经济数学线性代数(第三版)第一章课后习题详解

经济数学线性代数(第三版)第一章课后习题详解
经济数学线性代数(第三版)第一章课后习题详解

经济数学线性代数(第三版)课后习题详解(第一章)

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

其它章节课后答案,关注微信公众号:答案管家

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数(经济数学2)_习题集(含答案)

《线性代数(经济数学2)?课程习 题集 【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。 、计算题1 1. 设三阶行列式为D求余子式M1, Mb , Mb及代数余子式A1,A12,A3. 2. 3. 1 1 1 1 4 3 7 5 D4 16 9 49 15 64 27 343 125 求解下列线性方程组: 2 n 1 X1 a1X2 a1X3 a1 X n 2 n 1 X 1 a2X282X3 a21 X n 2 n 1 X1 a n X2 a n X3 a n X n 其中a i a j (i j,i, j 1,2, n) 用范德蒙行列式计算4阶行列式 1 1 1 X 2 X3 4. 问取何值时齐次线性方程组X 1 X1 X2 2 X? X3 0有非零解? X 3

(1 )为 2X 2 4X 3 、计算题2 6.计算D 2 4 16 7.计算行列式D 2X 13.设矩阵 5.问 取何值时齐次线性方程组 2X 1 (3 )X ? X 3 0有非零解? % X 2 (1 )X 3 0 1991 1992 1993 9.计算行列式 1994 1995 1996 1997 1998 1999 1 1 1 0 的值。 1 2 4 4 12. A 为任一方阵,证明 A A T , AA T 均为对称 阵。 的值。 的值。 8. 计算D 的值。 10.计算 10 的值。 11.求满足下列等式的矩阵 X 。

1 2 0 1 2 3 A B 0 1 1 212 3 0 1 求(AB )T 和 B T A T 15. 用初等变换法解矩阵方程 AX =B 其中 1 1 1 11 A0 2 2 B 11 1 1 0 21 16. 设矩阵 3 2 0 0 5 3 0 0 A 0 0 3 4 0 0 1 2 求A 1 1 1 1 17. 求 A 1 2 1 的逆。 1 1 3 18.设n 阶方阵A 可逆,试证明 19. 求矩阵 5 2 0 0 2 1 0 0 A 0 0 1 2 0 0 1 1 的逆。 求 AB . 14. 已知 1 1 3 A 1 2 1 1 1 2 3 B 3 0 1 1 2212 A 的伴随矩阵A 可逆,并求(A *)

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

《经济数学基础》线性代数

《经济数学基础》线性代数 第3章 线性方程组 1.了解n 元线性方程组、线性方程组的矩阵表示、系数矩阵、增广矩阵、一般解的概念. 2. 理解并熟练掌握线性方程组的有解判定定理;熟练掌握用消元法求线性方程组的一般解. ? 线性方程组AX = b 的解的情况归纳如下: AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ; AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ). ? 相应的齐次线性方程组AX = 0的解的情况为: AX = 0只有零解的充分必要条件是 秩(A ) = n ; AX = 0有非零解的充分必要条件是 秩(A ) < n . 例1 线性方程组?? ?=-=+0223221x x x x 的系数矩阵是( ) . A .2×3矩阵 B .3×2矩阵 C .3阶矩阵 D .2阶矩阵 解 此线性方程组有两个方程,有三个未知量,故它的系数矩阵是2×3矩阵. 正确的选项是A . 例2 线性方程组AX = B 有唯一解,那么AX = 0 ( ) . A .可能有解 B .有无穷多解 C .无解 D .有唯一解 解 线性方程组AX = B 有唯一解,说明秩,)(n A =故AX = 0只有唯一解(零解). 正确的选项是D . 例3 若线性方程组的增广矩阵为???? ? ?=41221λA ,则当λ=( )时线性方程组有无穷多解. A .1 B .4 C .2 D .12 解 将增广矩阵化为阶梯形矩阵, ???? ??=41221λA ??? ? ??λ-λ→021021

