数学建模地震建模PDF版

数学建模地震建模PDF版
数学建模地震建模PDF版

地震紧急撤离问题数学建模

辽宁工业大学2010年数学建模(论文) 题目:地震紧急撤离问题 院(系):电子与信息工程学院 专业班级:计算机071班 学生:伟、何林强、章杰 起止时间:2010.4.5—2010.4.16

摘要 本文借用流体动力学中的微分关系,通过将离散的人员转化为连续的人流,以人流密度为研究主体,建立了人员撤离的动态微分方程优化模型,分析了地震发生时人员紧急撤离的问题。并根据我们所在教学楼的楼层建筑的数据分别估算了混乱状况下与有组织时人员撤离的时间,为人员的紧急撤离提供了参考方案。 第一,本文分析了在无组织的状态下,人员撤离的一般情形。一方面,无组织下人员的运动具有随机性,故此引入人流密度作为基本研究对象。另一方面,流量的变化率是人流密度对距离积分后对时间的导数,人流量对时间的积分即为撤离人员的数量。由此几方面关系,可以列出整个动态过程的微分方程。经分析发现,单位时间的人流量与密度和速度成正比关系,而整体的人流速度与密度之间又是成一次线性关系,恰好符合流体力学中的流量、流速与密度之间的关系。根据实际情况对整求解过程做了简化,以楼道中的平均人流量为研究主体,最终以数值解求得全部人员逃离所需时间大约为420s. 第二,利用得出的人流量随时间变化的图像可知,由于人员无组织的涌出教室,导致人流密度很大,人群得不到有效的移动,从而使流量达到最大值后又迅速减小。故最好的撤离方式是在达到流量最大的时候,保持住一定的人流密度从而来维持最大的流量。结合数据后可知,在撤离开始一分钟的时候应该有人组织撤离,这样可以避免由于人员的过多涌入楼道而导致的拥堵现象。这样子调控后最佳的撤离时间可以降到240秒左右。 第三,除去人为堵塞的因素对撤离时间影响较大外,改变楼层的设计同

地震检测模型

楚雄师范学院 2014年“雁峰杯”数学建模竞赛论文 题目地震检测 姓名杨子月 学院数学与统计学院 专业数学与应用数学 2014年5月28日

地震检测模型 摘要 继2008年5月12日在四川汶川大地震之后,2013年4月22日四川雅安又发生了一次7.0级地震,这些重大自然灾害,给我们每一位中国人带来了巨大的伤痛,痛定思痛,我们应该为减少震后灾害做些事情。当地震发生时,震中位置的快速确定对第一时间展开抗震救灾起到非常重要的作用,而震中位置可以通过多个地震观测站点接收到地震波的时间推算得到。 现已采集到某地观测的30个指标的数据,和该地区该时期内已发生地震的经纬度、地震波到达的时间的数据。科学地截取这些数据的有用片段,对数据进行合理地预测处理,用数学方法计算出地震的中心位置。 关键词:地震检测经纬度地震波到达时间震源中心

一、问题重述 假设你是一位地震学家,在某地部署了30座地震台。这些地震台装备了测量和记录地质运动的设备。现已采集了这30座地震台的坐标和某次地震时这些的地震台测得的地震运动到达时间t,现在我们需要建立一个数学模型求出这次地震中心的坐标M(x,y)。 二、模型假设 1、假设震源在地下,发生地震之后地震波沿着各个方向匀速传播,且在传播过程中速度保持不变。 2、假设地震波在各种介质中的传播速度相等。 3、假设地震发生的区域范围内时差为零。 4、、假设由于其他因素而引起10多个指标数据的变化以及非正常波动可以忽略不计。 5、假设地震的前兆指标的数据特征符合一定的概率统计分布。 6、地形各观测点没有剧烈变化。 通过以上条件虽然不能精确求出地震发生的地点,但是可以建立一种在空间和时间上准确模拟地震发生以及预测的模型机制,对于地震预报及防治有很大的现实意义。地震源可能在地下,地震发生之后,地震波从震源点开始以球面方式沿各个方向传播,在空间和时间上是一个三维的立体模型结构。 三、符号说明及名词解释 3.1符号说明 震中位置 M(x,y) 经度 x(度) 纬度 y(度) 震源深度 h(千米) 地震波在各种介质中的传播速度v(千米/秒) 地震波到达时间 t(秒) 3.2 名词解释 地震波:地震被按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。[1]

