常见贵金属催化剂的研究进展

常见贵金属催化剂的研究进展
常见贵金属催化剂的研究进展

含钼催化剂研究进展

含钼催化剂研究新进展 摘要含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开 发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献1前言 催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总 产值来自催化技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化 工生产,如合成气制造、基本有机合成和精细化工产品等的的生产。因此,长期以 来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注, 逐渐成为我国钼深加工领域的一个新的发展方向。现仅就我国近年来含钼催化剂的 一些新进展作简要介绍。 2烷烃的化学加工催化剂 2.1烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1 993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂 的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法 制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合 法、固相反应法和微波处理法制备的Mo/HZSM-5催化剂,比一般浸渍法能明显提高 芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面 ,这对甲烷芳构化反应有利,并明显减少积碳的生成。 王军威等用浸渍法、机械混合法和水热法制备了Mo/HZSM-5催化剂,并考察了 钼含量和反应时间对丙烷芳构化反应的影响,深入研究了Mo物种对HZSM-5分子筛结构和酸性的作用。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。 2.2烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究 与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问 题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复 合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。

贵金属催化剂基础知识

贵金属催化剂基础知识 2016-04-17 13:02来源:内江洛伯材料科技有限公司作者:研发部 各种贵金属催化剂 贵金属催化剂已经有很长的历史了,它的工业应用可以追溯到19世纪的70年代,以铂为催化剂的接触法制造硫酸的工业。1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到上世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。从上世纪70年代起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。 贵金属催化剂的英文名称是precious metal catalyst,它主要是以铂族金属(Platinum Group Metal )为主的铂(Pt)、钯(Pd)、钌(Ru)、铑(Rh)、铱(Ir)、锇(Os)等为催化活性组分的载体类非均相催化剂和铂族金属无机化合物或有机金属配合物组成的各类均相催化剂。铂族金属由于其d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。 按催化剂的主要活性金属分类,常用的有:铂催化剂、钯催化剂和铑催化剂、钌催化剂等。贵金属催化剂由于其无可替代的催化活性和选择性,在石油、化工、医药、农药、食品、环保、能源、电子等领域中占有极其重要的地位。在石油和化学工业中的氢化还原、氧化脱氢、催化重整、氢化裂解、加氢脱硫、还原胺化、调聚、偶联、歧化、扩环、环化、羰基化、甲酰化、脱氯以及不对称合成等反应中,贵金属均是优良的催化剂。 在环保领域贵金属催化剂被广泛应用于汽车尾气净化、有机物催化燃烧、CO、NO氧化等。在新能源方面,贵金属催化剂是新型燃料电池开发中最关键的部分。 在电子、化工等领域贵金属催化剂被用于气体净化、提纯。催化技术是当今高新技术之一,也是能产生巨大经济效益和社会效益的技术。发达国家国民经济总产值的20%~30%直接来自催化剂和催化反应。化工产品生产过程中85%以上的反应都是在催化剂作用下进行的。 据分析表明,世界上70%的铑、40%的铂和50%的钯都应用于催化剂的制备。

