气间隙

的放电与外施电压的形式电场的情况?电极形状

大气环境有关

高电压工程基础

3.3 操作冲击电压下的击穿

操作过电压由电力系统在操作或故障时,因系统状态突然变化引起的持续时间较长、幅值高于系统相电压几倍(最高可达3~3.5倍)的冲击电压。

330kV以下设备,用工频耐压试验来考核绝缘可承受的操作冲击的能力;

330kV及以上设备,需进行操作冲击试验。--长间隙操作冲击。

在均匀电场和稍不均匀电场中,气隙的50%(雷电和操作)与工频击穿电压(峰值)几乎相同。

3.5 SF6气体间隙的击穿

SF6是理想的气体绝缘介质和灭弧介质,在均匀电场中SF6气体的绝缘强度约为空气的2.5倍,其灭弧能力是空气的100以上。

SF6气体的液化温度较低,一般可满足工程实际的应用,如0.75MPa (7个大气压,作为断路器的绝缘)的液化温度是-25℃,0.45MPa (4个大气压,作为GIS绝缘)的液化温度不高于-40℃。

SF6气体的应用可大大降低设备尺寸,与空气介质相比,500kV的GIS是敞开式的1/50。SF6气体广泛应用于高压断路器、GIS、充气管道电缆,充SF6气体的变压器和开关柜也在发展中。

只有在均匀电场和稍不均匀电场,SF6气体才能发挥其优异的绝缘性能,因而一般应用SF6气体做绝缘时,应尽量保证其电场的均匀性。

此外,SF6气体中水含量的增加,将会大大降低其绝缘性能,因而使用中应定期检测其微水含量。

SF6气体价格高,温室效应相当于CO2的23900倍,且SF6气体不会自然分解,在大气中寿命长达3200年。一般工程中多采用N2-SF6混合气体。

3.6 提高气隙击穿电压的措施

提高气隙击穿电压一般有两种途径:改善电场分布,使之均匀化;设法削弱或抑制气体介质中的电离过程。?改善电场分布的措施

(1)改变电极形状

增大电极曲率半径:如采用屏蔽罩、扩径导线等增大电极曲率半径以减小最大场强;

改善电极边缘形状:电极边缘做成弧形,或尽量使之与等位面相近,以消除边缘效应;

使电极有最佳外形:电场优化

高电压工程基础

(2)利用空间电荷对原电场的畸变作用

例如利用电晕放电产生的空间电荷来改善极不均匀场间隙中电场分布,从而提高间隙的击穿电压。

但应该指出,上述细线效应只存在于一定的间隙距离范围之内,间隙距离超过一定值,细线也将产生刷状放电,从而破坏比较均匀的电晕层,使击穿电压与尖-板或尖-尖间隙的相近了。另外,此种提高击穿电压的方法仅在持续作用电压下才有效,在雷电冲击电压下并不适用。

(3

)极不均匀电场中屏障的使用有屏障正棒击穿电压提高3~4倍;正尖-板间隙中屏障的作用

屏障靠近尖电极或板电极时,屏障效应消失,正、负极性下出现很大差别。负棒击穿电压提高0.2倍。屏障应靠近尖电极,但离尖电极过

近,屏障上空间电荷分布不均使屏障效应减弱。屏障最佳位置0.2。

高电压工程基础

?

高气压的采用高气压的密封问题

高电压工程基础

?强电负性气体的应用

(1)SF6和一些氟里昂气体属于强电负性气体,其绝缘强度比空气高得多,可大大缩小设备尺寸,降低工作气压。

(2)氟里昂12(CCl2F2)的绝缘强度与SF6相近,其液化温度也可满足户内设备的条件,但可破坏臭氧层,国际上将氟里昂12禁用的氟里昂。

(3)SF6的价格较高,用于断路器时(气压在0.7MPa左右)液化温度(-25 ℃)不能满足高寒地区要求,在工程应用中采用1:1的SF6-N2混合气体,其液化温度能满足高寒地区要求,绝缘强度约为纯SF6的85%左右。

高电压工程基础

稍不均匀电场中高真空的直流击穿电压与电极材料的关系

在完全相同的实验条件下,击穿电压随电极材料熔点的提高而增大,因为强场发射电流达到临界电流密度,致使金属微细突起物迅速熔化成金属蒸气导致击穿。因而在真空介质中可采取措施降低电极的温度以提高其击穿电压。

