数学分析(上)

数学分析(上)
数学分析(上)

数学分析(上)第四章函数的连续性

第四章 函数的连续性 ( 1 2时 )

§ 1

函数的连续性 ( 2时 )

一. 函数在一点的连续性:

1. 连续的直观图解: 由图解引出解析定义.

2. 函数在一点连续的定义: 设函数)(x f 在点0x 某邻域有定义.

定义 (

用)).

()(lim 00

x f x f x x =→ 例如 [1]P 87例1和例2, P 88 例3.

定义 (用 )).()0()0(000x f x f x f =+=-

定义

(

用 ).0lim 0

=?→?y x 先定义x ?和.y ?

定义 (连续的Heine 定义.)

定义 ( “δε-”定义.)

其他定义参阅[3]P 39 Th.

例1 用“δε-”定义验证函数1

32

)(2-+=x x x f 在点10=x 连续.

例2 试证明: 若??∈? ,R A ,0 ,0>?>δε?<-? , ,0δx x x

, )( ε<-A x f 则)(x f 在点0x 连续.

3. 单侧连续: 定义单侧连续, 并图解.

Th ( 单、双侧连续的关系 )

例3 ??

?

??<-=>+=.0 ,2,0

,,0 ,2)(x x x A x x x f 讨论函数)(x f 在点00=x 的连续或单侧连续性.

二. 间断点及其分类: 图解介绍间断点的分类.

跳跃间断点和可去间断点统称为第一类间断点, 其他情况

(

即)0(0+x f 或

)0(0-x f 中至少有一个不存在

)称为第二类间断点.

例4 讨论函数)

1( )

1( )(2

--=

x x x x x f 的间断点类型.

例5 延拓函数,3sin )(x

x

x f = 使在点00=x 连续. 例6 举出定义在[0,1]上且仅在点4

1

,31 ,21=x 三点间断的函数的例.

例7 讨论Dirichlet 函数)(x D 和Riemann 函数)(x R 的连续性.

( 参阅Ch 3 习题课例3 )

三. 区间上的连续函数:

开区间上连续, 闭区间上连续, 按段连续.

Ex [1]P 92—93 1 ⑴,2 ⑹ ⑺, 3—6;

[4]P 83 123. ( 改0≠x 等为2≠x .)

§ 2 连续函数的性质

一. 连续函数的局部性质: 叙述为Th 1—4.

1. 局部有界性:

2. 局部保号性:

3. 四则运算性质:

4. 复合函数连续性:

Th 4 若函数f 在点0x 连续,函数g 在点0u 连续, 且)(00x f u =, 则复合函数

f g 在点0x 连续. ( 证 )

註 Th 4 可简写为

()().)()lim ()(lim )(lim 00

00

x f g x f g x f g x f g x x x x x x =??

? ?

?=??? ??=→→→

例1 求极限 ).1sin(lim 2

1

x x -→

例2 求极限:

⑴ ;s i n 2l i m 0

x x x -

→ ⑵ .s i n 2l i m x

x

x -∞→

例3 求极限 .)

1ln(lim 0x

x x +→

(

x ln 的连续性见后

).

二. 闭区间上连续函数的基本性质:

1. 最值性: 先定义最值.

Th 5 ( 最值性 )

系 ( 有界性 )

2. 介值性: 定义介值.

Th 6 ( 介值性 )

连续函数的值域, 连续的单调函数的值域.

系 ( 零点定理 )

例4 证明: 方程 x x x cos sin 2=- 在0到2π

之间有实根. 例5 设p 是正数, n 为正整数. 证明方程 p x n

=有唯一正实根.

(

唯一

性的证明用n

x 在) , 0 (∞+内的严格递增性.)

三. 反函数的连续性:

Th 7 若函数f 在],[b a 上严格递增( 或减 )且连续, 则其反函数1

-f 在相应的定义

域[])(),(b f a f (或[])(),(a f b f )上连续. ( 证 )

关于函数αx x x y , , arcsin =等的连续性 ( [1]P 99 E5,6.)

Ex [1]P 101—102 1—7,11,13;

[4]P 83 125—127.

四. 函数的整体连续性 —— 一致连续:

1. 连续定义中δ对0x 的依赖性 : 例6 考查函数x

x f 1

)(=在区间] 1 , 0 (上的连续性. 对], 1 , 0 (0∈?x 作限制

,120

1

1 2

0000

0000x x x x x x x xx x x x x -=-≤-=- 对0>?ε , 取 }. 2

, 2 min{020x

x εδ=这里δ与0x 有关, 有时特记为),(0x εδ. 本例中不存在可在区间] 1 , 0 (上通用的δ, 即不存在最小的( 正数 )δ.

例7 考查函数x

x f 1

)(=在区间) , [∞+c )0(>c 上的连续性.