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

经济数学基础作业答案

宁波电大07秋《经济数学基础(综合)》作业1 参考答案 第一篇 微分学 一、单项选择题 1. 下列等式中成立的是(D). A . e x x x =+ ∞ →2)11(lim B .e x x x =+∞→)2 1(lim C .e x x x =+ ∞ →)211(lim D . e x x x =++∞→2)1 1(lim 2. 下列各函数对中,( B )中的两个函数相等. A .2)(,)(x x g x x f = = B .x x g x x f ln 5)(,ln )(5== C .x x g x x f ln )(,)(== D .2)(,2 4 )(2-=+-= x x g x x x f 3. 下列各式中,( D )的极限值为1 . A .x x x 1sin lim 0 → B .x x x sin lim ∞→ C .x x x sin lim 2 π→ D . x x x 1 sin lim ∞→ 4. 函数的定义域是5arcsin 9 x 1 y 2x +-= ( B ). A .[]5,5- B .[)(]5,33,5U -- C .()()+∞-∞-,33,U D .[]5,3- 5. ()==??? ??=≠=a ,0x 0x a 0 x 3x tan )(则处连续在点x x f ( B ) . A . 3 1 B . 3 C . 1 D . 0 6. 设某产品的需求量Q 与价格P 的函数关系为则边际收益函数为,2 p -3e Q =( C ). A .2p -e 2 3- B .23p Pe - C .2)233(p e P -- D .2)33(p e P -+ 7. 函数2 4 )(2--=x x x f 在x = 2点( B ). A. 有定义 B. 有极限 C. 没有极限 D. 既无定义又无极限

线性代数(经济数学2)_习题集(含答案)

《线性代数(经济数学2)》课程习 题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。 一、计算题1 1. 设三阶行列式为2 310211 01--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12, A 13. 2. 用范德蒙行列式计算4阶行列式 125 343276415 49 9 16 57341111 4--= D 3. 求解下列线性方程组: ?? ?????=++++=++++=++++---1 1 113221 1 2132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x ΛΛΛΛΛΛ 其中 ),,2,1,,(n j i j i a a j i Λ=≠≠

4. 问 取何值时 齐次线性方程组1231231 230020 x x x x x x x x x λμμ++=?? ++=??++=?有非零解 5. 问取何值时 齐次线性方程组12312312 3(1)240 2(3)0(1)0 x x x x x x x x x λλλ--+=?? +-+=??++-=?有非零解 二、计算题2 6. 计算614 2302 1 51032121 ----= D 的值。 7. 计算行列式5 2 41 421318320521 ------= D 的值。 8. 计算0 111101111011 110= D 的值。 9. 计算行列式199119921993 199419951996199719981999 的值。 10. 计算 4 124120210520 117 的值。 11. 求满足下列等式的矩阵X 。 2114332X 311113---???? -= ? ?----????

《经济数学基础12》形考作业二

经济数学基础形成性考核册及参考答案(二) (一)填空题 1.若 c x x x f x ++=? 22d )(,则___________________)(=x f .答案:22ln 2+x 2. ? ='x x d )sin (________.答案:c x +sin 3. 若 c x F x x f +=?)( d )(,则(32)d f x x -=? .答案:1 (32)3 F x c -+ 4.设函数___________d )1ln(d d e 12 =+?x x x .答案:0 5. 若t t x P x d 11)(02 ? += ,则__________)(='x P .答案:2 11x +- (二)单项选择题 1. 下列函数中,( )是x sin x 2 的原函数. A . 21cos x 2 B .2cos x 2 C .-2cos x 2 D .-2 1cos x 2 答案:D 2. 下列等式成立的是( ). A .)d(cos d sin x x x = B .)d(22 ln 1 d 2x x x = C .)1d(d ln x x x = D . x x x d d 1= 答案:B 3. 下列不定积分中,常用分部积分法计算的是( ). A .?+x x c 1)d os(2, B .? -x x x d 12 C .? x x x d 2sin D .?+x x x d 12 答案:C 4. 下列定积分计算正确的是( ). A . 2d 21 1 =? -x x B .15d 16 1 =? -x C . 0d sin 22 =?- x x π π D .0d sin =?-x x π π 答案:D 5. 下列无穷积分中收敛的是( ). A . ? ∞ +1 d 1x x B .?∞+12d 1x x C .?∞+0d e x x D .?∞+0d sin x x 答案:B (三)解答题 1.计算下列不定积分