第七章 气体动理论答案

一.选择题 1、(基础训练1)[ C ]温度、压强相同的氦气与氧气,它们分子的平均动能ε与平均平动动能w 有如下关系: (A) ε与w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε与w 都不相等. 【解】:分子的平均动能kT i 2 = ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气与氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 2 3 = ,仅与温度有关,所以温度、压强相同的氦气与氧气,它们分子的平均平动动能w 相等。 2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同, 而方均根速率之比为( )()()2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:M RT v 32 = ,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同, 则其压强之比等于温度之比,即:1:4:16。 3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ? 2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0()d f v v ∞ ? . 【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总与,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总与,因此?2 1 d )(v v v v v f /?2 1 d )(v v v v f 表 示速率分布在v 1~v 2区间内的分子的平均速率。 4、(基础训练10)[ B ]一固定容器内,储有一定量的理想气体,温度为T ,分子的平均碰撞次数为 1Z ,若温度升高为2T ,则分子的平均碰撞次数2Z 为 (A) 21Z . (B) 12Z . (C) 1Z . (D) 12 1Z . 【解】:分子平均碰撞频率n v d Z 2 2π,因就是固定容器内一定量的理想气体,分子数密 度n 不变,而平均速率: v = 温度升高为2T ,则平均速率变为v 2,所以2Z =12Z 5、(自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A)0、500. (B) 400. (C) 900. (D) 2100.

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

高电压技术(周泽存)课后作业与解答

高电压技术课堂作业第一章 P11,1-1 解答: 电介质极化种类及比较 在外电场的作用下,介质原子中的电子运动轨道将相对于原子核发生弹性位移,此为电子式极化或电子位移极化。 离子式结构化合物,出现外电场后,正负离子将发生方向相反的偏移,使平均偶极距不再为零,此为离子位移极化。 极性化合物的每个极性分子都是一个偶极子,在电场作用下,原先排列杂乱的偶极子将沿电场方向转动,显示出极性,这称为偶极子极化。 在电场作用下,带电质点在电介质中移动时,可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在介质空间中新的分布,从而产生电矩,这就是空间电荷极化。 1-6 解答:由于介质夹层极化,通常电气设备含多层介质,直流充电时由于空间电荷极化作用,电荷在介质夹层界面上堆积,初始状态时电容电荷与最终状态时不一致;接地放电时由于设备电容较大且设备的绝缘电阻也较大则放电时间常数较大(电容较大导致不同介质所带电荷量差别大,绝缘电阻大导致流过的电流小,界面上电荷的释放靠电流完成),放电速度较慢故放电时间要长达5~10min 。 补充:1、画出电介质的等效电路(非简化的)及其向量图,说明电路中各元件的含义,指出介质损失角。 图1-4-2中,lk R 为泄漏电阻;lk I 为泄漏电流;g C 为介质真空和无损极化所形成的电容;g I 为流过g C 的电流;p C 为无损极化所引起的电容;p R 为无损极化所形成的等效电阻;p I 为流过p p C R -支路的电流,可以分为有功分量pr I 和无功分量pc I 。 g J 。为真空和无损极化所引起的电流密度,为纯容性的;lk 。J 为漏导引起的电流密度,为纯阻性的;p 。 J 为有损极化所引起的电流密

击穿耐压装置指标

1 影响绝缘材料击穿的主要原因 对于绝缘材料,在不损坏其绝缘性能的情况下施加高电压的过程称为耐压(抗电)试验;在破坏其绝缘时施加高电压的过程称为击穿试验,击穿时的电压值称为击穿电压。电气设备的质量检查是靠耐压试验完成的。若用连续均匀升压或逐级升压方法对厚度为d(mm)的绝缘材料试件施加高电压,当试件击穿时的电压值V(kV)就是击穿电压。试件在击穿时每单位厚度上所承受的电压值,或试 件的击穿电压值与两个电极间试件的平均厚度之比称为击穿强度:E b =V b /d(kV/m m),有的也称为绝缘强度或介质强度。影响介质击穿的主要客观因素有[1][2]: 1.1 施加电压的时间 多数绝缘材料的击穿电压与加电压的时间有关系,击穿电压随加电压的时间加长而明显下降,见图1,基本遵循下述经验公式: 式中,V t ——加电压时间视为无穷长时的最小击穿电压; V i ——加电压后t时刻的击穿电压; a——与材料和试验条件有关的常数; t——加电压的时间。 图1 击穿电压与加电压时间的关系

1.2 温度和湿度 在低温范围,击穿电压随温度的升降变化不大;在较高的温度范围,不管是绝缘材料本身还是周围环境温度升高和湿度增加,击穿电压都下降。对厚材料更为显著,见图2和图3。 图2 击穿电压与温度的关系图3 击穿电压与湿度的关系 1.3 电压频率 交流电压对绝缘材料的考验最严格。随着交频率的增加,击穿电压值下降见图4,这是因为频率增加时介质的热效应也增加,而且加速了局部放电的流破坏过程。 图4 击穿电压与交流频率的关系 在直流电压作用下,试件内部的局部放电过程容易自行衰减,而且介质损耗一般要比在交流电场中小,所以直流击穿电压要比交流击穿电压高。