数学建模必读教程

数学建模必读教程 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

基本知识: 一、数学模型的定义 ? ?? ?现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤

1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分

数学建模入门基本知识

数学建模知识 之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。 不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个 抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数 学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。今天,数学以空前的广度和深度向其它科学技术领 域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。 特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了 使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统 运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差 分析,数据稳定性分析。 例题:一个笼子里装有鸡和兔若干只,已知它们共有8个头和22只脚,问该笼子中有多 少只鸡和多少只兔?

《数学建模》选题.

《数学建模》选题(一) 1、选址问题研究 在社会经济发展过程中, 经常需要在系统中设置一个或多个集散物质、传输信息或执行某种服务的“中心”。在设计和规划商业中心、自来水厂、消防站、医院、飞机场、停车场、通讯系统中的交换台站等的时候,经常需要考虑将场址选在什么位置才能使得系统的运行效能最佳。选址问题, 是指在指定的范围内, 根据所要求的某些指标,选择最满意的场址。在实际问题中,也就是关于为需要设置的“设施”选择最优位置的问题。选址问题是一个特殊类型的最优化问题,它属于非线性规划和组合最优化的研究范围。由于它本身所具有的特点,存在着单独研究的必要性和重要性。 1.1“中心”为点的情形 如图1,有一条河,两个工厂P 和Q位于河岸L(直线)的同一侧,工厂 P 和 Q 距离河岸L分别为8千米和10千米,两个工厂的距离为14千米,现要在河的工厂一侧选一点R,在R处建一个水泵站,向两工厂P、Q 输水,请你给出一个经济合理的设计方案。 图1 图2 (即找一点 R ,使 R 到P、Q及直线l的距离之和为最小。) 要求和给分标准: 提出合理方案,建立坐标系,分情况定出点R的位置,0分——70分。 将问题引申: (1)、若将直线 L缩成一个点(如向水库取水),则问题就是在三角形内求一点R,使R到三角形三顶点的距离之和为最小(此点即为费尔马点)。 (2)、若取水的河道不是直线,是一段圆弧(如图2),该如何选点? 对引申问题给出给出模型和讨论30分——50分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺点讨论扣10分。 1.2“中心”为线的情形

在油田管网和公路干线的设计中提出干线网络的选址问题: 问题A :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ∑=n i i i L P d w 1 ),( (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题B :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ∑=n i i i L X d w 1 ),( (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 问题C :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ),(max 1L P d w i i n i ≤≤ (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题D :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ),(max 1i i n i L X d w ≤≤ (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 参考文献 【1】林诒勋, 尚松蒲. 平面上的点—线选址问题[J]. 运筹学学报,2002,6(3):61—68. 【2】尚松蒲, 林诒勋. 平面上的min-max 型点—线选址问题[J]. 运筹学学报,2003,7(3):83—91. 要求和给分标准: 选择问题A 和B(或者C 和D)进行研究:根据文献重述模型(10分),提出自己的算法(30分),计算机仿真验证算法的正确性(40分,含如何在平面上随机产生n 个点,对每个点随机赋权,按照算法编程实现求干线的程序,并将寻得的干线和点在平面上图示,建议用MATLAB 编程)。 将问题引申: 如果同时确定两条、三条干线,应该如何讨论?其他情形的讨论? 对引申问题给出给出模型和讨论20分——30分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺

数模论文-数据说教学楼地震疏散

北京邮电大学 数学建模课程期末论文 [数据说教学楼地震疏散] 作者:[何志鹏] 专业名称:[软件学院] 学号:[2012212038] 指导教师:[张文博] 2015年5月19日