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 811411 02811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??- =416824-++-=4- (2)=b a c a c b c b a cc c aaa bbb cba bac acb ---++3333c b a abc ---= (3)=2 221 11c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---= (4)y x y x x y x y y x y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项.

经济数学基础线性代数讲义

经济数学线性代数学习讲义 合川电大兰冬生 1, 矩阵: A =?? ?? ? ?????-012411210, 称为矩阵。认识矩阵第一步: 行与列, 横为行, 竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2 这是一个三行三列矩阵, 再给出一个三行四列矩阵 ?? ?? ? ?????-----=12614231213252A 教材概念的m 行n 列矩阵。 ? ???? ???????mn m m n n a a a a a a a a a 2 1 2222111211, 这个矩阵记作n m A ?, 表明这个矩阵有m 行, n 列, 注意行m 写在前面,列n 写在后面, 括号里面的称为元素, 记为ij a , i 是行, j 是列, 例如: ???? ??????-----12614231213252是三行四列矩阵, 也说成43?矩阵, 注意行3在

前面, 列4在后面, 这里211=a ( 就是指的第一行第一列那个数) 123-=a ( 就是指的第二行第三列那个数) 2, 矩阵加法 矩阵加法, 满足行列相同的矩阵才能相加, 对应位置的数相加。 例如: ??????????--011101010 +??????????-012411210=?????? ? ???-021512220 减法是对应位置的数相减。, 3, 矩阵的乘法 矩阵乘法参看以下法则: 注意字母对应 ???? ? ?????3332 31 232221131211 a a a a a a a a a ????? ? ?????3332 312322211312 11b b b b b b b b b ???? ? ??????+?+??+?+??+?+??+?+??+?+??+?+??+?+??+?+??+?+?=33332332133132 332232123131 332132113133232322132132232222122131232122112133132312131132132212121131 1321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明: ???? ? ?????3332 31 232221131211a a a a a a a a a ???????????3332 312322211312 11b b b b b b b b b =?? ? ?????3332 31 232221 1211 c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b , 注意是对应元素相乘, 再求和。 乘积的结果矩阵21c 等于第一个矩阵的第二行元素21a 22a 23a 乘以第二个矩阵的第一列元素11b 21b 31b 。

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

2016经济数学基础形考任务3答案

作业三 (一)填空题 1.设矩阵???? ??????---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72- 3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件 是 .答案:BA AB = 4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1 )(-- 5. 设矩阵??????????-=300020001A ,则__________1=-A .答案:??????? ?????????-=31000210001A (二)单项选择题 1. 以下结论或等式正确的是( ). A .若 B A ,均为零矩阵,则有B A = B .若A C AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵 D .若O B O A ≠≠,,则O AB ≠答案C 2. 设A 为43?矩阵,B 为25?矩阵,且乘积矩阵T ACB 有意义,则T C 为( )矩阵. A .42? B .24?

C .53? D .35? 答案A 3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). ` A .111)(---+=+ B A B A , B .111)(---?=?B A B A C .BA AB = D .BA AB = 答案C 4. 下列矩阵可逆的是( ). A .??????????300320321 B .???? ??????--321101101 C .??????0011 D .?? ????2211 答案A 5. 矩阵???? ??????---=421102111A 的秩是( ). A .0 B .1 C .2 D .3 答案B 三、解答题 1.计算 (1)????????????-01103512=?? ????-5321 (2)?????????? ??-00113020??????=0000 (3)[]???? ? ???????--21034521=[]0