高压击穿原理&试验图形

气体介质的绝缘特性 空气间隙的击穿 巴申定律:当气体种类和电极材料一定时,均匀电场中气隙的放电电压Uf是气体压力P和间隙极间距离S乘积的函数;) (pS U f F

电场是否均匀对空气间隙击穿电压的影响

?气体间隙的直流击穿电压和极性效应 冲击电压下空气间隙的击穿电压

影响气体间隙击穿电压的各种因素 ?气体状态:密度大,击穿电压会升高;密度小,击穿电压会降低,密度太小,也降低;气压与温度通过对密度的影响,影响击穿电压;气压越大,击穿电 压越高;温度增大,击穿电压增大 ?电压作用时间:均匀电场,击穿电压与电压波形、电压作用时间无关;极不均匀电场,雷电冲击击穿电压比工频冲击电压高得多;极不均匀电场,操 作冲击电压,如果波前时间T1与间隙S比,处于临界波前时间T0附近, 则可能低于工频冲击击穿电压;

?电压的极性:均匀电场,击穿电压与电压极性无关;极不均匀电场,当棒为正极时,直流击穿电压与工频冲击电压接近相等;极不均匀电场,当棒为负 极时,直流击穿电压远高于工频冲击电压; ?电场均匀程度:电场越均匀,击穿电压高 ?电极材料与光洁:表面不易发射电子,击穿电压高;表面光洁,击穿电压高; ?不同气体类型:卤素元素气体,击穿电压比空气高几倍; SF6气体的绝缘特性 ?SF6在普通状态下,无色、无嗅、无毒、不燃的惰性气体;相对密度是空气的5倍;电气绝缘强度是空气的2.3-3倍;灭弧性能是空气的100倍?气体的压力:气压越大,击穿电压越高 ?电场均匀程度:均匀电场中,提高气压,能显著提高击穿电压 ?气液状态:防止出现液态;压力越高,液化温度越高;如:20℃表压为 0.1MP的SF6气体,-63 ℃液化; 20℃表压为0.45MP的SF6气体,-40 ℃ 液化 气体放电的不同形式:与气体压力、电极形状、电场强度有关 ?辉光放电:压力小,真空中;放电电流密度小,放电区域占放电管电极间整个空间 ?电弧放电:压力增大--1个大气压以上;放电电流密度大,温度高,亮而细长放电弧道,弧道电阻小,似短路 ?火花放电:放电回路阻抗大,放电时断时续;外电路阻抗大,压降大,间隙多次被击穿 ?电晕放电:极不均匀电场环境中;空气间隙电场极不均匀,在电极附近强电场处出现的局部空气游离发光现象,电流小,整个空气间隙并未击穿,仍能 耐受电压作用 ?刷状放电:电晕放电后压力增大,产生刷状放电;从电晕电极间产生许多明亮的细小放电通道;压力再大,整个间隙击穿,形成电弧放电或火花放电?气体中固体介质沿表面放电:与绝缘物表面状况、污染程度、电场分布等有关 ?固体绝缘表面光洁度:表面的损伤或毛刺,引起沿面电阻分布不均匀,使电场分布不均匀,电场强的地方首先放电,整体沿面放电电压降低?大气湿度和绝缘物吸潮:空气潮湿,绝缘物表面吸收潮气形成水膜;水中离子,在电场作用下,向电极积聚,使电极电场加强并放电 ?导体与绝缘物结合程度: 结合不好,形成气隙;气隙中电场分布比固体强,首先发生电晕放电 ?电场分布的影响: 在电场分布最强的地方,空气首先发生游离,产生电晕,使沿面放电电压降低 二、固体介质的绝缘特性 固体电介质的种类及其特性 ?天然材料:木材、云母、石棉、橡胶

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

高电压技术天津大学作业答案

高电压技术复习题 填空题 (一)组 1.高电压技术研究的对象主要是____________、__________和__________等。答案:电气装置的绝缘、绝缘的测试、电力系统的过电压 2. ________是表征电介质在电场作用下极化程度的物理量。? 答案:相对介电常数 3.按照气体分子得到能量形式的不同,气体分子可分为_______ 、_______和 _______三种游离形式。 答案:碰撞游离、光游离、热游离 4. 工频耐压试验中,加至规定的试验电压后,一般要求持续_____秒的耐压时间。答案:60 5. tgδ测量过程中可能受到两种干扰,一种是_______和_______。 答案:电场干扰、磁场干扰 6.固体电介质电导包括_______电导和_______电导。 答案:表面、体积 7.极不均匀电场中,屏障的作用是由于其对________的阻挡作用,造成电场分布的改变。 答案:空间电荷 8.气体放电现象包括_______和_______两种现象。 答案:击穿、闪络 9.带电离子的产生主要有碰撞电离、______、______、表面电离等方式。 答案:光电离、热电离 10、电压直角波经过串联电容后,波形将发生变化,变成?????????波。 答案:指数 11.按绝缘缺陷存在的形态而言,绝缘缺陷可分为_______缺陷和____缺陷两大类。 答案:集中性、分散性 12.在接地装置中,接地方式可分为________、________、________。 答案:防雷接地、工作接地、保护接地 13.输电线路防雷性能的优劣主要用________和_________来衡量。 答案:耐压水平、雷击跳闸率 14、在极不均匀电场中,间隙完全被击穿之前,电极附近会发生????????????,产生暗蓝色的晕光。 答案:电晕 15、冲击电压分为????????????和??????????。 答案:雷电冲击电压操作冲击电压 (二)组 1、固体电介质的击穿形式有、热击穿和。 答案:电击穿、电化学击穿 2、绝缘配合的最终目的是,常用的方法有、和。答案:确定设备的绝缘水、惯用法、统计法、简化统计法 3、要避免切空线过电压,最根本的措施就是要提高断路器的。