本例中可取得最小的, 也就是可通用的 }. 2

, 2 min{2c

c εδ= 该δ却与0x 无关, 可

记为)(εδ.

2. 一致连续性:

定义 ( 一致连续 ) 顺便介绍一致连续与连续的关系.

用定义验证一致连续的方法: 对0>?ε, 确证)0(>δ存在. 为此, 从不失真地放大

式 )()( x f x f ''-'入手, 使在放大后的式子中, 除因子 x x ''-'之外, 其余部分中不含

有x '和x '', 然后使所得式子ε<, 从中解出.x x ''-'

例8 验证函数 )0( )(≠+=a b ax x f 在) , (∞+∞-内一致连续.

例9 验证函x

x f 1

sin )(=在区间 )10( ) 1 , (<

证 ,c o s 2s i n 2 1

s i n 1s i n

22121212121212121c

x x x x x x x x x x x x x x x x -≤-≤+-=-

例10 若函数)(x f 在有限区间),(b a 内一致连续, 则)(x f 在),(b a 内有界.

3. 一致连续的否定:

否定定义.

例11 证明函数x

x f 1

)(=

在区间) 1 , 0( 内非一致连续. 证法一 ( 用一致连续的否定定义验证 ) 取),1( ,10

1, min{δ='x 与,2x x '='' 便有 .2

2δδ

<≤'=''-'x x x 但

.121

21 11 0ε=>≥'

=''-'=''-'x x x x x

证法二 ( 用例10的结果 ).

4. Lipschitz 连续与一致连续:

定义Lipschitz 连续.

例12 函数)(x f 在区间I 上-L 连续, )( x f ?在I 上一致连续. ( 证 )

但函数)(x f 在区间I 上一致连续时, 未必有)(x f 在I 上-L 连续. 例如: 函数

x x f =)(在区间) 1 , 0 (内一致连续.

(

为证明

x 在区间) 1 , 0 (内一致连续, 先证明

不等式: ,0, 21≥?x x 有不等式 . 2212121x x x x x x -≤-+ 事实上,

21x x ≥时, ,222122212121x x x x x x x x x x -=-+≤-+

同理, 21x x ≤时, 有.221211212121x x x x x x x x x x -=-+≤-+

利用该不等式, 为使 =-2

21

)()( x f x f ,222121ε<-+x x x x 只要 . 221ε<-x x

)

却不是-L 连续. 事实上, 倘存在L >0, 使对 ), 1 , 0 (, 21∈?x x 有

, )()( 212121x x L x x x f x f -≤-=-

则当21x x ≠时,应成立

.12

1L x x ≤+

但若取,4 ,12

221n x n x == 就有 ). ( ,3

12

1∞→∞→=

+n n

x x 矛盾.

5. 一致连续的判定:

Th 8 ( Cantor ) 若函数)(x f 在闭区间],[b a 上连续, )( x f ?在],[b a 上一致连续.

Ex [1]P 102 8,9,10.

§ 3 初等函数的连续性

回顾基本初等函数中, 已证明了连续性的几个函数.

指数函数和对数函数的连续性. ( 证 )

一. 初等函数的连续性:

Th1 一切基本初等函数都在其定义域上连续.

Th2 任何初等函数在其有定义的区间上是连续的.

註: 初等函数的连续区间和间断点: 初等函数的间断点是其连续区间的开端点. 闭

端点是其单侧连续点.

例1 求函数2

ln 1

)(-+=

x x x f 的连续区间和间断点.

解 ). , 3 () 3 , 2 () 2 , 1 () 1 , 1[∞+???-=f D

∴ )(x f 的连续区间为: ) 1 , 1[-、) 2 , 1 (、) 3 , 2 (和) , 3 (∞+.

间断点为: 2 , 1=x 和3. ()( x f 在点1-=x 右连续 ).

二. 利用函数的连续性求极限:

例2 .cos )

1ln(lim

20x x x +→ 例3 .1111lim 0?

??

? ??--++→x x x x x (作倒代换) .1x t = 例4 ()

.1lim sec 0

xctgx

x tgx +→ 解 I = (

)

()

.)1(lim )

1(lim 1sec lim 0

sec 0

e e tgx tgx x

ctgx

x x

ctgx x x ==+=+→→→

例5 (

)

.sin 1sin

lim x x x -++∞

解 =-+x x sin 1sin .2

1cos 21sin 2x

x x x ++-+

,02

1lim sin 21sin lim ,121cos

=-+=-+≤++∞→+∞→x

x x x x x x x

∴I = .0

Ex [1]P 107—108 1,2; [4]P 81—83 78—81,120.