目录 一、摘要--------------------------------------------------------------------- 3 二、问题描述--------------------------------------------------------------- 4 三、问题一求解------------------------------------------------------------ 5 3.1基本假设---------------------------------------------------- 5 3.2符号说明---------------------------------------------------- 5 3.3模型--------------------------------------------------- 6 3.4单元体--------------------------------------------------- 6 3.5并联系统--------------------------------------------------- 7 3.6串联系统--------------------------------------------------- 8 3.7举例应用---------------------------------------------------- 9 3.8模型求解---------------------------------------------------- 12 四、问题二求解------------------------------------------------------------ 12 4.1假设---------------------------------------------------- 12 4.2解决方案---------------------------------------------------- 14 五、问题三求解------------------------------------------------------------ 14 六、模型的评估------------------------------------------------------------ 15 七、模型的改进和推广----------------------------------------------------- 15 八、参考文献----------------------------------------------------------------- 16

数学建模教学设计说明

《函数模型的应用实例--数学建模》教学设计说明 郑州市第九中学郑敏 本节课是数学建模的入门课.数学建模是高中数学新课程中新增的研究性学习的内容,《课程标准》中没有对数学建模的内容做具体安排,只是建议将数学建模穿插在相关模块的教学中,要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.而以函数为模型的应用题是中学数学中最重要的内容之一,从应用题中抽象出问题的数学特征,找出函数关系,解决实际问题也是中学数学教学的重要任务之一.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,综合分析对比一次函数、二次函数、指数函数、对数函数、幂函数在实际生活中应用的优缺点,为以后的数学建模打基础,但未能使学生全面认识数学建模的全过程,于是又在本题的基础上有所改编,从实际问题出发,通过分析探究、交流合作、小组展示、总结归纳、深化反思等数学活动引导学生建立完整的数学模型解决实际问题,从而深化数学建模思想.因此本节课是从函数出发,综合运用数学知识、思想和方法,尝试数学建模,让学生从不同的角度理解数学的魅力. 高一下学期的学生学习过一次函数、二次函数、指数函数、对数函数、幂函数各自的函数特点,基于学校的支持,学生对于图形计算器已经有一定的基础,知道数形结合、转化化归、由特殊到一般的思想方法,但对于如何建立数学模型尚不明确.从数学活动经验上来说,学生具备了一定的数学活动经验,有主动参与数学活动的意识和小组合作学习的经验,好奇心强,学习比较积极主动. 本节课是数学建模的基础课,对学生来说是一个全新的认识,在认知方式和思维难度上对学生有较高的要求,而学生的抽象概括能力比较薄弱,学生在建立数学模型及优化数学模型的过程中会比较困难. 在领会以上精神后,我在设计本节课时注意了以下问题: 从主导思想上:本节课依据“教评学一致性”的理念进行课堂教学设计,实施目标导引教学.基于学习目标创设学习问题,激发学生的学习兴趣,基于目标设计与之匹配的评价设计和教学方案,引导学生主动参与学习过程,动手动脑动口,在学习过程中逐步锻炼分析问题、抽象概括的能力. 从内容上:本节课是数学建模的基础课,数学建模是高中数学新课程中研究性学习的内容,《课程标准》中要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,对于选择数学模型这一难点,通过分析探究、交流合作、小组展示、师生释疑等环节,设计一系列环环相扣的问题,引导学生思考、讨论、对比各自函数的特点,得出符合题意的数学模型,从而突出本节课的重点.但在实际生活中,符合题意的数学模型不一定符合实际情况,于是在题目的基础上加以修改,用实际问题去检验数学模型,不断拟合出最优的数学模型,让学生体会数学

数学建模入门试题极其答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 :顶=1:a:b ,选坐v>0,而设语雨速 L( 1q -+v x ),v≤x Q(v)= L( v x -q +1),v>x 2.解:由于教授每天借一本书,即一周借七本书,而图书馆平均每周