第10章 气体动理论

思考题 10-1 一定量的某种理想气体,当温度恒定时,其压强随体积的减小而增大;当体积恒定时,其压强随温度的升高而增大,从微观角度来看,压强增大的原因各是什么?(根据公式nkT p =) 10-2 试用气体动理论说明道尔顿分压定律. (根据公式nkT p =) 10-3 试用气体动理论解释阿伏伽德罗定律. (根据公式nkT p =) 10-4 地球大气层上层的电离层中,电离气体的温度可达到2000K ,离子数密度不过是1011m -3,这个温度是什么意思?一块锡放到该处会不会熔化?(分清温度和热量) 10-5 1mol 氢气与1mol 氦气的温度相同,则两种气体分子的平均平动动能是否相同?两种气体分子的平均动能是否相同?内能是否相等?(根据自由度、能量均分定理以及内能同温度的关系解释) 10-6 速率分布函数f (v )的物理意义是什么?说明下列各式的物理意义: (1)()f d υυ;(2)()Nf d υυ;(3) 2 1 ()f d υυ υυ?;(4)21 ()Nf d υ υυυ? 10-7 气体分子的平均速率、最概然速率和方均根速率的意义有何不同? 10-8 若某气体分子的自由度是i ,能否说每个分子的能量都等于2 ikT ?(根据统计的特征来解释) 10-9 将沿铁路运行的火车、在海面上航行的轮船视为质点,它们的自由度各为多少?若把在空中飞行的飞机视为刚体,自由度为多少?(1,2,4) 10-10 一绝热敞口容器中盛有某种液体,液体蒸发过程中会导致液体温度的下降,试利用气体动理论解释其原因.(温度的微观本质是分子热运动剧烈程度的量度,气体的分子的平均平动动能与气体温度成正比。液体蒸发时一些平动动能较大的分子离开液体,导致分

最新高电压工程答案(清华大学版)

高电压工程课后答案 1.1空气作为绝缘的优缺点如何? 答:优点:空气从大气中取得,制取方便,廉价,简易,具有较强的自恢复能力。缺点:空气比重较大,摩擦损失大,导热散热能力差。空气污染大,易使绝缘物脏污,且空气是助燃物当仿生电流时,易烧毁绝缘,电晕放电时有臭氧生成,对绝缘有破坏作用。 1.2为什么碰撞电离主要是由电子而不是离子引起? 答:由于电子质量极小,在和气体分子发生弹性碰撞时,几乎不损失动能,从而在电场中继续积累动能,此外,一旦和分子碰撞,无论电离与否均将损失动能,和电子相比,离子积累足够造成碰撞电离能量的可能性很小。 1.5负离子怎样形成,对气体放电有何作用? 答:在气体放电过程中,有时电子和气体分子碰撞,非但没有电离出新电子,碰撞电子反而别分子吸附形成了负离子,离子的电离能力不如电子,电子为分子俘获而形成负离子后电离能力大减,因此在气体放电过程中,负离子的形成起着阻碍放电的作用。 1.7非自持放电和自持放电主要差别是什么? 答:非自持放电必须要有光照,且外施电压要小于击穿电压,自持放电是一种不依赖外界电离条件,仅由外施电压作用即可维持的一种气体放电。 1.13电晕会产生哪些效应,工程上常用哪些防晕措施? 答:电晕放电时能够听到嘶嘶声,还可以看到导线周围有紫色晕光,会产生热效应,放出电流,也会产生化学反应,造成臭氧。 工程上常用消除电晕的方法是改进电极的形状,增大电极的曲率半径。 1.14比较长间隙放电击穿过程与短间隙放电放电击穿过程各有什么主要特点? 答:长时间放电分为先导放电和主放电两个阶段,在先导放电阶段中包括电子崩和流注的形成和发展过程,短间隙的放电没有先导放电阶段,只分为电子崩流注和主放电阶段。 2.1雷电放电可分为那几个主要阶段? 答:主要分为先导放电过程,主放电过程,余光放电过程。 2.4气隙常见伏秒特性是怎样制定的?如何应用伏秒特性? 答:制定的前提条件是①同一间隙②同一波形电压③上升电压幅值。当电压较低时击穿发生在波尾,取击穿时刻t1作垂线与此时峰值电压横轴的交点为1,当电压升高时,击穿也发生在峰值,取击穿时刻的值t2作垂线与此时峰值电压横轴的交点为2,当电压进一步升高时,击穿发生在波前,取此时击穿时刻t3作垂线与击穿电压交点为3,连接123 应用:伏秒特性对于比较不同设备绝缘的冲击击穿特性有重要意义,如果一个电压同时作用于两个并联气隙s1和s2上,若某一个气隙先击穿了,则电压被短接截断,另一个气隙就不会击穿。 2.7为什么高真空和高压力都能提高间隙的击穿电压?简述各自运用的局限性? 答:在高气压条件下,气压增加会使气体密度增大,电子的自由行程缩短,削弱电离工程从而提高击穿电压,但高气压适用于均匀电场的条件下而且要改进电极形状,点击应仔细加工光洁,气体要过滤,滤去尘埃和水分 在高真空条件下虽然电子的自由行程变得很大,但间隙中已无气体分子可供碰撞,故电离过程无从发展,从而可以显著提高间隙的击穿电压,但是在电气设备中气固液等几种绝缘材料往往并存,而固体液体绝缘材料在高真空下会逐渐释放出气体,因此在电气设备中只有在真空断路器等特殊场合下才采用高真空作为绝缘。 2.8什么是细线效应?