习 题 课

例1 设函数)(x f 在区间)0( ]2 , 0[>a a 上连续, 且).2()0(a f f = 证明:

在区间] , 0[a 上至少存在某个,c 使 ).()(a c f c f +=

证 若)2()(a f a f =, 取0=c 或a c =即可;

若),2()(a f a f ≠ 不妨设).2()(a f a f > 设)()()(a x f x f x F +-=, 应用

零点定理即得所证.

例2 设函数)(x f 在区间],[b a 上连续,.21b x x x a n <<<<< 试证明:

],,[1n x x ∈?ξ 使

.)

()()()(21n

x f x f x f f n +++= ξ

例3 设.)( ,)( ],,[b b f a a f b a C f <>∈ 试证明:方程 x x f =)(在区间

),(b a 内有实根.

例4 设函数)(x f 在R 内连续且 .)(lim +∞=∞

→x f x 则)(x f 在R 内有最小值.

(

与)0(f 比较.

)

例5 设函数)(x f 和)(x g 在区间I 上连续, 且在I 的有理点r ,有).()(r g r f =

证明: 在I 上)()(x g x f ≡.

例6 设函数)(x f 和)(x g 在区间I 上一致连续. 证明函数)()(x g x f +在区间

I 上一致连续.

例7 设函数)(x f 在有限开区间),(b a 内连续. 则)(x f 在有限开区间),(b a 内

一致连续, )0( +?a f 和)0(-b f 存在( 有限 ).

例8 设函数)(x f 在有限开区间),(b a 内连续. 则)(x f 在),(b a 内一致连续,

? )(x f 在),(b a 内一致连续.

Ex [1]P 102—103 15; P 108—109 3,4,6,8,12,14.

数学分析的基本内容和方法

渤海大学数理学院 毕业论文 论文题目:简述数学分析中的基本内容和方法 系别:数学系 专业年级:数学与应用数学专业07级 姓名:王迪 学号:07020176 指导教师:王长忠 日期:2011年5月20日

目录 一、数学分析中的研究对象 (3) 二、数学分析的基本内容 (3) 三、数学分析中的基本概念和相互关系 (3) 1.极限概念 (4) 2.连续和一致连续的概念 (5) 3.收敛和一致收敛概念 (6) 4.导数概念 (6) 5.微分概念 (7) 6.原函数和不定积分 (7) 7.定积分 (8) 8.一元函数中极限、连续、导数、微分之间的关系 (8) 9.多元函数中,极限、连续、偏导数、方向导数和全微分之间的关系 (9) 10.连续与一致连续的关系 (9) 11.收敛和一致收敛的关系 (9) 12.连续、不定积分和定积分的关系 (10) 13.微分和积分的关系 (10) 四、数学分析的主要计算 (11) 1.极限的求法 (12) 2.微分学中的计算 (13) 3.积分学中的计算 (14) 4.无穷级数中的计算 (14) 五、数学分析的主要理论 (15) 1.实数的连续性和极限的存在性 (16) 2.连续函数的基本性质 (17) 3.微分学的基本定理和泰勒公式 (18) 4.积分中的理论 (19) 5.无穷级数和广义积分的敛散性 (20) 6.函数级数和广义参变量积分的一致收敛性 (21) 六、数学分析的基本方法 (21) 七、数学分析教学内容的初步实践与思考 (22)

简述数学分析中的基本内容和方法 王迪 (渤海大学数学系辽宁锦州121000中国) 摘要:数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。应全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。 关键词:极限,微分,积分,近似。 Contents and methods of mathematical analysis Wang di (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:Mathematical analysis is based on the theory of real numbers. The real number system is the continuity of the most important feature, with the continuity of real numbers to discuss the limit, continuity, differentiation and integration. It is in discussing the function of the various limits of the legitimacy of the process of operation, it gradually established system of rigorous mathematical theory. Mathematical analysis should be fully grasp the basic theory of knowledge; develop logical thinking and rigorous reasoning ability; people with good computing power and skills; improve the mathematical model, and apply the tools of calculus to solve practical problems. Key word: Limits, differentiation, integration, and similar.

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析知识点总结

数学分析知识点总结 数学分析是数学中最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用方面起着特别重要的作用。下面是小编整理的数学分析知识点总结,欢迎来参考! 从近代微积分思想的产生、发展到形成比较系统、成熟的“数学分析”课程大约用了300 年的时间,经过几代杰出数学家的不懈努力,已经形成了严格的理论基础和逻辑体系。回顾数学分析的历史,有以下几个过程。从资料上得知,过去该课程一般分两步:初等微积分与高等微积分。初等微积分主要讲授初等微积分的运算与应用,高等微积分才开始涉及到严格的数学理论,如实数理论、极限、连续等。上世纪50 年代以来学习苏联教材,从而出现了所谓的“大头分析”体系,即用较大的篇幅讲述极限理论,然后把微积分、级数等看成不同类型的极限。这说明了只要真正掌握了极限理论,整个数学分析学起来就快了,而且理论水平比较高。在我国,人们改造“大头分析”的试验不断,大体上都是把极限分成几步完成。我们的做法是:期望在“初高等微积分”和“大头分析”之间,走出一条循序渐进的道路,而整个体系在逻辑上又是完整的。这样我们既能掌握严格的分析理论,又能比较容易、快速的接受理论。 我们都知道,数学对于理学,工学研究是相当重要。在中国科技大学计算机应用硕士培养方案中,必修课:组合数学、算法

