催化裂化烟气脱硫装置运行分析及建议

催化裂化烟气脱硫装置运行分析及建议
催化裂化烟气脱硫装置运行分析及建议

几种催化裂化烟气脱硫技术的比较

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键设备 容器类吸收塔 低pH冷却器 分离器/吸收塔分离器胺吸收器 NaOH吸收器 再生器 (蒸汽气体塔) SO2脱除NaOH溶液 多层喷淋 第一填料部分使用胺 溶液NaOH溶液 外部文丘里洗涤 NaOH溶液 外部文丘里洗涤第二填料部分使用 NaOH溶液 粉尘颗粒物脱除 滤清模块中喷淋 (安装在吸收塔内部 的文丘里) 无外部文丘里洗涤外部文丘里洗涤 NOx脱除LoTOx无WGS+多种处理方案 NOx脱除反应试剂氧气/臭氧亚氯酸钠/ 次氯酸钠 SNCR:氨 CoNOx:氧气 催化添加剂 洗涤液循环泵有有有特殊设计/最好的质量 及可靠性 紧急情况下 液体排泄设施 需要需要不需要不需要净化处理需要需要需要需要 颗粒物脱除沉淀及过滤CANSOLV不提供沉淀及过滤沉淀及过滤 硫的脱除氧化为Na2SO4湿SO2被送至 硫磺车间 氧化为Na2SO4氧化为Na2SO4 热稳定性盐脱除不需要需要离子交换树脂不需要不需要 公用工程 补水新鲜水新鲜水及去离子水多种多种 碱新鲜碱新鲜碱新鲜碱新鲜碱或废碱氨试剂补充无每天需补充1%无无 Nox反应试剂氧气消耗量为O3加入 速率的10倍 无 亚氯酸钠/ 次氯酸钠 消耗量最低 能耗 SO2及颗粒物脱除能耗一般一般一般最低NOx脱除能耗高无Nox脱除技术一般最低蒸汽消耗无高无无

湿式气体洗涤系统对比关键指标(KPI) BELCO 贝尔格 CANSOLV 康世富 HAMON 哈曼 NORTON 诺顿关键性能因素 设备高可靠性√有引起FCC运行不稳定的风险√√√ 对系统进行定制化设计√最优化的能源消耗√公用工程消耗-补充水√√√√补充水选择高灵活性√碱消耗量最低√ 界区内设备安装成本最低√界区外设备安装成本最低√脱除效率√√√√占地面积最小√系统复杂√√ 运行简单√√曾经引起FCC装置停车√√ 净化处理系统√√√增加硫磺车间载荷√ 需安装的设备数量多√ 设备安装之后提供技术支持√√√√为FCC提供优化,检修等服务√FCC再生器烟气回路工程服务√燃烧设备工程服务(CO锅炉及 其他加热器)√在FCC污染物控制领域拥有最丰 富的从业经验√

余热锅炉常见事故及处理

锅炉常见事故及处理 1事故处理的原则及注意事项 1.1发生事故后应立即采取一切可行的方法,消除事故根源,迅速恢复机组正常运行,满足系统负荷的需要。在设备确已不具备运行条件时或继续运行对人身,设备有直接危害时,应停炉处理。 1.2发生事故时,班长应在厂调度的直接领导下,领导全班人员迅速果断地按照现场规程的规定处理事故。调度的命令,除对人身、设备有直接危害外,均应坚决执行。 1.3当发生了本规程没有列举的事故情况时,运行人员应根据自己的经验与判断,头脑清醒,沉着冷静,主动采取对策,迅速处理。事故处理后运行人员应如实地把事故发生的时间,现象以及采取的措施,记录在交接班记录本上,并在班后会议上进行分析讨论,以总结经验吸取教训,做到“三不放过”。 2锅炉水位事故 2.1锅炉满水 2.1.1锅炉满水现象 2.1.1.1水位报警发出水位高信号,汽包就地水位计及低地水位表高于正常水位。 2.1.1.2蒸汽含盐量增大。 2.1.1.3给水流量不正常地大于蒸汽流量。 2.1.1.4过热蒸汽温度急剧下降,主蒸汽管道法兰处有汽水冒出,蒸汽管道内发生水冲击。 2.1.2满水的原因 2.1.2.1运行人员疏忽大意,对水位监视不严,误判断致使操作错误。 2.1.2.2水位计、蒸汽流量表或给水流量表指示不正确或失灵,使运行人员误判断。 2.1.2.3给水自动调节装置失灵或给水调节门有故障,发现后处理不及时。 2.1.2.4外界或锅炉燃烧发生故障而未及时调整水位。 2.1.2.5锅炉负荷增加太快。 2.1.2.6给水压力突然升高。 2.1.3锅炉满水的处理 2.1. 3.1当汽包水位计超过50mm时,应将给水自动调节改为手动操作,关小给水门,减少给水流量。 2.1. 3.2若水位超过100mm时,应开启事故放水门,进行放水。 2.1. 3.3注意保持汽温,根据汽温下降情况,应及时关小减温水门;汽温若急剧下降到480℃时,开启过热器及主汽门前疏水,并通知厂调度。 2.1. 3.4若水位无明显下降,应检查给水系统阀门是否有故障,事故放水门是否打开,必要时应包就地水位计和各低地水位计指示的正确性,加强对汽包水位的监视。 立即倒换给水管路或加开定排放水门进行放水,当水位降至50mm时,停止放水,向厂调度汇报恢复锅炉运行。 2.1. 3.5如经采取上述措施,水位仍然上升至超过上部可见部分时,应立即停炉,关闭给水门,开启省煤器再循环门,并开启过滤器及主汽门前疏水,加强放水,故障消除后,尽快恢复锅炉机组运行。 2.1. 3.6在停炉过程中,如水位已明显下降,蒸汽温度又明显降低时,可维持锅炉继续运行,尽快使水位恢复正常。 2.1. 3.7停炉后,引、送风机可继续运行,迅速查明原因,待水位恢复正常后,向厂调度请示,重新点火(五分钟内不能达到点火条件,必须停引、送风机处理,待水位恢复正常后,重新