实用文库汇编之数学建模地震预测模型

*实用文库汇编之 * 题目:地震预测数学建模 姓名:张志鹏 学号:12291233 学院:电气工程学院 姓名: 赵鑫 学号:10291033 学院:电气工程学院 数学建 模竞赛 论文

姓名:张书铭学号:12291232 学院:电气工程学院 目录 摘要 (3) 一、问题重述 (4) 二、问题的分析 (4) 三、建模过程 (5) 问题1:地震时间预测 (5) 1、问题假设 (5) 2、参数定义 (6) 3、求解 (6) 问题2:地震地点预测 (7) 1、问题假设: (7) 2、参数定义 (7) 3、求解过程: (7) 四、模型的评价与改进 (10) 参考文献 (11)

摘要 大地振动是地震最直观、最普遍的表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。在大陆地区发生的强烈地震,会引发滑坡、崩塌、地裂缝等次生灾害。对人们的生产生活成巨大影响,严重威胁人们的生命和财产安全,所以,对地震的预测是十分必要的。 本文根据从1900年以来中国发生的八级以上地震的时间和地点分析,利用合理的数学建模方法,对下一次中国可能发生的八级以上地震的和时间和地点进行合理的预测。建模方法分为对于时间的预测和地点的预测两个方面。 问题1:对于时间的预测 采用的方法为指数平滑法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。 问题2:对于地点的预测 根据长久的数据表明,八级以上地震主要发生在东经70°——110°,北纬20°——50°这个范围内,据此将整个地震带划分为100个区域,按顺序进行编号。建立时间与地震区域编号的数学模型,利用线性回归的方法对下次地震地点预测。

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤

1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

地震紧急撤离问题数学建模

辽宁工业大学2012年数学建模(论文) 题目:火灾紧急撤离问题 院(系):机械工程及自动化 专业班级:机械1106班 学生姓名:王哲、郭爽、吴建彬 起止时间:2012.5.21—2012.5.27

本文借用流体动力学中的微分关系,通过将离散的人员转化为连续的人流,以人流密度为研究主体,建立了人员撤离的动态微分方程优化模型,分析了地震发生时人员紧急撤离的问题。并根据我们所在教学楼的楼层建筑的数据分别估算了混乱状况下与有组织时人员撤离的时间,为人员的紧急撤离提供了参考方案。 第一,本文分析了在无组织的状态下,人员撤离的一般情形。一方面,无组织下人员的运动具有随机性,故此引入人流密度作为基本研究对象。另一方面,流量的变化率是人流密度对距离积分后对时间的导数,人流量对时间的积分即为撤离人员的数量。由此几方面关系,可以列出整个动态过程的微分方程。经分析发现,单位时间的人流量与密度和速度成正比关系,而整体的人流速度与密度之间又是成一次线性关系,恰好符合流体力学中的流量、流速与密度之间的关系。根据实际情况对整求解过程做了简化,以楼道中的平均人流量为研究主体,最终以数值解求得全部人员逃离所需时间大约为420s. 第二,利用得出的人流量随时间变化的图像可知,由于人员无组织的涌出教室,导致人流密度很大,人群得不到有效的移动,从而使流量达到最大值后又迅速减小。故最好的撤离方式是在达到流量最大的时候,保持住一定的人流密度从而来维持最大的流量。结合数据后可知,在撤离开始一分钟的时候应该有人组织撤离,这样可以避免由于人员的过多涌入楼道而导致的拥堵现象。这样子调控后最佳的撤离时间可以降到240秒左右。 第三,除去人为堵塞的因素对撤离时间影响较大外,改变楼层的设计同样可以缩短撤离所用时间。于是,文章讨论了实际楼层中的参数,如楼层中疏散通道的宽度、教室门的宽度以及疏散口的数量等,对紧急撤离时间的影响。并得出结论疏散口的增加与疏散通道的加宽对撤离时间的缩短有明显的提高。 最后,由于不同的楼层人员速度不一样会导致在楼道中的互相推挤现象,此举对人员在楼道中人员的有效流动有较大影响。故我们引入混乱时间的概念,用来具体量化由此导致的时间的浪费情况。分析后可知混乱时间主要决定于相临两层人员的速度差,由于混乱时间与速度差成正比关系,而且在速度差为正值的时候时间较大,而为负值时时间较小,故利用指数函数来表示两者的关系。由此建立了以总的混乱时间最小为目标的优化模型。利用atlab 对各种指派情形进行比较,得出最了优解。 关键词:人流量动态微分方程最佳撤离混乱时间