设计与分析,高级计算机网络、高级数据库系统,人工智能高级教程现代计算机控制理论与技术。山西大学通信与信息系统硕士培养方案中,专业基础课: (1)矩阵理论 (2)随机过程 (3)信息论与编码 (4)现代数字信号处理 (5)通信网络管理:其中有运筹学内容,属于数学。 (6)模糊逻辑与神经网络是研究非线性的数学。 大连理工大学微电子和固体电子硕士培养方案中,必修课:工程数学,专业基础课:物理、半导体发光材料、半导体激光器件物理西北大学经管学院金融硕士培养方案中,学位课:中级微观经济学(数学)中级宏观经济学中国市场经济研究经济分析方法(数学)经济理论与实践前沿金融理论与实践必须使用数学的研究专业有:理工科几乎所有专业,分子生物学,统计专业,(理论、微观)经济学,逻辑学而这些数学的基础课就有一门叫做数学分析的课程!数学是所有学科的基础,可以说自然学科中的所有的重大发现和成就都离不开数学的贡献,而数学分析是数学中的基础!基础中的基础! 正因为如此,我深刻地认识到基础的重要性。经过本学期,我已学习了极限理论,单变量微积分等知识,其中极限续论是理论要求最高的,积分学是计算要求最高的部分。两者均是我学习

工资概念与组成部分

【工资概念】劳动部《工资支付暂行规定》劳部发〈1994〉489号第三条规定:工资是指用人单位依据劳动合同的规定,以各种形式支付给劳动者的工资报酬。【工资总额组成】国家统计局《关于工资总额组成的规定》第1号令规定:工资总额组成由下列六部分组成: (一)计时工资包括:1.对已做工作按计时工资标准支付的工资;2.实行结构工资制的单位支付给职工的基础工资和职务(岗位)工资;3.新参加工作职工的见习工资;4.运动员体育津贴。 (二)计件工资包括:1.实行超额累进计件、直接无限计件、限额计件、超定额计件等工资制,按劳动部门或主管部门批准的定额和计件单价支付给个人的工资;2.按工作任务包干方法支付给个人的工资;3.按营业额提成或利润提成办法支付给个人的工资。 (三)奖金包括:1.生产奖;2.节约奖;3.劳动竞赛奖;4.机关、事业单位的奖励工资;5.其他奖金。 (四)津贴和补贴包括:1.补偿职工特殊或额外劳动消耗的津贴、保健性津贴、技术性津贴、年功性津贴及其他津贴:2.各种物价补贴。 (五)加班加点工资包括:按规定支付的加班工资和加点工资。 (六)特殊情况下支付的工资包括:1.根据法律法规规定因病、工伤、产假、计划生育假、婚丧假、事假、探亲假、定期休假、停工学习、执行国家和社会义务等原因按计时工资标准或计时工资标准的一定比例支付的工资:2.附加工资、保留工资。 国家统计局《关于工资总额组成的规定》(国家统计局第1号令) 第一章总则 第一条为了统一工资总额的计算范围,保证国家对工资进行统一的统计核算和会计核算,有利于编制、检查计划和进行工资管理以及正确地反映职工的工资收入,制定本规定。 第二条全民所有制和集体所有制企业、事业单位,各种合营单位,各级国家机关、党政机关和社会团体,在计划、统计、会计上有关工资总额范围的计算,均应遵守本规定。 第三条工资总额是指各单位在一定时期内直接支付给本单位全部职工的劳动