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4 :2:1: : 2 2 2 C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v =m kT 3 (B) 2 x v = m kT 331 (C) 2x v = m kT 3 (D) 2 x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3)

(C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ? ?? ??++kT kT N N 2523 )(2121 (C) kT N kT N 252321 + (D) kT N kT N 23 2521+ 7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为: (A ) kg 161 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg 8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了: (A) 0.5% (B) 4% (C) 9% (D) 21% 9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。如果两种气体 的压强相同,那么这两种气体的单位体积的内能A V E ??? ??和B V E ??? ??的关系为:

第四章--气体动理论-总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与 C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式形式 n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 描述气体状态三个物理量: P,V T

12 2 ω=mv 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 =在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 m k T v v x ===2231温度的微观本质:理想气体的温度是分子平均平动动能的量度

大学物理第十一章气体动理论习题

第十一章气体动理论 一、基本要求 1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。 2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。 3.理解自由度和内能的概念,掌握能量按自由度均分定理。掌握理想气体的内能公式并能熟练应用。 4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。 5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。 二、基本概念 1 平衡态 系统在不受外界的影响下,宏观性质不随时间变化的状态。 2 物态参量 描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度 3 温度 宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。 4 自由度 确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。

5 内能 理想气体的内能就是气体内所有分子的动能之和,即 6 最概然速率 速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。 7 平均速率 各个分子速率的统计平均值,用表示, 8 方均根速率 各个分子速率的平方平均值的算术平方根,用表示, 9 平均碰撞频率和平均自由程 平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或 三、基本规律 1 理想气体的物态方程 pV RT ν=或'm pV RT M = pV NkT =或p nkT = 2 理想气体的压强公式 23 k p n ε= 3 理想气体的温度公式 21322 k m kT ευ==

高电压复习试题(附答案)

1.气体中带电质点的产生有哪几种方式 碰撞电离(游离),光电离(游离),热电离(游离),表面电离(游离)。 2.气体中带电粒子的消失有哪几种形式 (1)带电粒子向电极定向运动并进入电极形成回路电流,从而减少了气体中的带电离子;(2)带电粒子的扩散;(3)带电粒子的复合;(4)吸附效应。 3.为什么碰撞电离主要由电子碰撞引起 因为电子的体积小,其自由行程比离子大得多,在电场中获得的动能多;电子质量远小于原子或分子,当电子动能不足以使中性质点电离时,电子遭到弹射而几乎不损失其动能。 4.电子从电极表面逸出需要什么条件可分为哪几种形式 逸出需要一定的能量,称为逸出功。获得能量的途径有:a正离子碰撞阴极;b光电子发射;c强场发射;d热电子发射。 5.气体中负离子的产生对放电的发展起什么作用,为什么 对放电的发展起抑制作用,因为负离子的形成使自由电子数减少。 6.带电粒子的消失有哪几种方式 带电质点的扩散和复合。 7.什么是自持放电和非自持放电 自持放电是指仅依靠自身电场的作用而不需要外界游离因素来维持的放电。必须借助外力因素才能维持的放电称为非自持放电 8.什么是电子碰撞电离系数 若电子的平均自由行程为λ,则在1cm长度内一个电子的平均碰撞次数为1/λ,如果能算出碰撞引起电离的概率,即可求得碰撞电离系数。 9.自持放电的条件是什么 (—1)=1或1 10.简述汤逊理论和流注理论的主要内容和适用范围。 汤逊理论:汤逊理论认为电子碰撞电离是气体放电的主要原因。二次电子主要来源于正离子碰撞阴极,而阴极逸出电子。二次电子的出现是气体自持放电的必要条件。二次电子能否接替起始电子的作用是气体放电的判据。汤逊理论主要用于解释短气隙、低气压的气体放电。流注理论:流注理论认为气体放电的必要条件是电子崩达到某一程度后,电子崩产生的空间电荷使原有电场发生畸变,大大加强崩头和崩尾处的电场。另一方面气隙间正负电荷密度大,复合作用频繁,复合后的光子在如此强的电场中很容易形成产生新的光电离的辐射源,二次电子主要来源于光电离。流注理论主要解释高气压、长气隙的气体放电现象 11.什么是电场不均匀系数 间隙中最大场强与平均场强的比值。通常f=1为均匀电场,f<2时为稍不均匀电场,f>4时为极不均匀电场。 12.什么是电晕放电为什么电晕是一种局部放电现象电晕会产生哪些效应 (1)极不均匀电场中放电,间隙击穿前在高场强区(曲率半径极小的电极表面附近)会出现蓝紫色的晕光,称为电晕放电。(2)在极不均匀电场中,由于电晕放电时的起始电压小于气隙击穿电压,气隙总的来说仍