催化裂化烟气脱硫技术现状与发展

催化裂化烟气脱硫技术现状与发展摘要:催化裂化是石油炼制的重要过程之一,在催化剂的作用下,通过加热的方式促使重油发生裂化反应生产裂化气、汽油和柴油。催化裂化工艺流程中产生的烟气含有大量的硫化物,对设备造成了腐蚀,同时对环境产生了很大的影响。因此对催化裂化烟气进行脱硫脱硝等无害化处理,对于保护生产装置和外部环境都具有重要意义。主要论述了应用比较成熟的烟气脱硫工艺,并对烟气脱硫技术的发展提出了预测和建议。 催化裂化工艺是炼化企业生产的重要过程,随着我国能源炼厂数量越来越多,能源催化裂化装置排放量逐渐增加,这对自然生态环境的发展造成了很大的影响。只有根据炼化企业的生产现状和未来发展制定科学、合理的催化裂化烟气脱硫技术,进一步加强对硫化物的控制,才能有效地减少有害物质的排放,真正起到保护周边的自然环境,营造一个绿色无污染的生活环境,促进科学发展和可持续发展。根据烟气脱硫的工艺,烟气脱硫一般分为干法脱硫和湿法脱硫技术,其中干法脱硫技术又分为干法脱硫和半干法脱硫技术。本文通过分析催化裂化烟气脱硫技术的发展现状,分析了几种典型的烟气脱硫技术的应用,并针对烟气脱硫工艺特点进行分析,指出了脱硫工艺的选择的注意问题。 1 催化裂化烟气脱硫技术现状 国外石油催化裂化烟气脱硫技术发展迅速,取得了良好的效

果。目前国外催化裂化技术的发展主要是基于资源脱硫技术和非资源脱硫技术。一个由拉索博LABSORB过程脱硫工艺脱硫的主要资源和可用资源的加工处理。LABSORB工艺能有效地把一些可再生能源在应用期间烟气脱硫,并显示无机缓冲形式,确保恒温脱硫过程的唯一途径,而排出的缓冲区,在规定的时间内,通过过滤除去缓冲器中的杂质;并在实际应用中非资源的脱硫技术,主要是基于一定的碱性洗涤剂烟气脱硫EDV技术应用,但大量脱硫技术的损失会产生浪费水资源,在实际应用中,二次利用非常困难。 2 催化裂化烟气脱硫技术分析 2.1 干法、半干法脱硫技术 干法脱硫技术主要使用干粉作为吸收剂,半干法脱硫一般使用润湿的干粉吸收剂进行硫化物的吸收,两种方法的吸收剂都是通过颗粒回收系统进行吸收剂的回收。干法和半干法脱硫的主要优点是可以在不降低烟气温度的基础上完成硫化物吸附,避免了硫化物扩散和脱硫作业的水污染问题。缺点是硫化物的吸附只在脱硫剂的表面进行,内部反应时间长,需要大型的吸附塔和大量的吸附剂才能完成脱硫作业。干法脱硫比较有代表性的公司,比如Engelhard公司开发的SO2干法脱硫工艺(ESR)是一种比较先进的干法脱硫技术,该工艺采用干燥脱硫剂固体流化床,硫化物脱除率达到95%以上,脱硫剂可以全部再生,并且投资少,操作费用较低。 2.2 EDV湿法烟气脱硫技术 EDV湿法洗涤脱硫技术由Belco公司开发,20世纪90年代中期

催化裂化装置的主要设备

催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同 提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决 定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼 油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预 提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。 这种作用叫预提升。 为使油气在离开提升管后立即终止反应, 提升管出口均设有快速分离装置,其作用是使 油气与大部分催化剂迅速分开。快速分离器的 类型很多,常用的有:伞帽型,倒L型、T型、 粗旋风分离器、弹射快速分离器和垂直齿缝式 快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还 装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨 以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数 组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催 化荆后经集气室去分馏系统;由提升管快速分 离器出来的催化剂靠重力在沉降器中向下沉 降,落入汽提段。汽提段内设有数层人字挡板 和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所 需沉降高度确定,通常为9~12米。 汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般 是1.5~3分钟。 二、再生器

CO焚烧炉及余热锅炉操作规程

青岛安邦炼化有限公司 64×104t/a催化裂化装置CO焚烧炉及余热锅炉 操作规程 (试运行) 科技规划处 2010年4月

审批页编制: 总工程师: 生产副总:

前言 本操作法是为规范青岛安邦炼化有限公司催化裂化装置改造后新增加的CO焚烧炉和余热锅炉的操作而编写。此类装置在我公司尚属首套,而编写人员并无该单元的实际操作经验,因此在本操作法的编写过程中参照中国石化集团洛阳石化工程公司《青岛安邦炼化有限公司化工原料一期工程-催化裂化装置改造》中的相关设计数据,以及《独山子石化重油催化裂化装置操作规程》中关于CO焚烧炉和余热锅炉部分的操作法,并结合本装置的实际情况编写而成。因编写人员水平有限,其中错误之处在所难免,希望岗位人员在确保安全的前提下进行操作,并在实际操作过程中不断发现错误并提出,以供修订时改正。 科技规划处