数学分析教学与三种基本数学能力的培养

第26卷第6期大 学 数 学V ol.26, .6 2010年12月COLLEGE M AT H EM AT ICS Dec.2010数学分析教学与三种基本数学能力的培养 钱晓元 (大连理工大学数学科学学院,大连116024) [摘 要]基本的专业数学能力可分为三个方面:数学发现能力,数学论证能力和数学表达能力.本文结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. [关键词]教学;数学分析;数学能力 [中图分类号]G642.0 [文献标识码]C [文章编号]1672 1454(2010)06 0203 04 1 引 言 数学类专业教育主要有两大目标,一是掌握数学知识,二是培养数学能力.由于当今知识内容的爆炸性增长,知识更新周期的加快,以及现代社会的学习型特点和创新性要求,对数学能力的重视程度则日益提高,成为数学专业教育的主导价值. 数学能力是一个笼统的概念,目前还没有公认的严格定义.就教育方面而言,数学能力,就是运用数学基本理论和方法解决数学及其应用中遇到的实际问题的能力.这种能力的培养,从初等教育甚至学前教育已经开始,但是作为大学数学类专业教育的目标,在质和量方面必然有更高的层次和追求.具体地说,就是在掌握数学科学遵循的游戏规则基础上,从事包括数学的研究、应用和教学在内的各种专业数学工作的能力. 我们认为,基本的专业数学能力可以分为以下三个方面:数学发现能力,数学论证能力和数学表达能力.数学发现能力,指的是发现未知数学事实和联系,包括理解和模仿前人发现的能力.数学论证能力,是运用逻辑演绎方法证明数学命题的能力.而数学表达能力,是用合乎数学通用规范的学术语言,准确、清晰、简洁地陈述有关数学发现和论证内容的能力.显然,要有效地解决数学及其应用问题,必须同时具备这三种能力并加以综合运用,缺一不可.从另一个角度来看,一个合格的数学类专业毕业生,其专业训练带来的技能优势,主要就体现在这三个方面. 数学分析是数学类专业最重要的一门基础课,数学类专业开设的多数专业课程都可以看成数学分析的后续课.在数学分析的教学中,系统地培养数学发现、论证和表达能力,是理所当然的.本文将就这一课题,结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. 2 数学分析教学与数学发现能力的培养 数学科学具备特有的思维模式,它以形式逻辑为基础,以演绎推理为手段,建立了坚固宏伟的知识体系.数学分析以实数理论奠基,首先建立严格的极限理论,次第展开微分、积分、无穷级数等内容.数学以逻辑演绎为基础的特性得到充分的体现,而数学定理基于直观、经验和数值实验的发现过程,反倒容易被忽略.数学学科的一些重大的发展,一些重要的数学思想、概念、方法及理论的提出和形成,却并 [收稿日期]2008 01 11 [基金项目]大连理工大学教改基金

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

(完整版)数学分析知识点总结第二章

第二章 1数列极限的概念 定义(1);设{n a }为数列,a 为定数。若对任给的的正数, 总存在正整数n.使得当n f N 时,有|a n -a|0.?N,当n ≥N 时,有|a n -a|N 时,N=100,自然N=|0|也成立,所以,N 不是唯一确定的。 1. 定义(1);0.a;){a }n ??f U 任给若在(之外数列中的项至多有有限个。则称数列{a }n 收敛于a 。定义1的否定:存在00?p ,若在N a;){a }{a } a.n ?(之外的数列中的项有无穷多个,则称数列不收敛于,而不能说明N {}a 无极限。 注意:定义1 通常用来说明数列无极限,而定义1 的否定只说明{a }a {a }n n 不收敛于,而不能说明无极限。 定义(2):若lima 0,{a }n n x →∞ =则称为无穷小数列。 定理2.1;数列{a n }收敛于a 的充要条件是: {}n a a -为无穷小数列。定义{a }0N n N a |n n ?M M f f f 满足:对,总存在正整数,始得当时,有|成立 则称数列{a }lima n n x →∞ =∞发散与无穷大,记坐。 注意:无穷大数列只是无极限的一种。随记坐n lim ,{a }n x a →∞=∞但仍为发散数列,无极限给定数列,得到数列{b }n 。则数列{}n a 与

(整理)《中国近现代史纲要》教学大纲.

《高等数学A》教学大纲 (工学类高中生源本科) 课程名称:高等数学/Advanced Mathematics 课程编码:0702002106,0702002206 课程类型:公共基础课 总学时数/学分数: 192/ 12 实验(上机)学时:0 适用专业:汽车、电子、自动化、计算机、机械 先修课程:无制订日期:2005年11月 一、课程性质、任务和教学目标 高等数学A是高等职业技术师范院校各专业学生必修的重要基础理论课,是学习现代科学技术必不可少的基础知识,应用非常广泛,是为培养社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,学生能够达到以下目标: 1、使学生能掌握函数和极限的基本内容和思想精华; 2、使学生能掌握一元函数微积分学的基本内容、重要思想和简单计算; 3、使学生能学会向量代数与空间解析几何、多元函数微积分学等的基本内容和计算; 4、学生通过学习能为后继课程和进一步获取数学知识奠定必要的数学基础; 5、通过学习逐步培养学生的抽象思维能力、逻辑推理能力和基本运算能力。