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

聚丙烯催化剂研发进展及发展趋势

聚丙烯催化剂研发进展及发展趋势(一) 自20世纪50年代Ziegler-Natta(Z-N)催化剂问世以来,聚丙烯催化剂经过不断 改进得到了很大的发展,目前已经从需要脱灰、脱无规物的第一代催化剂发展到高活性、高立构规整性的高效第五代催化剂。催化剂的活性已由最初的几十倍提高到几百万倍,聚丙烯等规指数已达98%以上,生产工艺得到了简化。目前,催化剂仍是推动聚丙烯技术发展的主要动力,Z-N催化剂和单活性中心催化剂都将继续发展。Z-N催化剂将在高活性、高定向性的基础上向系列化、高性能化发展,不断开发性能更好的新产品;茂金属和非茂单活性中心催化剂(SSC)在聚丙烯领域的应用得到深入发展,其发展目标是进一步实现技术的工业化和启动需求量较大的通用产品市场。 1 Ziegler-Natta催化剂 目前,世界上PP生产所用的大多数催化剂仍是基于Ziegler-Natta(Z-N)催化体 系,即TiCl 3 沉积于高比表面和结合Lewis碱的MgCl 2 结晶载体上,助催化剂是 Al(C 2 H 5 ) 2 Cl等烷基铝类化合物,其特点是高活性(通常在50kgPP/g催化剂左右)、 高立构规整性、长寿命和产品结构的稳定性好。20世纪90年代以来,美国、西欧和日本等世界主要的PP生产商研究开发工作的重点主要集中于该类催化剂体系的改进上。 早在第一代Z-N催化剂出现后,人们就发现添加第三组分(多为给电子体,又称 为Lewis碱)对烯烃聚合行为和聚合物性能都会产生很大的影响。只有改变催化剂中的给电子体(分为内给电子体和外给电子体两类),才能最大可能地改变催化剂活性中心的性质,从而最大程度地改变催化剂的性能。因此,新型给电子体的开发一直是5开发的热点。 1.1内给电子体 目前,内给电子体主要有1,3-二酮、异氰酸酯、1,3-二醚、烷氧基酮、烷氧基 酯、丙二酸酯、琥珀酸酯、1,3-二醇酯、戊二酸酯、邻苯二甲酸高级酯、卡宾类化合物以及环烷二元酸酯等,其中使用最多的是1,3-二醚、琥珀酸酯和1,3-二醇酯类。 (1)以1,3-二醚类化合物为内给电子体的催化剂。1,3-二醚类化合物内给 电子体是由Basell公司开发的。以1,3-二醚类化合物为内给电子体的丙烯聚合 催化剂具有高活性、高氢调敏感性及窄相对分子质量分布等特点,并且在聚合过程中不加入外给电子体时仍可以得到高等规度的PP。在较高温度和较高压力下,用该类催化剂可使丙烯抗冲共聚物中的均聚PP基体具有较高的等规度,提高了结晶度。即使熔体流动指数很高时,PP的刚性也很好,非常适合用作洗衣机内桶专用料。目前,Basell公司已经开发了一系列基于二醚类内给电子体的催化剂,据称催化剂的活性超过100 kg/g(以每克催化剂生产的聚合物的质量计),聚合物的等规指数大于99%。

金属催化剂的研究进展

金属催化剂的研究进展 1前言 催化技术作为现代化学工业的基础,正日益广泛和深入地渗透于石油炼制、化学、高分子材料、医药等工业以及环境保护产业中,起着举足轻重的作用。长期以来,工业上使用的传统催化剂往往存在着活性低、选择性差等缺点,同时常需要高温、高压等苛刻的反应条件,且能耗大,效率低,不少还对环境造成污染。为此人们在不断努力探索和研究新的高效的环境友好的绿色催化剂[1]。本文重点讲解金属催化剂的作用机理,以及金属催化剂在甲醇气相羰基化合成碳酸二甲酯的应用、茂金属催化剂的应用以及金属催化剂在乙烯环氧化合成环氧乙烷的应用。 2金属催化剂的作用机理 2.1 金属催化剂的吸附作用 众所周知,吸附是非均相催化过程中重要的环节,过渡金属能吸附O2、C2H4、C2H2、CO、H2、CO2、N2等气体,强化学吸附能力与过渡金属的特性有关,是因为过渡金属最外层电子层中都具有d空轨道或不成对d电子,容易与气体分子形成化学吸附键,吸附活化能较小,能吸附大部分气体,需主要的是d轨道半充满或者全充满,较稳定,不易与气体分子形成化学吸附键。由此可知,过渡金属的外层电子结构和d轨道对气体的化学吸附起决定作用,有空穴的d轨道的金属对气体有较强的化学吸附能力,而没有d轨道的金属对气体几乎没有化学吸附能力,由多相催化理论,不能与反应物气体分子形成化学吸附的金属不能作催化剂的活性组分。 催化反应中,金属催化剂先吸附一种或多种反应物分子,从而使后者能够在金属表面上发生化学反应,金属催化剂对某一种反应活性的高低与反应物吸附在催化剂表面后生成的中间物的相对稳定性有关,一般情况下,处于中等强度的化学吸附态的分子会有最大的催化活性,因为太弱的吸附使反应物分子的化学键不能松弛或断裂,不易参与反应;而太强的吸附则会生成稳定的中间化合物将催化剂表面覆盖而不利于脱附[2]。 2.2 金属-载体间的相互作用 我们课题组研究的是甲醇气相氧化羰基化合成碳酸二甲酯,使用的是负载型