大学物理同步训练第10章气体动理论

第八章 气体动理论 一、选择题 1. 一定量的氢气(视为刚性分子的理想气体),若温度每升高1 K ,其内能增加20.8 J ,则该氢气的质量为(普适气体常量R =8.31 J ?mol ?1?K ?1) (A )1.0×10?3 kg (B )2.0×10?3 kg (C )3.0×10?3 kg (D )4.0×10?3 kg 答案:B 分析:内能公式E =ν?iRT 2?(式中ν为物质的量,i 为自由度;物质的量可由气体质量和气体摩尔质量算出,常见气体氢气2 g ?mol ?1、氦气4 g ?mol ?1、氮气28 g ?mol ?1、氧气32 g ?mol ?1、甲烷16 g ?mol ?1、水蒸气18 g ?mol ?1;单原子分子即惰性气体自由度i =3,双原子分子i =5,多原子分子如甲烷、水蒸气i =6)。由题可得?E =ν?5R?T 2?,代入可得物质的量ν=2×20.8(5×8.31)?≈1 mol ,故质量为2 g ,即B 选项。 2. 有一瓶质量为m 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能为 (A )3kT 2? (B )5kT 2? (C )3RT 2? (D )5RT 2? 答案:B 分析:气体分子的平均动能为ε?=ikT 2?(式中i 为气体分子自由度,见选择题1)。 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 (A )1/2倍 (B )2/3倍 (C )5/3倍 (D )2倍 答案:C 分析:由物态方程pV =νRT 可知两瓶气体的物质的量ν相同。由内能公式(见选择题1)可得 E H 2E He =v ?5RT 2?v ?3RT 2?=53 4. A 、B 、C 3个容器中皆装有理想气体,它们的分子数密度之比为n A :n B :n C =4:2:1,而分子的平均平动动能之比为w ?A :w ?B :w ?C =1:2:4,则它们的压强之比p A :p B :p C 为

绝对真空会被高电压击穿吗

绝对真空会被高电压击穿吗? 【初级跳虫的回答(332票)】: 这个问题有点意思。 要解答这个问题,我们必须先明确什么叫做真空。 真空,从字面看,就是把容器中的气体分子抽光,近乎为宇宙深空的空间性质。但我们知道,即使是宇宙深空,也未必能有所谓的理想真空。真空里就算没有物质粒子,但也存在电磁波,以及所谓暗能量之类的东西。因此有这样一种说法:真空不空,真空是垃圾箱。笑! 既然理想真空不存在,我们还是现实一点,就从一般的大气条件开始,直到真空管内的准真空,一起来探讨一番。 我们把题主的主题改为:从大气到真空,气体介质电气击穿的条件是什么? 我们先来看一条著名的曲线——巴申曲线,如下: 这条曲线的纵坐标就是铜电极的击穿电压,横坐标是真空度p与电极间隙长度l的乘积。曲线中,实线部分为实测值,虚线为理论计算值。我们看到它们十分接近。这条曲线的纵坐标就是铜电极的击穿电压,横坐标是真空度p与电极间隙长度l的乘积。曲线中,实线部分为实测值,虚线为理论计算值。我们看到它们十分接近。