三、学时分配表 内容学时习题课总学时 第一章函数与极限14-16 2 16-18 第二章导数与微分16 2 18 第三章中值定理及导数应用16 2 18 第四章不定积分12 2 14 第五章定积分14 2 16 第六章定积分应用6-8 2 8-10 第七章向量代数与空间解析几何16 2 18 第八章多元函数微分学及其应用16 2 18 第九章重积分12 2 14 第十章曲线积分与曲面积分16 2 18 第十一章无穷级数16-18 2 18-20 第十二章微分方程14 2 16 合计168-174 24 192-198 五、教学方法与手段 本门课采用完全课堂讲授的教学方式,并辅之以适当的习题课便于对基本概念和理论的理解和掌握,使学生能通过高等数学A的学习,具有一定的抽象推理能力、逻辑推理能力及基本运算能力。

关于数学分析的读书笔记

经过一个半学期的《数学分析》的学习,我基本上对其学习方法有了一定的掌握。了解到《数学分析》与高中的数学既有联系又有差别。一方面在许多思想与分析中运用了高中数学的基础知识;另一方面它将许多东西细微化,一步步探究深层次的东西。它使我们对许多东西有了进一步的了解而不是只停留在理解表面。 下面对我目前已学习的知识进行理解与分析: 一、实数集与函数。实数分有理数和无理数,有理数可用既约分数的形式表示,而无理数则不能用一个确定式表示。人们先发现有理数,再运用Dedek ind分割划分出一些不属于有理数的数。全部这些数的集合就是实数集。用同样的方法分割,却得不到非实数,这证明了实数具有完备性。关于实数完备性有一些基本定理,如:区间套定理、柯西收敛准则、聚点定理和有限覆盖定理。对于任何一个包含于实数集的集合,还有著名的确界原理。函数的定义是一个具有某种结构的集合到一个数集的对应关系。有基本函数和特殊的函数,如:符号函数、Heaviside函数、Riemann函数和Dirichelet函数。 二、极限分为数列极限和函数极限。对于极限,重在理解它的定义。函数极限是数列极限的推广,所以理解了数列极限,函数极限问题就不大了。收敛的数列有许多特殊性质,如:有界性、唯一性、保号保序性和迫敛性,且满足线性组合运算。既然有这么多很好的性质,我们就想弄清哪些数列收敛或收敛数列需满足的条件。人们发现,单调有界数列和满足柯西收敛准则的数列一定有极限。 三、函数的连续性。函数在某一点X。连续的定义是在X。的某邻域内有定义且满足当X趋于X。时,函数F(X)趋于F(X。).而在某区间上的连续可由在某点推广。对一闭区间上连续的函数有一些性质,如:有界性、最值、介值性和一致连续性。对于函数连续性,重在理解定义的内容。 四、导数与微分。导数在中学已学过,而微分是一个新概念。微分的核心思想是对一件事物,当对整体无法解决或难以解决时,可以将它分成许多细小的部分来解决。当每一部分都解决了时,整体也就解决了。对于微分的应用有罗尔中值定理、拉格朗日中值定理和柯西中值定理以及泰勒公式。运用这些定理,还可以分析函数性质,如:函数是否有凸性和拐点,这些对作图是有帮助的。 五、积分分为两种:不定积分和定积分。不定积分是微分的逆运算,它的核心思想是将许多无法解决或难以解决的事物积累成一个整体来解决。不定积分的运算有一些方法,如:换元法和分部积分法。与不定积分不同,定积分则是一个分割T的模趋于零的极限。对一个闭区间上的函数作划分,求出黎曼和,当分割的模趋于零时,黎曼和趋于一个常数,此时称这个常数为函数在闭区间上的定积分。定积分的运算可运用牛顿—莱布尼茨公式。哪些函数是可积的,可积函数有哪些性质。人们发现了可积函数需满足的条件和它的一些性质,如:积分中值定理。 整体内容连贯有序,学习者思路清晰,目的明确。 数学分析是精彩有趣的,但有时会让人学的很累。当一个概念或思想没有理解时,在很大层度上阻碍了后面内容的学习理解,让人有雾里探花的感觉。所以应脚踏实地的学好每一步,扎稳基础,相信未来的道路是光明的。

数值分析2007第二学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()((0)f x dx A f A f A f -≈++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+= 产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数学分析下册期末考试卷及参考答案

第 1 页 共 5 页 数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则 u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ?? ?x=3cost , :y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分3 2 dy f dx ??3 y ( x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分, 共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y ) 点p 00(x ,y )必存在一阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y ) 在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、 (,) (,) (,)(,)L A B L B A f x y dx f x y dx = ? ? 。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( )

第 2 页 共 5 页 三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy =-+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。 、计算三重积分 2 2()V x y dxdydz +???, 是由抛物面22z x y =+与平面4z =围成的立体。