概述 青岛安邦炼化有限公司64×104t/a催化裂化装置原设计规模为40×104t/a,2009年8月26日开始停工改造,同年11月6日开车,加工重质燃料油能力为55×104t/a,加工混合蜡油能力为64.21×104t/a。 该装置改造后采用催化剂不完全再生技术,因此,本次改造后新增CO焚烧炉和Q84/900-31-3.82/450型余热锅炉各一台。 锅炉利用催化装置再生烟气的物理热和CO燃烧炉焚烧一再烟气产生的化学热,产生3.82Mpa、450℃的中压过热蒸汽,工程初期全厂无中压管网,经减温减压后并入1.0Mpa蒸汽管网;中压蒸汽管网建成后,全部并入中压蒸汽网管。 O,其中锅炉本身产汽31(t/h)。 锅炉烟气阻力约为115mmH 2 第一章CO焚烧炉及余热锅炉设计说明 CO焚烧炉为立式圆筒结构,底部水平安装两个气体燃烧器,燃烧气流切向进入炉体内部,含有CO 成分的气体从环形分布箱的分布口与二次空气混合后进入炉体,并在炉内形成高速漩流,与燃烧器产生的高温烟气充分混合,燃烧后进入余热锅炉,同时在焚烧炉顶部设置有两个防爆门,焚烧炉与余热锅炉通过非金属膨胀节连接。烟气出口正常温度为850℃~950℃。炉体口设置有测温、测压孔以及烟气取样孔,同时在余热锅炉入口处设置有氧化锆,以测量出口烟气的氧含量,炉内机械设计温度为1400℃,壳体规格为Φ3636×18mm,壳体材质Q245R ,燃烧室衬里厚度为400mm。混合燃烧段衬里厚度为300mm。衬里为双层结构,迎火层为耐火可塑料,隔热层为轻质隔热浇注料。金属重量为150吨,非金属重量为300吨,焚烧炉顶中心标高20700mm 。 气体燃烧器附带火焰检测器,金属软管,电点火器等。 余热锅炉通过CO焚烧炉把催化装置不完全再生烟气完全燃烧,焚烧后的高温烟气通过余热锅炉产生3.82Mpa、450℃的中压过热蒸汽并入全厂蒸汽管网。 进入锅炉的再生烟气流量为8.4×104m3n/h,烟气阻力约为3.0kPa。锅炉的设计工况共有四个:设计工况、校核工况一、校核工况二和校核工况三。设

催化裂化装置脱硫脱硝环保措施及效果分析

催化裂化装置脱硫脱硝环保措施及效果分析 摘要现在社会空气污染问题相当严重,催化裂化装置在排放烟气过程当中会出现不可避免的粉尘浓度超标问题。为在真正意义上实现对上述现象的解决,我们需要从催化装置烟气脱硫设置应用方面着手,实现对合适烟气脱硝技术的选择。本文主要针对催化裂化装置脱硫脱硝环保措施以及结果进行进一步探究。主要是在选择适合本装置脱硝技术的基础,实现对预期效果的满足,这不仅可实现对空气污染问题的有效解决,同时也可将更为良好的生存环境提供给人们。 关键词催化裂化;烟气脱硫;烟气脱硝 这些年来气候恶劣问题日益严重,全球面对的主要环境问题集中在温室效应、酸雨以及臭氧层破坏几个方面,这会对人类长期发展目标的实现造成制约。很多因素对环境造成污染,天然气及石油和煤等燃料的大规模使用都会在一定程度上加剧環境污染的程度。从催化裂化装置脱硫脱硝环保措施着手可实现对上述问题的不断改善,这可充分说明催化裂化装置脱硫脱硝环保措施的重要性。 1 FP-DNSNOx催化裂化烟气多效净化剂 FP-DNSNOx催化裂化烟气多效净化剂由北京某公司生产,为独家产品,已经得到相关质量管理体系的认证。其活性组分为金属氧化物,在助燃以及降低NOx排放的功能过程中都起着较为重要的作用。 1.1 技术原理NOx FP-DNSNOx催化裂化烟气多效净化剂有大量的金属氧化物存在,这也是其活性组分,金属氧化物在高温水热环境以及两器中会发生不可避免的还原反应。反应的主要对象为NOx,这是导致N2出现的主要原因。对烟气中NOx含量的降低有积极作用。 1.2 实施过程NOx 我们主要分为两个阶段对FP-DNSNOx催化裂化烟气多效净化剂进行加入,第一阶段速度较快,进而保障其在最短的时间内实现在自身作用与价值的发挥。第二阶段的加入较为平稳,在衡量其是否进入平稳阶段时,可借助助剂在系统总藏量中所占据的比例。快速阶段的助剂加入次数为每天三次,60kg,平稳阶段加入次数依旧为每天三次,但是每次加入次数有所改变,为10kg。催化剂小型加料器是FP-DNSNOx催化裂化烟气多效净化剂过程当中所借助的主要工具,然后在再生器密相床上进行直接补充。 1.3 烟气多效净化剂实施效果 烟气多效净化剂实施效果可通过以下数据进行直观体现。NOx在烟气多效