碳封装非贵金属催化剂及其电催化特性

第十七次全国电化学大会1碳封装非贵金属催化剂及其电催化特性 邓德会*,包信和* (中科院大连化学物理研究所,辽宁,大连,116023,E-mail:dhdeng@https://www.360docs.net/doc/a48086364.html,;xhbao@https://www.360docs.net/doc/a48086364.html, ) 贵金属替代催化剂已成为电催化中一个重要的研究热点。然而,目前制约非贵金属电催化剂应用的一个最大问题就是催化剂的不稳定性。尤其是在过电位或强酸、强碱等苛刻环境下,非贵金属容易被过度氧化而腐蚀掉,如在质子交换膜燃料电池中,非贵金属如铁或钴基催化剂在电池工作的酸性环境下将会被迅速溶蚀,从而使电池很快失去催化活性。因此如何设计具有高活性且持续稳定的非贵金属催化剂成为电催化领域一个极具挑战的研究课题。 我们利用豆荚状碳纳米管封装的金属铁催化剂(Pod-Fe )作为模型,发现碳层封装的金属铁能够在酸性条件下有效地催化质子交换膜燃料电池的阴极氧还原反应,由于有了碳层的保护,避免了酸性介质对金属铁的腐蚀,而催化活性来自于“穿过”(Penetrating through )碳管管壁的金属d 电子。在此基础上,我们发现通过减少金属周围的碳层厚度或增加碳层上杂原子如氮原子的数目可以有效促进金属上的电子转移,进一步降低了碳层表面的功函并显著增强了碳层表面的氧还原活性。该类催化剂在质子交换膜燃料电池和电解水制氢上表现出了优异的催化活性和稳定性。由该工作发展出来的为催化剂“穿铠甲”(Chainmail for catalyst )的概念为未来对在苛刻条件下运行的非贵金属催化剂的设计和制备提供了新的研究思路。 a b c d Fig.1a-b)TEM images of Pod-Fe;c)PEMFC durability test of these catalysts in presence of 10ppm SO 2 in air;d)A schematic representation of the ORR process at the surface of Fe 4@SWNT model. 本研究为国家自然科学基金(No.21303191)和中科院大连化物所百人计划共同资助项目。参考文献: 1. Dehui Deng,Liang Yu,Xiaoqi Chen,Guoxiong Wang,Li Jin,Xiulian Pan,Jiao Deng,Gongquan Sun,and Xinhe Bao,Angew.Chem.Int.Ed.,2013,52,371–375(Highlighted on C&E news,90(2012)17).2. Lidong Wu,Dehui Deng,Xianbo Lu,and Jiping Chen,Biosensors and Bioelectronics ,2012,35,193–1993. Dehui Deng,Liang Yu,Xiulian Pan,Shuang Wang,Xiaoqi Chen,P.Hu,Lixian Sun,and Xinhe Bao,Chemical Communications ,2011,47,10016–10018.4. Dehui Deng,Xiulian Pan,Liang Yu,Yi Cui,Yeping Jiang,Jing Qi,Wei-Xue Li,Qiang Fu,Xucun Ma,Qikun Xue,Gongquan Sun,and Xinhe Bao,Chemistry of Materials ,2011,23,1188–1193(Most Read Articles for Q12011).5.Dehui Deng,Xiulian Pan,Hui Zhang,Qiang Fu,Dali Tan,and Xinhe Bao,Advanced Materials ,2010,22,2168-2171(Most accessed articles in Apr.2010). Non-Precious Metal Encap Encaps s u la lated ted in Carbon as Catalyst Catalysts s for Electrocatalysis Dehui Deng,Xinhe Bao (Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian,Liaoning,116023E-mail: dhdeng@https://www.360docs.net/doc/a48086364.html,;xhbao@https://www.360docs.net/doc/a48086364.html, )

贵金属催化剂及新材料大显身手

贵金属催化剂及新材料大显身手 铂族金属具有优良的催化活性,较高的选择性、较长的使用寿命和可回收再生等优点,其研究和开发对工业和社会发展意义重大,今后许多领域必将是铂催化剂大显身手的时代。 化学及石油化工用催化剂。80%以上的化学反应与催化有关,铂族金属催化剂在其中占有重要地位。如硝酸工业氨氧化用铂铑,或有铂钯铑催化网,70年来一直是硝酸工业核心。几乎年有的精细化工与贵金属催化剂有关使用载体催化剂,并向均相多功能催化剂方向发展。提高汽车油辛烷值的石油重整,一直离不开铂及铂及铂等基催化剂,另外,裂化、另氢等催化剂也多以铂或钯为基。 一碳化学用催化剂、一碳化学指以煤及燃气,即甲烷、一氧化碳、甲醇等分子内含一个碳原子的物质为原料,制备各种化学制品和新兴工业领域。这方面最前途的是铂族金属配合物或金属化物催化剂。 废气净化用催化剂,主要是汽车废气的处理,目前的发展趋势是:薄壁蜂窝和三元催化系统;采用氧传感器、电子计算机空燃比反馈控制系统,可以同时消除废气中的一氧化碳、碳氢化合物和氮氧化物;同时求降代催化剂中铂族金属含量。 某些粒小于1m的贵金属,其导电性、光学活性。、低温磁化率、比热、核磁张弛等方面出现能级断续性的异常现象,而且表面活性增大,着火点下降。可应用于催化剂、传感器、低温烧结、导电浆料、太阳能吸引膜、稀释冷冻绝热材料等方面。