广州中考数学分析报告知识点汇总

近几年来广州市中考数学科试卷特点通过对近几年来广州市中考数学科试卷分析,我认为具有如下特点: 1、试题覆盖面广,涵盖了主要知识点,对初中必考的基础知识一般以选择题、填空题的形式进行考查,对初中知识的核心、主干内容以解答题的形式加以考查,以重点知识为主线组织全卷内容。 2、注重基础知识、基本技能的考查,难易安排有序,层次合理,有助于考生较好地发挥思维水平。 3、重视思想方法、数学能力的考查,包括对数形结合、归纳概括、转化思想、分类思想、函数与方程思想等内容的考查,很好地突出了试题的选拔功能。 4、重视从题目中获取信息能力的考查,通过阅读图表或从文字信息中识别出数学问题的背景,把各种数学语言有机地融合,恰当地转换,从而解决问题。 5、强化应用意识、创新思维的考查,体现在试题内容着力加强与社会实际和学生生活的联系,注重考查学生在具体情境中运用所学知识分析和解决问题的能力。突出对应用问题的考查,从学生熟悉的生活背景和广州市当年发生的重大事件入手,让学生深切地感受到“数学就在身边”。 根据以上分析,我们在复习备考中要做到下面几个要求: 1、重视基本知识和基本技能的训练,重视概念问题的教学,把各个概念的各种“变式题”训练到位,多收集新题型,与现在的教育改革接轨。

2、坚持教学方法的改进,课堂上多运用“启发式”、“探究式”、“讨论式”等教学方法,多设计和提出适合学生发展水平的具有一定探究性的问题,创设问题情境,进行“一题多解”、“一题多变”的训练,培养学生的发散思维和创新意识。 3、以学生为主体着眼于能力的提高,多让学生动手操作,积极引导和鼓励学生大胆思维,勇于发表自己观点,让学生拥有更多的参与思考、讨论交流的机会。教学中尽量避免包办代替式的单纯模仿式的教学,重视学生个性发展,培养学生创造能力。 4、注重数学思想方法的教学,要求学生不要用单一的思维方式去思考问题,应多方位、多角度、多层次地进行思考,形成一定的数学思维。 5、强化过程意识,避免让学生死记硬背公式、定理,重视数学概念、公式、定理的提出、形成、发展过程,让学生真正理解所学知识。 6、重视实际应用性问题的教学,联系社会生活实际和学生的生活实际,选取有时代性的地方特色的复习教材、资料,让学生在“做数学”的过程中,领悟数学的实际意义,最终提高学生的数学应用意识和学习的自学性。 7、培养学生独立思考能力,多把适当的问题抛给学生,多听学生的见解,使学生通过自己的的独立思考,创造性地解决问题。 8、重视数学语言的教学,要求应用数学语言准确,规范书写,熟练运用符号、文字、图表语言,逐步形成数学演绎推理能力。 2012-3-18 附《初中数学定义、定理、公理、公式汇编》

工科数学分析基础试题

2010工科数学分析基础(微积分)试题 一、填空题 (每题6分,共30分) 1.函数?? ? ?? ??? ??-≥+=01 0)(2 x x e x bx a x f bx ,=- →)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。 2.=?? ? ??+∞→x x x x 1lim , =??? ??+++???++++++∞→n n n n n n n n n 2222211lim 。 3.曲线? ??==t e y t e x t t cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。 4.1=-+xy e y x ,=dy ,='')0(y 。 5.若22 lim 2 21=-+++→x x b ax x x ,则=a ,=b 。 二、单项选择题 (每题4分,共20分) 1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32= a , (B )3=a , (C). 2 3 =a , (D )2=a 2.下列结论中不正确的是( ) (A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数; (D )可导单调增加函数的导数一定是单调增加函数; 3.设x x x x f πsin )(3-=,则其( ) (A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点; 4.设x x x x f 3 )(+=,则使)0() (n f 存在的最高阶数n 为( ) 。 (A )1 (B )2 (C) 3 (D )4 5.若0)(sin lim 30=+→x x xf x x , 则2 0) (1lim x x f x +→为( )。 (A )。 0 (B )6 1 , (C) 1 (D )∞

数学分析

数学分析 1.引言 数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。微积分学是微分学和积分学的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学,或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问[1]。 数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。 2.发展历史 阿基米德:在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了几何级数的和。再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。他们在使用穷揭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。在古印度数学的早期,12世纪的数学家婆什加洛第二给出了导数的例子。 数学分析的创立始于17世纪以牛顿(Newton,I.)和莱布尼兹(Leibnize,G.W)为代表的开创性工作,而完成于19世纪以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的奠基性工作。从牛顿开始就将微积分学及其有关内容称为分析。其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之。数学分析亦简称分析。 3.研究对象 牛顿:数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式—牛顿莱布尼兹公式—反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科—微积分学。又由于他们及一些后继学者(特别是欧拉(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用于