导热油锅炉应急处置预案

****************有限公司 导热油锅炉应急预案 一、总则 1.1编制目的 为了提升应对余热锅炉运行使用中处理各类意外事故的能力,规范应急救援预案的具体实施,建立健全余热锅炉事故应急体系,规范对余热锅炉事故应急处置工作,有效预防、及时控制和消除余热锅炉事故的危害,特制定本预案。 1.2适用范围 本预案适用于余热锅炉发生运行事故时的应急救援工作。适用于余热锅炉突然发生的,造成或可能造成人身安全和财物损失的事故。 二、事故类型 1、锅炉质量问题致使强度下降引起鼓包、爆管事故 2、导热油结垢增加引起过热过烧,继而引起部件变形、开裂,造成泄漏或引起火灾事故 3、导热油带水引起爆沸,造成泄漏或引起火灾事故 4、因锅炉爆炸引起房屋倒塌事故 5、因锅炉爆炸引起周边危险品、易燃易爆品的二次爆炸事故 6、停电事故 三、危害程度分析 1、一般事故,人员轻伤,轻微经济损失 2、较大事故,人员轻、重伤、死亡,较大经济损失 3、重大、特别重大事故,人员群死群伤,特别重大经济损失 四、应急救援组织指挥体系职责

4.1成立应急领导小组。 总指挥:*** 副总指挥:*** 消防队负责人:*** 保卫疏散警戒组负责人:*** 物资供应组:*** 事故应急抢修组:*** 安全技术组:*** 医疗救护组:*** 通讯联络/后勤保障组:*** 4.2总指挥职责 (1)确定可靠有效的抢险方案,发布抢险命令。 (2)负责人员,物资配置,应急队伍的调动; (3)负责向有关部门、领导汇报。报告内容为发生事故锅炉类型,部位,时间,伤亡情况,财产损失情况,可能影响的友邻单位及居民区等,并保持联系,随时通报事故发展及处理情况; (4)确定现场指挥人员,组织建立应急救援专家技术组; (5)协调事故现场有关工作; (6)接受政府的指令和调动; (7)负责保护事故现场及相关数据,配合上级主管部门对事故进行调查。 4.3副总指挥职责 (1)协调总指挥落实抢险方案。 (2)协助总指挥调动应急队伍、调动配置应急物资 (3)协调事故现场指挥人员,协调事故现场有关工作( 4)协助上报事故信息;

几种催化裂化烟气脱硫技术

几种催化裂化烟气脱硫技术 一、主要技术简介 目前催化裂化烟气污染物排放控制技术可分别为干法、湿法两大类,进一步又可分为采添加脱SOx、NOx助剂,催化原料预处理技术,增设烟气脱SOx、脱NOx设施三类。国外工业运行的催化裂化烟气脱SOx技术以湿法为主,吸收剂(洗涤液)有钠碱、氢氧化镁Mg(OH)2和海水等。湿法洗涤脱SOx设施一般由吸收(洗涤)单元和废液净化处理单元组成,前者是烟气脱硫技术的核心。应用较多的有诺顿公司的VSS技术,DuPont BELCO公司的EDV和LABSORBTM 技术、Hamon公司的WGS技术、Shell公司的CANSOLV技术等。 1.1 ExxonMobil公司WGS技术 1974年,当时在Exxon公司工作的John Cunic先生(先就职于美国诺顿公司)开发了第一套FCCU烟气洗涤技术,将喷射式文丘里管JEV应用到催化裂化烟气脱硫装置上。也就是现在由Hamon公司出售的WGS技术(ExxonMobil 授权Hamon工程公司进行WGS技术的出售及设计工作)。 优点:采用JEV(喷射式文丘里管)时压降低。 缺点:采用HEV(高性能文丘里管)时压降高。 1.2 DuPont BELCO公司的EDV技术 该技术于1994年完成第一套商业应用。EDV由急冷喷嘴、多层吸收喷嘴及滤清模块(滤清模块有多个文丘里组成)水珠分离器组成。上世纪90年代,诺顿公司主要给ExxonMobil公司升级维护WGS系统,ExxonMobil公司又不允许将其WGS洗涤技术推广到其他石化企业,造成90年代到2000年,DuPont BELCO 公司销售了多套EDV系统。 优点:业绩较多 缺点:系统在添加滤清模块的情况下压降会升高,可达4-7Kpa 1.3 CANSOLV公司的CANSOLV技术 CANSOLV公司1997年成立于加拿大,CANSOLV再生脱硫2002年开始第一套工业化商业运行。CANSOLV再生胺法脱硫系统有两部分组成洗涤-吸收和再生-净化,在炼油厂成功业绩全世界只有1套,它主要由以下几点

催化裂化的装置简介及工艺流程样本

催化裂化装置简介及工艺流程 概述 催化裂化技术发展密切依赖于催化剂发展。有了微球催化剂,才浮现了流化床催化裂化装置;分子筛催化剂浮现,才发展了提高管催化裂化。选用适当催化剂对于催化裂化过程产品产率、产品质量以及经济效益具备重大影响。 催化裂化装置普通由三大某些构成,即反映/再生系统、分馏系统和吸取稳定系统。其中反映––再生系统是全装置核心,现以高低并列式提高管催化裂化为例,对几大系统分述如下: (一)反映––再生系统 新鲜原料(减压馏分油)通过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提高管反映器下部,油浆不经加热直接进入提高管,与来自再生器高温(约650℃~700℃)催化剂接触并及时汽化,油气与雾化蒸汽及预提高蒸汽一起携带着催化剂以7米/秒~8米/秒高线速通过提高管,经迅速分离器分离后,大某些催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带催化剂后进入分馏系统。 积有焦炭待生催化剂由沉降器进入其下面汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部空气(由主风机提供)接触形成流化床层,进行再生反映,同步放出大量燃烧热,以维持再生器足够高床层温度(密相段温度约650℃~680℃)。再生器维持0.15MPa~0.25MPa(表)顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后催化剂经淹流管,再生斜管及再生单动滑阀返回提高管反映器循环使用。 烧焦产生再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带大某些催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高并且具有约5%~10%CO,为了运用其热量,不少装置设有CO锅炉,运用再生烟气产