将镀金的金属纤维和金属粉末混入高分子材料,如橡胶,制成各向导电性橡胶可用于发光二极管、液晶元件、混合集成电中中。用铂族金属有化合物使聚乙炔、石墨层间化合物导电化也可制面导电率与银铜相匹敌的导电性高分子材料。 目前研究的贵金属非晶态合金有铂、金、钯、铑、铱有合金系。主要用途是催化剂、磁电机材料、电极材料、储氢材料、高强度材料、焊料等。 在钛中加入0.2%的钯,大大地提高了钛的抗腐蚀能力。在不锈钢中加入0.1 ~ 3%的铂,使不锈钢的腐蚀量减少到原来的1/10。最近提出的耐蚀合金还有:Ti - Ru - W(mO或Ni)系合金。 不锈钢表面有0.003 m的钝化膜,因此导电性变差,不能钎焊,限制了在电子工业中的应用。但是只要在不锈钢表面镀0.1~0.5 m厚的金,就有了导电性和钎焊性,从而开辟了在电子工业中的应用。贵金属应用极广,在高新技术的发展中处于重要地位。随着科学技术的发展,其应用领域和用途还会扩大,起越来越重要作用。 【关于中国稀有金属网】简称中稀网,https://www.360docs.net/doc/a48086364.html,,中国稀有金属门户网站,品种涵盖锗、铟、镓、硒、碲、锑、铋、钽、铌、铼、钨、钼、锰、钴、铍等稀贵金属,提供稀有金属价格、稀有金属资讯、稀有金属行情、稀有金属商机、稀有金属会议以及行业上下游生态链资讯信息服务。

2019年贵金属催化剂企业发展战略和经营计划

2019年贵金属催化剂企业发展战略和经营计划 2019年4月

目录 一、行业发展趋势 (5) 二、公司核心竞争力 (6) 1、技术研发优势 (6) 2、产品性能优势 (6) 3、服务响应优势 (7) 4、产品品牌优势 (7) 5、循环再生优势 (7) 三、公司发展战略 (8) 四、公司经营计划 (8) 五、风险因素 (9) 1、原材料价格波动的风险 (9) 2、市场风险 (10) 3、主要客户相对集中的风险 (10) 4、对供应商存在依赖的风险 (11)

贵金属催化剂的应用几乎涉及到各行各业,是国民经济发展的重要基础。催化剂作为新材料已经被纳入国家发展的重点和支持领域,贵金属催化剂以其优良的活性、选择性及稳定性而倍受重视,广泛用于加氢、脱氢、氧化、还原、异构化、芳构化、裂化、合成等反应,在化工、石油精制、石油化学、医药、环保及新能源等领域起着非常重要的作用,成为最重要的催化剂材料之一。 贵金属催化剂作为我国新材料的重要组成部分,是国家大力提倡和鼓励发展的产业,在我国经济发展中的地位非常重要。贵金属催化剂的下游行业主要是汽车尾气净化、石油化工、精细化工、原料药合成、环保化学等行业,作为下游行业重要的支撑性材料,下游行业的蓬勃发展为贵金属催化剂行业高增长奠定基础,特别是汽车尾气净化、燃料电池、精细化工等领域的发展将成为未来贵金属催化剂需求增长的主要动力。 我国贵金属催化剂生产企业起步较晚,2000年之前,国内贵金属催化剂基本依靠进口,目前国内贵金属催化剂行业发展处于成长期,技术处于追赶国际催化剂龙头企业的过程中。随着国内企业品牌效应的提升、研发能力的加强和产品质量的提高,及国家相关政策对国有大型石油化工企业使用国产贵金属催化剂的推动和支持,国内的贵金属催化剂产品将实现对国外产品的进口替代。公司主要产品汽车尾气净化催化剂质量稳定、性能良好,得到客户的认可,正逐步替代外资企业产品。 我国作为一个贵金属催化剂消费大国,每年产生大量的废弃贵金