线性代数课后习题答案

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子 2311a a 的项. 解 由定义知,四阶行列式的一般项为 43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定, 4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式: 多练习方能成大财 (1)?? ??????? ???711 00251020214214; (2)????? ? ??? ???-26 0523******** 12; (3)???? ??????---ef cf bf de cd bd ae ac ab ; (4)?? ??? ???????---d c b a 100 110011001 解 (1) 7110025102021421434327c c c c --0 1001423102 02110214--- =34)1(14 3102211014+-?---

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

【经济数学基础】形考作业参考答案

【经济数学基础】形考作业一答案: (一)填空题 1._________ __________sin lim =-→x x x x 答案:0 2.设 ? ?=≠+=0 ,0, 1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y = 在)1,1(的切线方程是 .答案:2 121+ =x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________ )2π (=''f 2 π- (二)单项选择题 1. 函数+∞→x ,下列变量为无穷小量是( D ) A .)1(x In + B .1/2+x x C .2 1x e - D . x x sin 2. 下列极限计算正确的是( B ) A.1lim =→x x x B.1lim 0 =+ →x x x C.11sin lim 0 =→x x x D.1sin lim =∞ →x x x 3. 设y x =lg 2,则d y =( B ). A . 12d x x B . 1d x x ln 10 C . ln 10x x d D .1 d x x 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim 0 ,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微 5.若x x f =)1 (,则()('=x f B ) A .1/ 2x B .-1/2x C .x 1 D . x 1- (三)解答题 1.计算极限 (1)2 11 23lim 22 1 - =-+-→x x x x (2)2 18 665lim 2 2 2 = +-+-→x x x x x

线性代数课后习题答案分析

线性代数课后题详解 第一章 行列式 1.利用对角线法则计算下列三阶行列式: 相信自己加油 (1) 3811411 02 ---; (2)b a c a c b c b a (3) 2 2 2 111 c b a c b a ; (4) y x y x x y x y y x y x +++. 解 注意看过程解答(1)=---3 81141 1 2811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2) =b a c a c b c b a cc c aaa bbb cba bac acb ---++ 3333c b a abc ---= (3) =2 2 2 1 11c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-= 2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业 (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

电大经济数学基础作业参考答案一

电大经济数学基础作业参考答案一

经济数学基础形考作业(一)参考答案 (一)填空题 1.0sin lim 0 =-→x x x x . 2.设 ? ?=≠+=0,0 ,1)(2x k x x x f ,在0=x 处连续,则1=k . 3.曲线1 +=x y 在)2,1(的切线方程是032=+-y x . 4.设函数5 2)1(2 ++=+x x x f ,则x x f 2)(='. 5.设x x x f sin )(=,则2 )2π(π -=''f . (二)单项选择题 1. 当+∞→x 时,下列变量为无穷小量的是( D ) A .)1ln(x + B . 1 2+x x C .2 1 x e - D . x x sin 2. 下列极限计算正确的是( B ) A.1 lim =→x x x B.1 lim 0=+ →x x x C.11sin lim 0 =→x x x D.1sin lim =∞ →x x x 3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d x x 4. 若函数f (x )在点x 0处可导,则( B )是错误的.

A .函数 f (x )在点x 0处有定义 B .A x f x x =→)(lim 0 ,但)(0 x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微 5. 若x x f =)1(.,则=)('x f ( B ) A .21 x B .2 1x - C .x 1 D .x 1- (三)解答题 1.计算极限 (1) 1 2 3lim 221-+-→x x x x 解:原式2 1 12lim )1)(1()2)(1(lim 1 1 -=--=+---=→→x x x x x x x x (2) 8 665lim 2 22+-+-→x x x x x 解:原式2 1 43lim )4)(2()3)(2(lim 2 2 =--=----=→→x x x x x x x x (3)x x x 11lim --→ 解:原式2 1) 11(lim ) 11()11)(11( lim 0 - =+--=+-+---=→→x x x x x x x x x (4) 4 23532lim 2 2+++-∞→x x x x x 解:原式3 2=

相关文档
最新文档