ISA余热锅炉应急预案1

ISA余热锅炉应急预案 1总则 1.1本预案为余热锅炉运行人员处理事故和故障的依据,所有运行人员都必须熟 悉本预案和执行全部。 1.2发生事故时,当班人员的主要任务是: 1.2.1沉着冷静、正确、迅速地判断和处理事故。 1.2.2采取一切可行的办法、尽快消除事故根源,隔绝事故点,防止事故扩大和 蔓延。 1.2.3在设备和人身不受损害、伤害的前提下,尽快恢复艾萨炉和锅炉机组的正 常运行。不使事故扩大。 1.2.4发挥正常运行设备的最大出力,尽量减少对艾萨炉工艺上、下道工序和动 力厂发电车间汽轮机组、发电机组的影响。 1.3在上级领导的统一指挥下,司炉为本炉处理事故的总负责人,助手、巡检人 员在司炉的领导下工作和执行有关操作任务。 1.4发生事故时,司炉不得离开工作岗位,而应明确自己专责的任务和操作。分 清主次,指挥助手和巡检人员积极、镇定、正确、迅速地处理事故。如遇到本预案以外的事故情况时,运行人员应根据实际情况和自己的经验进行正确的判断和处理。 1.5发生事故时,应直接立即与艾萨炉有关人员联系并汇报直接上级领导进行处 理。 1.6在处理事故时,应做好与有关人员的联系,联系必须清楚、简明,并说明各 自的XX。受令人必须复诵命令,执行后立即汇报给发令人。未独立上岗值班

人员不得进行联系工作。 1.7事故处理过程中,一般不得进行交接班。接班人员可以协助值班人员做具体 工作,但事先须征得运行值班员的同意,不允许无关人员擅自指挥和参加处理工作。值班人员有权劝阻无关人员退出现场。 1.8事故处理完毕,司炉将事故发生的时间、地点、设备名称等详细情况记入运 行日志,尽快地用向车间领导汇报;与事故有关人员应在下班前把事故发生和处理的经过写成文字性材料,以供分析时用;下班后,由班长召集全体本班人员在有关领导的参加下进行事故分析,找出原因,制定措施、总结经验,吸取教训。必须按对事故“三不放过”的原则,做到:事故责任不清不放过,事故责任者和应受到教育没有受到教育不放过,没有防X措施不放过。 2具体锅炉事故及其处理方法 2.1锅炉满水 2.1.1锅炉汽包满水的现象: 2.1.1.1汽包内水位超过规定的正常水位。 2.1.1.2就地水位计指示正值增大,高水位信号报警出现。 2.1.1.3给水量不正常地大于蒸汽流量。 2.1.1.4饱和蒸汽含盐量增大,超过标准。 2.1.1.5严重时蒸汽管道发生水冲击,法兰处向外冒白汽。 2.1.2锅炉满水事故的原因: 2.1.2.1运行人员疏忽大意,对水位监视调节不及时或误操作。 2.1.2.2给水自动控制阀LCV102失灵, 运行人员未及时发现和处理。

催化裂化装置生产方法及基本原理

催化裂化装置生产方法及基本原理 第一节主要控制方案 一、主要控制方案 1. 重油提升管(R22101A)出口温度(TRCA22101A)是通过重油再生滑阀(TV22101A)调节催化剂循环量来控制的,接力管滑阀控制重油提升管起始温度;芳烃提升管(R22101B)出口温度是通过芳烃再生滑阀(TRCA22101B)调节催化剂循环量来控制的,循环立管滑阀调节轻燃油提升管起始温度。 2. 反应沉降器(R22101)的藏量(WRCA22101)是通过调节待生塞阀的开度来控制的。 3.再生器温度(TRCA22102/1)通过串级调节外取热器的提升风的风量(FRCA22109)来调节。 4. 反应沉降器压力正常由气压机C22301转速调节;气压机停运或压力高时可通过压缩机入口大小放火炬阀的开度大小控制。 5. 再生压力是通过分程调节烟机入口蝶阀(PV22101C)和烟机旁路双动滑阀(PV22101A、PV22101B)、来控制的。 6. 分馏塔(T22201A、B)液位和温度选择器切换控制塔底循环泵上返塔流量调节阀来达到控制液位和温度的目的。 7. 重油分馏塔顶油气分离器(V22203A)的液位与粗轻燃油去吸收塔流量阀(FV22218)实行串级调节,保持粗轻燃

油进提升管反应器流量的稳定;芳烃分馏塔顶油气分离器(V22203B)的液位与粗轻燃油去吸收塔流量阀(FV22221)实行串级调节。 8. 气压机出口油气分离器(V22302)的液位与脱吸塔(T22302)进料量实行串级调节。 9. 稳定塔(T22304)塔顶压力实行热旁路与卡脖子相结合的方法进行调节。 10. 余热锅炉实行三冲量调节。 第二节质量控制 一、轻燃油质量的控制 (一). 轻燃油的质量标准 轻燃油规格见表6-1。 表 6-1 轻燃油规格 分析项目单 位 GB17930-2006 试验方法 93号 研究法辛烷值(RONC)--- ≥93 GB/T5487 馏程10%温度 ℃ ≤70 GB/T6536 50%温度≤120 90%温度≤190 终馏点≤205 残留量%(v/v)≤2 GB/T6536