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展 摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。 关键词:分子筛;催化剂;应用;性能 Development and research of the molecular sieve catalyst Abstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail. Key words:Molecular sieve;catalyst;application;performance 1.分子筛的发展现状 所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。基本组成物质为:Na2O、Al2O3、SiO2。上世纪50年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。美国的多家公司,具有代表的是Linder公司、Exxon公司、联合碳化公司(UCC )模拟天然沸石的类型与生成条件,开发了一系列低硅铝和中硅铝的人工合成沸石。 上世纪60年代左右,上海试剂五厂开展沸石分子筛的研制开发工作,合成出A型、X型、Y型沸石分子筛。上世纪80年代,金陵石化有限公司炼油厂首次工业化生产ZSM-5沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷开展ZSM -5沸石分子筛的开发生产,并将其广泛应用催化裂解、辛烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等领域。 近几年来市场对各类分子筛催化剂的需求不断增加,国内合成分子筛的规模也在不断扩大。中科院大连物化所自上世纪80年代以来开展沸石分子筛的合成及改性研究工作,开发出二甲醚裂解制低碳烯烃催化剂。已完成中试放大实验,据称,该研究所采用改性SAPO-34分子筛催化剂可使二甲醚单程转化率大于97%,低碳烯烃选择性达90%。1988年首次合成了具有十八环的VPI-5分子筛,孔径达1.3nm,实现了大孔分子筛的合成。上海骜芊科贸发展有限公司生产经营ZSM-5高硅沸石分子筛结晶粉体、疏水晶态ZSM-5吸附剂等系列分子筛。南开大学催化剂厂主要生产了NFK-5分子筛(直接法合成ZSM-5分子筛)、Beta分子筛、Y型分子筛以及以其为载体的获得国家级发明奖的各类催化剂。 2.分子筛的性能 一切固体物质的表面都有吸附作用,只有多孔物质或表面积很大的物质,才有明显的吸附效应,才是良好的吸附剂。常用的固体吸附剂活性炭、硅胶,活性氧化铝和分子筛等都有很大的表面积。其中沸石分子筛在吸附分离方面有十分重要的地位,它除了有很高的吸附量外,还有独特的选择性吸附性能。这是由于它具有规整的微孔结构,这些均匀排列的孔道和尺寸固定的孔径,决定了能进入沸石分子筛内部的分子的大小。

合成甲醇催化剂研究进展

化学反应工程论文 合成甲醇催化剂的研究进展 摘要:了解甲醇工业的发展现状及前景。从催化剂组成、种类、各组分功能及失活方式对甲醇催化剂进行探究,同时探索甲醇合成的新方法和新工艺,并对甲醇合成催化剂的动力学研究进行总结。 关键词:甲醇合成、催化剂种类、失活、三相床、生物质秸秆、动力学 1.1甲醇工业发展现状 能源问题已经成为制约我国国民经济发展的战略问题。从国家安全角度看,能源资源的稳定供应始终是一个国家特别是依赖进口的国家关注的重点,是国家安全的核心内容。随着中国工业化、城市化进程的加快以及居民消费结构的升级,石油、天然气等清洁高效能源在未来中国能源消费结构中将会占据越来越重要的地位。目前中国石油消费严重依赖进口,石油资源已经和国家安全紧密联系起来,并成为中国能源安全战略的核心o 在我国能源探明储量中,煤炭占94%,石油占5.4%,天然气占0.6%,这种“富煤贫油少气”的能源结构特点,决定了我国能源生产与消费以煤为主的格局将长期占主导地位。国民经济的持续发展,对能源产品尤其是清洁能源的需求持续增长。结合我国以煤为主的能源结构现状,大力发展煤基能源化工成为我国解决能源问题的主要途径。以煤气化为核心的多联产系统则是针对我国面临的能源需求增长、液体燃料短缺、环境污染严重等一系列问题,提出的一条解决我国能源领域可持续发展的重要途径煤经气化后成为合成气,净化以后可用于生产化工原料、液体燃料(合成油、甲醇、二甲醚)和电力。多联产系统所生产的液体燃料,尤其是甲醇和二甲醚可作为煤基车用替代燃料,可以部分缓解我国石油的短缺。同时,甲醇还可以用来生产烯烃和丙烯,以煤化工产品“替代”一部分传统的石油化工产品,对减少石油的消耗量具有重要意义。 甲醇是一种重要的化工原料,又是一种潜在的车用燃料和燃料电池的燃料,因此合成甲醇的研究和探索在国际上一直受到重视。特别是近年来,随着能源危机的出现、C1化学的兴起,作为C1化学重要物质的甲醇,它的应用得到不断的开发,用量猛增,甲醇工业得到了迅猛发展,在世界基础有机化工原料中,甲醇用量仅次于乙烯、丙烯和苯,居第四位。 1.2甲醇发展前景 甲醇作为一种基础化工原料,在化工、医药、轻纺等领域有着广泛的用途。主要用于制造甲醛、氯甲烷、醋酸、甲胺、甲基丙烯酸甲酯、甲酸甲酯(MF)、二甲醚(DME)、碳酸二甲酯(DMC)、对苯二甲酸二甲酯(DMT)、甲基叔丁基醚(MTBE)等一系列有机化工产品。随着甲醇深加工产品的不断增加和化学应用领域的不断开拓,甲醇在许多领域有着广阔的应用前景:

2014年贵金属催化剂行业分析报告

2014年贵金属催化剂行业分析报告 2014年7月

目录 一、行业监管体系 (4) 1、主管单位及监管体制 (4) 2、行业协会及监管体制 (5) 3、行业主要法律法规及政策 (6) 二、行业周期性、季节性与区域性特点 (8) 1、周期性特征 (8) 2、区域性特征 (8) 3、季节性特征 (9) 三、影响行业发展的因素 (9) 1、有利因素 (9) (1)产业政策的扶持推动行业发展 (9) (2)国家推行循环经济促进贵金属催化剂循环利用的发展 (10) (3)国产贵金属催化剂逐步替代进口产品的趋势已形成 (10) (4)下游行业的市场需求增长为贵金属催化剂行业高增长奠定基础 (11) 2、不利因素 (11) (1)国内企业的生产研发技术水平相对落后 (11) (2)企业规模普遍较小,资金实力相对偏弱 (12) (3)复合型人才相对匮乏 (12) 四、行业进入壁垒 (13) 1、技术壁垒 (13) 2、市场壁垒 (13) 3、资金壁垒 (14) 4、人才壁垒 (14) 五、行业市场规模 (14)

1、上游产业关系 (14) 2、下游产业关系 (15) 3、行业生命周期 (16) 4、行业市场规模 (17) 六、市场竞争状况 (19) 1、庄信万丰 (20) 2、优美克 (21) 3、贺利氏 (21) 4、贵研铂业 (21)

一、行业监管体系 1、主管单位及监管体制 本行业涉及到的政府监管部门包括国家发展和改革委员会、工业和信息化部、国家质量监督检验检疫总局、国家环境保护部等,这些部门按照国家相关规定对不同的环节进行监管。 国家发展和改革委员会:拟订并组织实施国民经济和社会发展战略、中长期规划和年度计划,统筹协调经济社会发展。负责制定产业政策,研究该产业的发展方向,并提出相关措施,指引行业的发展方向。承担规划重大建设项目和生产力布局的责任,拟订全社会固定资产投资总规模和投资结构的调控目标、政策及措施,衔接平衡需要安排中央政府投资和涉及重大建设项目的专项规划。 工业和信息化部:制定并组织实施工业、通信业的行业规划、计划和产业政策,提出优化产业布局、结构的政策建议,起草相关法律法规草案,制定规章,拟订行业技术规范和标准并组织实施,指导行业质量管理工作。对于本行业的管理主要包括研究工业发展战略,指导工业行业技术法规和行业标准的拟订,审批、核准国家规划内和年度计划规模内工业固定资产投资项目,监测分析工业运行态势,统计并发布相关信息。 国家质量监督检验检疫总局:组织起草有关质量监督检验检疫方面的法律、法规草案,研究拟定质量监督检验检疫工作的方针政策,

钴系催化剂研究进展

钴系催化剂的研究和发展 ---含钼催化剂的研究和发展 摘要:含钼催化剂广泛用于多种化工生产过程,在含钼精细化学品的研究与开发中占有重要地位。简要介绍了我国近年来一些含钼催化剂的研究进展和有关文献。催化是现代十分重要的化工技术,据统计,发达国家近三分之一的国民经济总产值来自初花技术。含钼催化剂在催化领域占有重要地位,广泛用于石油加工和化工生产,如合成气制造,基本有机合成和精细化工产品等的生产。因此,长期以来国内外对含钼催化剂的创新和改进不断进行。这也引起我国钼业界的广泛关注,逐渐成为我国钼深加工领域的一个新的发展方向。 关键字:含钼催化剂、合成醇催化剂 (1)烷烃芳构化催化剂 四烷无氧脱氢芳构化,为甲烷活化和转化的一个新的研究热点。王林胜等在1993年首次报道一种以HZSM-5分子筛为载体的含钼催化剂使甲烷于无氧条件下高选择性地转化为苯。该催化剂是甲烷芳构化反应的典型催化剂。此后,对这种催化剂的研究活跃。舒玉瑛等用机械混合、机械混合后焙烧、机械混合后微波处理等方法制备这种催化剂,并考察了其对甲烷芳构化反应的催化性能。结果表明:机械混合法、固相反应