数学分析下册期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ???x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分32dy f dx ??3 y (x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一 阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y ) 在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则

必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、 (,)(,)(,)(,)L A B L B A f x y dx f x y dx =??。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( ) 三、计算题 ( 每小题9分,共45分) 1、 用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy = -+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

数学分析知识点汇总

第一章实数集与函数 §1实数 授课章节:第一章实数集与函数——§1实数 教学目的:使学生掌握实数的基本性质. 教学重点: (1)理解并熟练运用实数的有序性、稠密性和封闭性; (2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用. 教学方法:讲授.(部分内容自学) 教学程序: 引言 上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始. [问题]为什么从“实数”开始. 答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质. 一、实数及其性质

1、实数 (,q p q p ?≠??????有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示. {}|R x x =为实数--全体实数的集合. [问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: 01(1)9999n n a a --0,a =则记表示为无限小数,现在所得的小数之前加负例: 2.001 2.0009999→; 利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小? 2、两实数大小的比较 1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中 3 2.99992.001 2.0099993 2.9999→-→--→-; ;

数学分析学习方法与心得体会

数学分析学习方法 数学分析是基础课、基础课学不好,不可能学好其他专业课。工欲善其事,必先利其器。这门课就是器。学好它对计算科学专业的学生都是极为重要的。这里,就学好这门课的学习方法提一点建议供同学们参考。 1.提高学习数学的兴趣 首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必须的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。用兴趣推动学习,而不是用任务观点强迫自己被动地学习数学。 2.知难而进,迂回式学习 首先要培养学习数学分析的兴趣和积极性,还要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学分析时尤为重要。 中学数学和大学数学,由于理论体系的截然不同,使得同学们会在学习该课程开始阶段遇到不小的麻烦,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

《数学分析下册》期末考试卷

数学分析下册期末考试卷 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已知xy u e =,则u x ?=? ,u y ?=? ,du = 。 2、设:L 224x y +=,则L xdy ydx -=?? 。 3、设 :L 229x y +=,则曲线积分ds ?22L (x +y )= 。 4、改变累次积分b a dy f dx ??b y (x ,y )的次序为 。 5、设2D y ax +≤2:x ,则 D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y ) 在区域D 上连续,则函数f (x ,y )在D 上的二重积分必存 在。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、第二型曲线积分与所沿的曲线L (A ,B )的方向有关。 ( ) 5、若函数f (x ,y )在点00(,)x y 连续,则函数f (x ,y ) 在点00(,)x y 必存在一阶偏导数 。 ( )

三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 22()L I x y dx xy dy =-+?? , 其中 L 是圆周222x y a += 2、计算三重积分 222()V x y z dxdydz ++???, 其中2222:V x y z a ++≤。

《数学分析》课程介绍

《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。 通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。 整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。数学分析是数学系最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用人才方面起着特别重要的作用。从近代微积分思想的产生、发展到形成比较系统、成熟的“数学分析”课程大约用了300 年的时间,经过几代杰出数学家的不懈努力,已经形成了严格的理论基础和逻辑体系。但是随着当代科学技术(包括数学本身)的发展不断为数学的基础部分注入新鲜活力,此外,也为了适应培养21 世纪人才的需要,对数学分析课程的改革势在必行。 回顾数学分析的课程改革,有以下几个过程。解放前,该课程的讲授一般分两步:初等微积分与高等微积分。初等微积分主要讲授初等微积分的运算与应用,高等微积分才开始涉及到严格的数学理论,如实数理论、极限、连续等。这种教学的优点在于:学生入门容易,而且很快就能了解数学分析的一套连续量的演算体系,并从应用中体会到其威力。但这种做法导致耗时较长,理论跃度太大,学起来困难较大。上世纪50 年代以来学习苏联教材,从而出现了所谓的“大头分析”体系,即用较大的篇幅讲述极限理论,然后把微积分、级数等看成不同类型的极限。这种做法的优点在于:只要真正掌握了极限理论,整个数学分析学起来就快了,而且理论水平比较高。但容易导致学生在学“大头”中的极限理论时,目的性不明确,过分的严格要求带来的困难很多,结果也使很多学生失去学习兴趣,失去信心。另外,过分强调极限形式化的内容,忽略了数学分析提供微积分演算体系的本质,忽略了连续量演算的直观,造成学生忽视直观,忽视应用的倾向,对培养从事应用数学的人才不利。多年来,在我国,人们改造“大头分析”的试验不断,大体上都是把极限分成几步完成。我们的做法是:期望在“初高等微积分”和“大头分析”之间,走出一条循序渐进的道路,而整个体系在逻辑上

相关文档
最新文档