催化裂化烟气脱硫工艺及污水处理方案

催化裂化烟气脱硫工艺 及污水处理方案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

烟气脱硫污水处理方案 目前国催化裂化装置湿法烟气脱硫工艺有美国BELCO公司的EDV工艺、德国GEA-Bischoff公司的EP-Absorber工艺、美国诺顿(NORTON)公司的文丘里洗涤脱硫工艺(VSS),所有烟气脱硫装置运行过程中排放的脱硫后废水为COD高的含盐污水,主要污染物为硫酸钠、亚硫酸钠溶液及固体颗粒物,成熟的烟气脱硫工艺都有配套的污水处理单元(PTU)来处理脱硫废水,经处理后的脱硫废水直接进入外排污水管网。 现总结几个公司烟气脱硫主要工艺和污水处理工艺。 德国GEA-Bischoff公司的EP-Absorber工艺——昌邑石化烟气脱硫介绍: 昌邑石化烟气脱硫除尘工艺流程图 吸收器 外部氧化喷射系统图 昌邑石化烟气脱硫除尘单元采用德国GEA-Bischoff公司EP-Absorber脱硫除尘一体化技术对烟气中的二氧化硫和粉尘处理,由二氧化硫吸收系统、静电除尘系统和烟囱三部分组成。废水处理单

元采用德国 GEA Bischoff公司专用的排液处理技术(PTU)处理脱硫除尘废水,主要有澄清器、汽提塔、砂滤几部分组成。 为使排出废液COD更低,从吸收器底部池中抽取液体至外部氧化系统氧化,再回流至吸收器池中。外部氧化系统由空气喷射器和高压泵等组成,液体被高压泵输送至动力喷嘴,通过喷嘴喷射后,体变成液滴,随后与喷射空气充分混合,使溶解在循环液中的亚硫酸盐与空气发生氧化反应。在空气喷射器之后,含有非常细微分散气泡的循环液回流至吸收器池内,在这些气泡上升至池面的过程中,残余的氧进一步与循环液发生氧化反应。 脱硫除尘进入PTU单元处理,悬浮的颗粒催化剂经压滤成饼作为固体排放物进行处理,清液经处理后外排至市政污水管网。 固体废物排放主要为脱硫除尘塔外排废液经脱水后产生的泥渣以及脱硝产生的废催化剂。脱硫废渣产生量1693t/a,主要成分为硫

炼油生产安全技术—催化裂化的装置简介类型及工艺流程

编订:__________________ 单位:__________________ 时间:__________________ 炼油生产安全技术—催化裂化的装置简介类型及工 艺流程 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8978-61 炼油生产安全技术—催化裂化的装置简介类型及工艺流程 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、装置简介 (一)装置发展及其类型 1.装置发展 催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。 20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。 1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。截止1999年底,我国催化裂化加工能力达8809。5×104t/a,占

一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。 随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。 2.装置的主要类型 催化裂化装置的核心部分为反应—再生单元。反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。 再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图

催化裂化余热锅炉系统火用分析

第41卷第10期 当 代 化 工 Vol.41,No.10 2012年10月 Contemporary Chemical Industry October,2012 收稿日期:2012-04-08 作者简介:杨云鹏(1988-),男,山东济南人,辽宁石油化工大学在读硕士研究生,研究方向:从事炼厂余热利用研究工作。E-mail:chuyunyyp@https://www.360docs.net/doc/a98002259.html,。 催化裂化余热锅炉系统火用 分析 杨云鹏,刘宝玉,张 宁,葛 磊,陈 印 (辽宁石油化工大学 石油天然气工程学院,辽宁 抚顺 113001) 摘 要:利用火用 分析方法对催化裂化余热锅炉进行了综合火用 效率分析,分析了余热锅炉系统在运行中的火用效率表达式;并且用此方法进行了实例计算与分析,得出了余热锅炉在实际运行中有效能利用情况,对余热锅炉火用 效率的影响因素进行了定性分析,确定了火用 损失的关键环节为排烟火用 损失和温差传热火用 损失;通过针对性的优化方案对余热锅炉进行改造,若使其排烟温度降至150 ℃时,余热锅炉系统火用 效率将提高10.4%。 关 键 词:火用 分析;催化裂化;余热锅炉;优化方案 中图分类号:TK 229.92 文献标识码: A 文章编号: 1671-0460(2012)10-1114-03 Exergy Analysis of the Waste Heat Boiler in Fluid Catalytic Cracking Unit YANG YUN-Peng , LIU Bao-yu , ZHANG Ning , GE Lie , CHEN Yin (College of Petroleum and Natural Gas Engineering, Liaoning Shihua University, Liaoning Fushun 113001,China ) Abstract : The exergy analysis of the waste heat boiler in fluid catalytic cracking unit was carried out by the exergy analysis method. The exergy efficiency expression of the waste heat boiler system in the operation was analyzed; And practical calculation and analysis were carried out by this method, application status of effective energy from the waste heat boiler was gained, some factors to affect the exergy efficiency of the waste heat boiler were analyzed, it’s determined that the key link of the exergy loss was smoke exhaust and heat transfer. After transformation of the waste heat boiler with optimal scheme, the exergy efficiency of the waste heat boiler would be increased by 10.4% if the exhaust gas temperature drops to 150 ℃. Key words : Exergy analysis; Catalytic cracking unit; Waste heat boiler; Optimal scheme 催化裂化是石油加工过程中重要的二次加工方法,其反应—再生系统在运行过程中产生大量品位较高的能量,此部分能量的回收与利用对整个系统能耗影响非常显著。原油在提升管反应器中与来自再生器的催化剂接触并立即裂化发生反应,同时难以裂解的碳附着在催化剂表面,引起催化剂结焦失活。积有焦炭的催化剂需进入再生器进行再生反应(烧焦反应),在此过程中放出大量的燃烧热,在维持再生器足够高的反应温度的同时产生大量的高温再生烟气(其温度可达750 ℃),其压力约为0.3 MPa,且含有5%~10%的CO [1] 。工程上采用CO 焚烧炉和余热锅炉来回收此部分能量,烟气分别经过高温取热器、旋风分离器、烟气轮机后进入余热锅炉回收烟气显热。火用 效率分析方法是在实际热力系统中运用热力学第一定律和第二定律对系统进行热分析的一种方法,从而更加有效的分析系统的用能状况与能量利用效率[2] 。 本文基于前人研究成果的基础上对催化裂化余热锅炉系统进行了火用 效率分析,分析了整个系统在运行中的火用 效率表达式,并对余热锅炉火用 效率的影 响因素进行了定性分析,确定了火用 损失的关键环节。 1 余热锅炉的火用分析 处于一定状态的工质所具有的最大可用能称为 工质火用,进行稳定流动的工质,经过一系列可逆过程达到与环境状态(P 0,T 0)平衡,所能完成的最 大有用功称为流动工质火用 [3] 。选取环境状态为零火用 参考点[4] ,忽略动能与位能的变化,得出工质稳定流动工质火用: ()()0000x S T h S T h e ???= (1) 式中: e x —稳定流动工质火用,kJ/kg ; h 与h 0分别—工质初状态与环境状态的焓值,kJ/kg ; S 与S 0分别—工质初状态与环境状态的熵值,kJ/(kg ?K); 即 ()??? ???? ?+??=P P R T T C T T T C e 00 p 00p x ln ln (2) 催化裂化余热锅炉在生产过程当中用以产生过 热蒸汽及完成部分外来饱和蒸汽的过热任务,其各项物流进出余热锅炉的示意图如图1所示。