法和微波处理法制备。Mo/HZSM-5催化剂,比一般浸渍法能明显提高芳烃的选择性和减少积碳生成;在不同制法的Mo/HZSM-5催化剂上,Mo 物种落位不同,机械混合法、固相反应法和微波处理法能使Mo物种较多地落位于分子筛外表面,这对甲烷芳构化反应有利,并明显减少积碳的生成。 最近,田丙伦等报道了对Mo/MCM-22催化剂用于甲烷无氧芳构化的研究结果。MCM-22为晶粒呈片状、含两种孔道结构的高硅沸石分子筛。同Mo/HZSM-5催化剂相 比,Mo/MCM-22催化剂稳定性更好,苯产物的选择性较高 。用浸渍法制备的Mo担载量为6%的Mo/MCM-22催化剂性能最佳。此外,还研究了添加钴对Mo/MCM-22催化反应性能和催化剂积碳性质的影响。(2)烷烃选择氧化催化剂 甲基丙烯酸(MAA)是重要的有机化工原料,当前主要用烯烃为原料生产。然而,饱和烃较烯烃来源广泛,更经济易得,故近年来由异丁烷氧化制MAA已成研究与开发的新方向。采用一般热表面催化法由异丁烷选择氧化制取MAA主要存在的问题是MAA选择性低,浓度反应产物(COx)高达40%。激光促进表面反应法是很有应 用前景的光催化合成新技术。最近,陶跃武等分别采用在铋钼复合氧化物、钒钼复合氧化物表面上激光促进异丁烷选择氧化制MAA,取得选择性达到90%和无COx产生的良好结果。 (3)加氢处理催化剂

贵金属催化剂的应用说明及历史

贵金属催化剂的应用说明及历史 贵金属催化剂已经有很长的历史了,它的工业应用可以追溯到19世纪的70年代,以铂为催化剂的接触法制造硫酸的工业。1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到上世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。从上世纪70年代起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。贵金属催化剂的英文名称是precious metal catalyst,它主要是以铂族金属(Platinum Group Metal )为主的铂(Pt)、钯(Pd)、钌(Ru)、铑(Rh)、铱(Ir)、锇(Os)等为催化活性组分的载体类非均相催化剂和铂族金属无机化合物或有机金属配合物组成的各类均相催化剂。铂族金属由于其d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。按催化反应类别,贵金属催化剂可分为均相催化用和非均相催化用两大类。均相催化用催化剂通常为可溶性化合物(盐或络合物),如氯化钯、氯化铑、醋酸钯、羰基铑、三苯膦羰基铑、碘化铑等。非均相催化用催化剂为不溶性固体物,其主要形态为金属丝网态和多孔无机载体负载金属态。金属丝网催化剂(如铂网、铂铑合金网等)的应用范围及用量有限。绝大多数非均相催化剂为载体负载贵金属型,如Pt/A12O3、Pd/C、Rh/SiO2、Pt-Pd/Al2O3、Pt-Rh/Al2O3等。在全部催化反应过程中,多相催化反应占80%~90%。按载体的形状,负载型催化剂又可分为微粒状、球状、柱状及蜂窝状。按催化剂的主要活性金属分类,常用的有:铂催化剂、钯催化剂和铑催化剂、钌催化剂等。贵金属催化剂由于其无可替代的催化活性和选择性,在石油、化工、医药、农药、食品、环保、能源、电子等领域中占有极其重要的地位。在石油和化学工业中的氢化还原、氧化脱氢、催化重整、氢化裂解、加氢脱硫、还原胺化、调聚、偶联、歧化、扩环、环化、羰基化、甲酰化、脱氯以及不对称合成等反应中,贵金属均是优良的催化剂。在环保领域贵金属催化

环保催化剂的应用研究进展

材料导论论文 论文题目:催化材料在环境保护中的 应用研究进展 院系: 化学与环境科学学院 专业班级: 化工1101 姓名: 王宏 学号: 1111034042 授课老师:艾桃桃 日期: 2013年6月12日