我们看到,曲线存在最低点,此点对应的条件就是最容易击穿之处。 另外,曲线的左侧对应于低气压或者高真空。在大气条件下,曲线左侧对应的间隙长度l已经到达微米级了,在此条件下会产生高电场发射,使得击穿电压极大地降低。 在高海拔地区,大气压强低,在同样的电极间隙距离条件下,pl的值比较小,所以击穿电压比海平面要小。 我们来看看具体的表达式: 这里的T是温度,A和B是系数。由此式中我们看到,pl 是不能分开的整体。 那么这个表达式和曲线背后的物理意义是什么?我们来仔 细研究一下。 设电路如下: 现在我们把电路放在空气中并且接通电路,慢慢地调小电阻R,我们会发现电路中有极其微小的电流流过。现在我们把电路放在空气中并且接通电路,慢慢地调小电阻R,我们会发现电路中有极其微小的电流流过。 知道这是为什么?这是因为空间中存在宇宙射线。宇宙射线击中气体原子(或者气体分子),使原子中的电子脱离原子核的束缚成为自由电子,中性气体原子也由此变成正离子。

第二章气体放电的物理过程(1)

第二章气体放电的物理过程 本章节教学内容要求: 气体分子的激发与游离,带电质点的产生与消失 汤森德气体放电理论:电子崩的形成,自持放电的条件,帕邢定律。 流注理论:长间隙击穿的放电机理,极性效应,先导放电,雷云放电及电晕。 必要说明:1)常用高压工程术语 击穿:在电场的作用下,由电介质组成的绝缘间隙丧失绝缘性能,形成导电通道。 闪络:沿固体介质表面的气体放电(亦称沿面放电)。 电晕:不均匀电场条件下的气体自持放电现象。 击穿电压(放电电压)Ub(kV):使绝缘击穿的最低临界电压。 击穿场强(抗电强度,绝缘强度)Eb(kV/cm):发生击穿时在绝缘中的最小平均电场强度。Eb=Ub/S(S:极间距离) 放电 辉光放电:当气体压力低,电源容量小时,放电表现为充满整个气体间隙两电极之间的空间辉光,这种放电形式称为辉光放电。 火花放电:在大气压力或更高的压力下,电源容量不大时变现出来的放电。主要表现为:从一电极向对面电极伸展的火花而不是充满整个空间。火花放电常常会瞬时熄灭,接着有突然出现。 电晕放电:在不均匀电场中,曲率半径很小的电极附近会出现紫兰色的放电晕光,并发出“兹兹”的可闻噪声,此种现象称为电晕放电。如不提高电压,则这种放电就局限在很小的范围里,间隙中的大部分气体尚未失去绝缘性能。电晕放电的电流很小。 电弧放电:在大气压力下,当电源容量足够大时,气体发生火花放电之后,便立即发展到对面电极,出现非常明亮的连续电弧,此称为电弧放放电。电弧放电时间长,甚至外加电压降到比起始电压低时电弧依然还能维持。电弧放电电流大,电弧温度高。 电气设备常常以一个标准大气压作为绝缘的情况,这是可能发生的是电晕放电,火花放电或者是电弧放电。 2)常见电场的结构 均匀场:板-板 稍不均匀场:球-球 极不均匀场:(分对称与不对称) 棒-棒对称场 棒-板不对称场 线-线对称场 §2-1气体中带电质点的产生和消失 一.带电粒子的产生(电离过程) 气体中出现带电粒子,才可在电场作用下发展成各种气体放电现象,其来源有两个:一是气体分子本身发生电离,二气体中的固体或液体金属发生表面电离。 激励能:一个原子的外层电子跃迁到较远的轨道上去的现象称为激励,其值为两个能级之间的差值。 电离能:当外界加入的能量很大,使电子具有的能量超过最远轨道的能量时,电子就会

高电压技术第2章习题答案

第二章液体的绝缘特性与介质的电气强度2-1电介质极化的基本形式有哪几种,各有什么特点? 2-2如何用电介质极化的微观参数去表征宏观现象? 2-3非极性和极性液体电介质中主要极化形式有什么区别? 2-4极性液体的介电常数与温度、电压、频率有什么样的关系?2-5液体电介质的电导是如何形成的?电场强度对其有何影响?2-6目前液体电介质的击穿理论主要有哪些? 2-7液体电介质中气体对其电击穿有何影响? 2-8水分、固体杂质对液体电介质的绝缘性能有何影响? 2-9如何提高液体电介质的击穿电压?