余热锅炉事故预防与处理讲解学习

锅炉事故与预防 一、锅炉事故概述 锅炉故障与锅炉事故 锅炉是在高温和受压的状况下运行的,在压力的作用下承压部件具有破裂和爆炸的危险性,一旦发生爆炸,且具有相当大的威力。承压部件内的汽水混合物在突然爆炸的一瞬间因压力突然降低而会使其体积成千倍的膨胀,形成巨大的冲击波而危及人们的生命和财产安全。安全问题是锅炉生产、运行中应高度重视的问题。 锅炉受高温烟气的冲刷,烟气中尘粒的磨损、高温烟气的磨蚀和低温有害气体的腐蚀;水中杂质和钙、镁等成分会形成炉内的结垢,这些水垢的形成、堆积会极大地影响热量的传递,使受热面局部金属壁温过热、过烧,产生鼓包、变形、甚至破裂,在处理不当时会发生锅炉事故。锅炉系统所用辅机、阀门、仪表数量较多,工作环境恶劣,非受压元件有些工作在高温环境,在长期运行过程中也会出现一些故障,但这些故障有些在不停炉的情况下可以处理和解决。但若对锅炉故障处理不及时或不够重视时,也会引起锅炉事故的发生。因此加强锅炉设计、制造的监督、检验、运行中的管理和定期检查检修对锅炉安全运行十分有意义。 锅炉故障主要是由于运行操作不当或长期使用、维修保养不良造成的,如法兰泄漏、阀门不严、水位表或压力表的旋塞(考克)漏水、漏汽、安全阀阀芯被粘住等。这些故障一般可以在不停炉的情况下经过处理即恢复正常运行。但若不及时处理,或操作者对故障判断错误,

也可能造成严重事故。 锅炉运行中,因锅炉受压部件、安全附件、辅助设备发生故障或损坏,以及因运行人员工作失职或违反锅炉运行操作规程,使锅炉受到损伤被迫停炉或某些企业被迫突然降参数运行引起生产系统出现设备故障或产品报废的,称为锅炉事故。 锅炉事故有设备事故和动力事故之分,动力事故系按停止供汽时间的久暂和参数(包括蒸汽品质、压力、汽量等)降低影响生产的程度而制订事故等级。这类事故须根据用汽性质而定,例如采暖蒸汽短时间参数降低,只有极小的影响,但动力用汽则会立即出现生产设备出力不足而影响产量,较长时间的参数降低还会造成产品报废或更大的损失。因此,即使在一个工厂内,因各车间用汽性质不同,也必须订立不同等级的事故标准。这样,可以促使运行人员趋向于保重点的操作方式,所以,这类事故标准应由各用汽单位自行考虑制订。 锅炉事故的分类 按锅炉设备的损坏程度,锅炉事故可以分为以下三类: (1)爆炸事故。爆炸事故是指锅炉在使用中或压力试验时,受压部件发生破坏,设备中介质蓄积的能量迅速释放,内压瞬间降至外界大气压力而引发的各类爆炸事故。 这种事故是锅炉事故中最严重的,破坏性也最大。因为在锅炉发生爆炸的一瞬间具有一定压力和相应温度的汽水混合物几乎全部冲出炉外,在汽水混合物冲击力的作用下,能够将锅炉抛出地面,飞出几十米甚至数百米之远,同时由于汽浪的冲击波,也能摧毁和震坏建