催化材料在环境保护中的应用研究进展 [内容摘要] 环境问题是人类不能回避的现实问题,以环境保护为目的的催化化学在解决环境保护问题中起着核心作用。在催化材料商光催化材料对环境报会起着至关作用。光催化氧化材料能有效地降解有机污染物,已成为研究的热点。综述了光催化材料的反应机理和种类, 阐述了影响光催化反应的条件和提高反应的效率等问题以及其在保领域的应用,并提出了其今后的发展方向。 关键词:催化材料光催化氧化二氧化钛环境保护应用 引言 环境问题是人类不能回避的现实问题,如何消除、减轻或根除由于人类的生产活动而产生的一系列有害污染物质,是人类面临的一个重要课题。以环境保护为目的的催化化学在解决此类问题中起着核心作用。20世纪90年代后期绿色化学的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化材料与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。本文就环保催化材料及光催化材料在环境中应用研究进展和新型环保催化材料做简单的概述。 一、光催化材料在环境保护中的应用研究 光催化材料主要应用于环境保护, 这种新的污染治理技术具有操作简单、无二次污染、效率高、能耗低等优点,可产生较大的效益。近几年,随着研究的深入, 出现了光催化材料和其它领域的结合,如光催化剂在抗菌、新能源技术、自洁陶瓷、建材等方面的应用。 1、光催化反应体系的研究 目前的光催化研究主要应用于降解有机废水方面。根据催化剂的存在形式不同,反应体系分为悬浮相体系和固定相体系两大类。 1.1 悬浮相体系 悬浮相体系就是把光催化材料的颗粒直接加入待处理的溶液中, 通过搅拌使颗粒均匀地悬浮并充分与溶液混合。由于颗粒的比表面积大,光照充分, 与溶液中的被降解物接触充分, 降解效率高。但由于材料的颗粒细小,难以回收,对后期处理有一定困难,所以在实际中推广应用受限。 1.2 固定相体系 将催化材料制成薄膜或附载于其它材料表面进行光催化反应, 主要是针对悬浮相体系的分离和回收困难而设计的。一般光催化材料的载体有玻璃球、沙粒、陶瓷、硅藻土或反应

异戊二烯催化剂研究进展剖析

异戊二烯催化剂研究进展 (一)异戊二烯及其应用简介 异戊二烯(2-methylbutadiene)别名异戊间二烯、2-甲基-1,3-丁二烯,分子式为 C5H8,分子量为68.12,CAS号:78-79-5。异戊二烯在常温下是一种无色易挥发、刺激性油状液体,不溶于水,易溶于乙醇、乙醚、丙酮。与空气形成爆炸性混合物,爆炸极限>1.6%。异戊二烯典型的共轭双键结构,使其化学性质活泼,主要用于生产异戊橡胶,也是苯乙烯- 异戊二烯-苯乙烯共聚物(SIS)和丁基橡胶的第二单体。此外,异戊二烯还广泛应用于农药、 医药、香料、喷雾剂及粘结剂等方面。随着乙烯工业的快速发展和对合成橡胶、合成树脂的 需求增大,异戊二烯作为一种重要的化工原料,其生产技术及利用受到世界各国的普遍重视 [1-3]。 聚异戊二烯大多采用铁系、钛系、稀土、矾系、镍系、铬系、钼系等配位聚合催化体系制备。聚异戊二烯具有1,4-链节、1,2-链节和3,4-链节结构。其中钛系和钒系催化体系可制备以反式-1,4-链节为主的聚异戊二烯[4],稀土系可制备以顺式-1,4-链节为主的聚异戊二烯[5-6],铁系催化体系可制备以3,4-链节为主的聚异戊二烯[7]。而钼系催化体系引发异戊二烯聚合时产物以3,4结构和1,2结构的为主[8] (二)主要催化剂类型 1.铁系催化剂 1964 年,Noguchi等[9]最先报道了铁元素 Ziegler-Natta型催化剂的双烯烃聚合研 究,但是催化活性较低。其主要原因在于铁化合物易于被烷基铝还原成无聚合活性低价化合 物。加入给电子体能够稳定铁活性中心,使其不被过度还原,从而提高催化体系的活性。因 而,给电子体化合物的研究一直以来是该类催化体系的研究重点。其中,含氮杂环类化合物 以及腈类化合物具有高的聚合活性,并且能够制得高分子量、高立构规整性的聚合物。 铁催化体系中的含氮杂环类化合物由单独作为第三组分添加到催化体系中,逐渐发展并改 进为以配体的方式与铁元素形成配合物。1988年,孙箐等[10]采用 Fe(acac)3/Al(i- Bu) 3(三异丁基铝)/含氮配体(1,10-邻菲罗啉2,2'-联吡啶等)催化体系在苯中合成了3,4 -结构含量为 70% 、结晶性的聚异戊二烯,但聚合物凝胶含量高,且含氮配体影响聚合物 的分子量。1994年,Halasa[11对该催化体系进行了改进,通过在聚合体系中加入少量水 与烷基铝反应,形成桥联的有机铝氧烷,提高了催化活性,并使凝胶状况得以改善,但聚合 温度对聚合物的3,4-结构含量影响较大。2000年初,Bazzini[12]和 Ricci[13]以MAO(甲 基铝氧烷)为助催化剂,分别开展了( Bipy)2FeEt2和( Bipy)2FeCl2催化异戊二烯聚合的研 究,得到以3,4-结构为主的聚异戊二烯,但聚合温度严重影响聚合活性和聚合物的微观

相关文档
最新文档