2-1电介质极化的基本形式有哪几种,各有什么特点? 答:电介质极化的基本形式有 (1)电子位移极化 图(1) 电子式极化 (2)偶极子极化 图(2) 偶极子极化 (a )无外电场时 (b )有外电场时 1—电极 2—电介质(极性分子) 2-2如何用电介质极化的微观参数去表征宏观现象? 答:克劳休斯方程表明,要由电介质的微观参数(N 、α)求得宏观参数—介电常数r ε,必须先求得电介质的有效电场i E 。 (1)对于非极性和弱极性液体介质,有效电场强度 0233r i P E E E εε+=+= 式中,P 为极化强度(0(1)r P E εε=-)。 上式称为莫索缔(Mosotti )有效电场强度,将其代入克劳休斯方程[式(2-11)],得到非极性与弱极性液体介质的极化方程为

01 23r r N εαεε-=+ (2)对于极性液体介质,由于极性液体分子具有固有偶极矩,它们之间的距离近,相互作用强,造成强的附加电场,洛伦兹球内分子作用的电场2E ≠0,莫索缔有效电场不适用。 2-3非极性和极性液体电介质中主要极化形式有什么区别? 答:非极性液体和弱极性液体电介质极化中起主要作用的是电子位移极化,偶极子极化对极化的贡献甚微;极性液体介质包括中极性和强极性液体介质,这类介质在电场作用下,除了电子位移极化外,还有偶极子极化,对于强极性液体介质,偶极子的转向极化往往起主要作用。 2-4极性液体的介电常数与温度、电压、频率有什么样的关系? 答:(1)温度对极性液体电介质的r ε值的影响 如图2-2所示,当温度很低时,由于分子间的联系紧密,液体电介质黏度很大,偶极子转动困难,所以r ε很小;随着温度的升高,液体电介质黏度减小,偶极子转动幅度变大,r ε随之变大;温度继续升高,分子热运动加剧,阻碍极性分子沿电场取向,使极化减弱,r ε又开始减小。 (2)频率对极性液体电介质的r ε值的影响 如图2-1所示,频率太高时偶极子来不及转动,因而r ε值变小。其中0r ε相当于直流电 场下的介电常数,f>f 1以后偶极子越来越跟不上电场的交变,r ε值不断下降;当频率f=f2 时,偶极子已经完全跟不上电场转动了,这时只存在电子式极化,r ε减小到r ε∞,常温下, 极性液体电介质的r ε≈3~6。 2-5液体电介质的电导是如何形成的?电场强度对其有何影响? 答:液体电介质电导的形成: (1)离子电导——分为本征离子电导和杂质离子电导。设离子为正离子,它们处于图2-5中A 、B 、C 等势能最低的位置上作振动,其振动频率为υ,当离子的热振动能超过邻近分子对它的束缚势垒0u 时,离子即能离开其稳定位置而迁移。 (2)电泳电导——在工程中,为了改善液体介质的某些理化性能,往往在液体介质中

大学物理第十一章 气体动理论习题详细答案

第十一章 气体动理论习题详细答案 一、选择题 1、答案:B 解:根据速率分布函数()f v 的统计意义即可得出。()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。 2、答案:A 解:根据()f v 的统计意义与p v 的定义知,后面三个选项的说法都就是对的,而只有A 不正确,气体分子可能具有的最大速率不就是p v ,而可能就是趋于无穷大,所以答案A 正确。 3、答案:A 解 rms v =据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。 4、 由理想气体分子的压强公式2 3 k p n ε=可得压强之比为: A p ∶ B p ∶ C p =n A kA ε∶n B kB ε∶n C kC ε=1∶1∶1 5、 氧气与氦气均在标准状态下,二者温度与压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT ν=代入内能公式2 i E RT ν =可得2 i E pV = ,所以氧气与氦气的内能之比为5 : 6,故答案选C 。 6、 解:理想气体状态方程PV RT ν=,内能2 i U RT ν=(0 m M ν= )。由两式得2 U i P V =,A 、 B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。 7、 由理想气体物态方程' m pV RT M = 可知正确答案选D 。

8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。 9、理想气体温度公式213 22 k m kT ευ= =给出了温度与分子平均平动动能的关系,表明温度就是气体分子的平均平动动能的量度。温度越高,分子的平均平动动能越大,分子热运动越剧烈。因此,温度反映的就是气体分子无规则热运动的剧烈程度。由于k ε就是统计平均值,因而温度具有统计意义,就是大量分子无规则热运动的集体表现,对个别分子或少数分子就是没有意义的。故答案选B 。 10、因摩尔数相同的氢气与氦气自由度数不同,所以由理想气体的内能公式 2i E RT ν =可知内能不相等;又由理想气体温度公式213 22 k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。 二、填空题 1、根据速率分布函数()f v 的统计意义,()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,1 2 ()v v f v Ndv ?表示速率在1v 到2 v 之间的分子数, 2 1 ()v v f v Ndv N ?表示 速率在1v 到2v 之间的分子数占总分子数的比例,也即某一分子速率在1v 到2v 的概率。 2、12kT ;2i kT ;2i RT ν;kT 2 3 3、气体分子定向运动的动能全部转化为分子热运动的动能,所以 22111()0222A A M M U mv v N N ?=-?=-? 3 22323141020013.3102 6.0210 --?=??=??J 23 23 22213.310 6.42333 1.3810k U T k k ε--????====??K

相关文档
最新文档