催化裂化装置的主要设备催化裂化装置的主要设备

催化裂化装置的主要设备 催化裂化装置的主要设备 百克网:2008-5-30 14:50:14 文章来源:本站 催化裂化装置设备较多,本节只介绍几个主要设备。 一、提升管反应器及沉降器 (一)提升管反应嚣 提升管反应器是进行催化裂化化学反应的场所,是本装置的关键设备。随装置类型不同提升管反应器类型不同,常见的提升管反应器类型有两种: (1)直管式:多用于高低并列式提升管催化裂化装置。 (2)折叠式:多用于同轴式和由床层反应器改为提升管的装置。 图5—8是直管式提升管反应器及沉降器示意图 提升管反应器是一根长径比很大的管子,长度一般为30~36米,直径根据装置处理量决定,通常以油气在提升管内的平均停留时间1~4秒为限确定提升管内径。由于提升管内自下而上油气线速不断增大,为了不使提升管上部气速过高,提升管可作成上下异径形式。 在提升管的侧面开有上下两个(组)进料口,其作用是根据生产要求使新鲜原料、回炼油和回炼油浆从不同位置进入提升管,进行选择性裂化。

进料口以下的一段称预提升段(见图5—9),其作用是:由提升管底部吹入水蒸气(称预提升蒸汽),使由再生斜管来的再生催化剂加速,以保证催化剂与原料油相遇时均匀接触。这种作用叫预提升。 为使油气在离开提升管后立即终止反应,提升管出口均设有快速分离装置,其作用是使油气与大部分催化剂迅速分开。快速分离器的类型很多,常用的有:伞帽型,倒L型、T型、粗旋风分离器、弹射快速分离器和垂直齿缝式快速分离器(分州如图5—10中a、b、c、d、e、f所示)。 为进行参数测量和取样,沿提升管高度还装有热电偶管、测压管、采样口等。除此之外,提升管反应器的设计还要考虑耐热,耐磨以及热膨胀等问题。 (二)沉降器 沉降器是用碳钢焊制成的圆筒形设备,上段为沉降段,下段是汽提段。沉降段内装有数组旋风分离器,顶部是集气室并开有油气出口。沉降器的作用是使来自提升管的油气和催化剂分离,油气经旋风分离器分出所夹带的催化荆后经集气室去分馏系统;由提升管快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入汽提段。汽提段内设有数层人字挡板和蒸汽吹入口,其作用是将催化剂夹带的油气用过热水蒸气吹出(汽提),并返回沉降段,以便减少油气损失和减小再生器的负荷。 沉降器多采用直筒形,直径大小根据气体(油气、水蒸气)流率及线速度决定,沉降段线速一般不超过0.5~0.6米/秒。沉降段高度由旋风分离器科腿压力平衡所需料腿长度和所需沉降高度确定,通常为9~12米。汽提段的尺寸一般由催化剂循环量以及催化剂在汽提段的停留时间决定,停留时间一般是1.5~3分钟。 二、再生器

催化裂化烟气脱硫工艺及污水处理方案

烟气脱硫污水处理方案 目前国催化裂化装置湿法烟气脱硫工艺有美国BELCO?公司的EDV工艺、德国GEA-Bischoff公司的EP-Absorber工艺、美国诺顿(NORTON)公司的文丘里洗涤脱硫工艺(VSS),所有烟气脱硫装置运行过程中排放的脱硫后废水为COD高的含盐污水,主要污染物为硫酸钠、亚硫酸钠溶液及固体颗粒物,成熟的烟气脱硫工艺都有配套的污水处理单元(PTU)来处理脱硫废水,经处理后的脱硫废水直接进入外排污水管网。 现总结几个公司烟气脱硫主要工艺和污水处理工艺。 德国GEA-Bischoff公司的EP-Absorber工艺——昌邑石化烟气脱硫介绍:

昌邑石化烟气脱硫除尘工艺流程图 外部氧化喷射系统图 昌邑石化烟气脱硫除尘单元采用德国GEA-Bischoff 公司 EP-Absorber 脱硫除尘一体化技术对烟气中的二氧化硫和粉尘处理,由二氧化硫吸收系统、静电除尘系统和烟囱三部分组成。废水处理单元采用德国 GEA Bischoff 公司专用的排液处理技术(PTU)处理脱硫除尘废水,主要有澄清器、汽提塔、砂滤几部分组成。 为使排出废液COD 更低,从吸收器底部池中抽取液体至外部氧吸收器

化系统氧化,再回流至吸收器池中。外部氧化系统由空气喷射器和高压泵等组成,液体被高压泵输送至动力喷嘴,通过喷嘴喷射后,体变成液滴,随后与喷射空气充分混合,使溶解在循环液中的亚硫酸盐与空气发生氧化反应。在空气喷射器之后,含有非常细微分散气泡的循环液回流至吸收器池内,在这些气泡上升至池面的过程中,残余的氧进一步与循环液发生氧化反应。 经PTU单元后外排废水排放指标 脱硫除尘进入PTU单元处理,悬浮的颗粒催化剂经压滤成饼作为固体排放物进行处理,清液经处理后外排至市政污水管网。 固体废物排放主要为脱硫除尘塔外排废液经脱水后产生的泥渣以及脱硝产生的废催化剂。脱硫废渣产生量1693t/a,主要成分为硫酸钠、亚硫酸钠、亚硫酸氢钠,经过滤后,进行无害化填埋。废催化剂属于危险固体废物,送至具有危险固体废物回收资质的单位进行回收。

相关文档
最新文档