地震预测模型doc

精心整理2011年赣南师院数学建模竞赛选拔赛 题目地震预测模型 摘要: 本文前三个任务主要考虑是各指标的变化对地震发生问题的影响,通过对各指标数据量的分析建立相应的模型,并对任务四和任务五给出了合理的解答。 针对任务一:我们从原始数据中计算出各项指标的日均值,绘制出各指标分年度的时间序列图, 磁波幅度 。 关键词: 一·问题的重述 1.1背景分析 地震是地壳快速释放能量过程中造成的振动。虽然预测地震是世界性难题,但迄今科学界普遍认为,有可能反映地震前兆特征的指标可能不少于10个。已经有专业仪器在多个定点实时按秒记录这些指标的数据,期望通过对记录数据的分析研究找到地震的前兆特征。 现已采集到某地2005年1月1日至2010年6月30日按小时观测的10多个指标的数据,和该地区该时期内已发生地震的时刻、经纬度、震级及震源深度的数据。这些数据中隐藏着地震发生的前兆特征。科学地截取这些数据的有用片段,对数据进行合理地预处理,用数学方法揭示地震前兆

的数据特征,是一项很有意义的研究工作。 题给数据中的这10多个指标,究竟哪些与地震的发生有关,有何种关系,是单一关系还是复合关系;除这10多个指标外还有哪些因素及含题给指标在内的哪些指标的哪种数学模型更能反映地震的前兆特征等等,人们迄今仍不很清楚,需要进行深入地研究。地震数据的观测是持续进行的,随着时间的推移数据的规模会不断扩大。从中挖掘地震的前兆特征,必须有合理的数学模型,也必须有科学高效的算法分析平台。因此,需要我们结合附件中给出的实际记录数据,尝试完成以下任务。 1.2任务的提出 任务一:分析数据特征,建立数学模型以度量各指标对地震发生的敏感程度。 越大 任务三:中要结合题给数据,建立数学模型来研究地震发生前的数量特征。主要运用贝叶斯判别分析法进行建模,对已给数据进行先验信息、后验信息分析。 任务四:要将计算程序集结成地震数据分析平台,能够完成其它地震数据的分析,并能自动输出前任务的重要分析结果。 任务五:是针对进一步的研究设想写一篇切实可行的报告。 三·问题的基本假设 (1)地震监测点的监测设施能正常运转; (2)地震监测设施周围不存在影响其工作效能的干扰源,如飞机场、发电厂等;

数学建模基础教程

数学建模新手“必读教程” 第一部分基本知识: 一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解

数学建模--建筑变形问题

第十一届“创新杯”大学生数学建模竞赛 编号专用页 论文编号(竞赛组织者编写): 题号:C题—建筑物的变形问题 姓名: 学号: 电话: 学院:土木与交通学院 专业:土木工程 邮箱:

建筑物的变形问题 摘要论文编号: 本文针对建筑体变形问题,将数据模型化,采用替代法,用已知控制点代表建筑整体,用控制点的中心代表整体建筑的中心。通过对控制点及中心点的量化研究,分析整个建筑的各种变形情况。 对于问题1,给出确定此类建筑物各层中心位置的通用方法,并对题中的建筑物算出其各层中心的具体坐标。我们采用CAD制图软件,先确定出建筑的大体形状,建立建筑物的模型,再对各层的变形进行分析,然后确定中心点应满足的条件,最后用数据求解。 对于问题2,分析该建筑物倾斜、弯曲、扭曲等变形情况,并对其变形趋势进行研究。我们在问题1的基础上,将建筑的变形模型化,分为随各层中心点的平动及绕中心点的定轴转动。其中,平动表现为倾斜,而绕中心的转动又分为绕中心轴的转动和绕平面上过中心点的轴的转动。前者表现为扭曲,后者表现为弯曲。通过已知的数据对模型进行定量计算,推测其未来的变形趋势。在分析现有数据时,我们对明显错误的已知数据进行了舍弃,对建筑物的突然出现的大变形进行了合理假设。 在对以上两问题研究时,我们建立模型后,仅用Excel就完成了数据的分析和对变形的预测,并未动用其它数学软件。 关键词:(3-5个) 替代平动定轴转动绕轴转动倾斜扭转弯曲

第十一届_2014_“创新杯”数学建模竞赛 建筑物的变形问题 2014年5月20日

目录 一、问题的重述 (2) 二、问题的分析 (2) 三、模型假设 (2) 四、建模过程 (2) 1)、问题一 (2) 1、建立模型 (2) 2、模型求解 (3) 2)、问题二 (6) (1)倾斜 (6) 1、定义符号说明 (6) 2、建立模型 (6) 3、模型求解 (10) (2)弯曲 (11) 1、定义符号说明 (11) 2、建立模型 (11) 3、模型求解 (12) (3)扭曲 (12) 1、定义符号说明 (12) 2、建立模型 (12) 3、模型求解 (12) 五、变形趋势 (13) 六、建模的优缺点 (13) 七、参考文献 (13)

数学建模之抗震救灾物资分配问题

这个数学建模是一个解决灾区救灾物资分配的模型,由于各个家庭受灾情况不同,对救灾物资的需求不同对救灾物进行分配。题是从网络找到的,模型基本都是自己做的。 数学与统计学院09级一班 李铭远 222009314011063 抗震救灾物资分配问题 一、提出问题: 2010年4月14日晨,青海省玉树县发生两次地震,最高震级7.1级,地震震中位于县城附近。灾区群众遭受了巨大损失。 地震后中外各界纷纷慷慨解囊援助灾区。灾区人们需要衣食住行等各种物质以度过难关。 现设某一灾区有N个受灾家庭,每个家庭成员有Ni人,有救灾物资一批共M类,每类物质分别有Mi个单位要发放给这些受灾者。每种物资数量有限;由于各受灾者的灾情不同,对每种物资的急需程度和需求量不同。需要解决的问题如下: (1)制定分配原则并给出合理的分配方法。 (2)对受灾家庭假设N=10,每个家庭成员数Ni=1(i=1,2,3),Nj=2(j=4,5),Nk=3(k=6,7,8),Nl=4(l=9,10) (即前三个家庭每户一人,第四户、五户每家2人,以此类推)

救灾物资种类M=3,分别是帐篷类M1=6(顶,大小不一)、食品类M2=100(公斤)和饮用水类M3=200(升)给出具体算例,并说明食品和饮用水能支撑几天。 二、模型假设: 1.灾区受灾情况有硬件设施、田地损害和人口、家畜伤亡等方面。 此处将家庭人口相同的当做一类情况进行分配。 2.所有参与分配物资都是灾区急需的重要物资,不同救灾物资之 间不可替代。 3.受灾程度越严重,受灾损失越大,分配的物资也就越多,反之 就越少。在物资分配之前,当地民政等部门已经对灾情进行了 调查统计并分析评估出了基本的数据,如受灾区群众对各种物 资的急需程度和急需量等; 4.在实际的分配操作中,为了能使所有的受灾者都能得到急需的 救灾物资,必须对现有救灾物资进行分析,来确保物资分配的 合理性。 5.物资的急需程度和需求量是依据一定时间内生存需求而得到 的近似评估值;为了方便模型建立,急需量统一化为整数,若 非整数的则通过数据整数化处理转换为整数来考虑。 三、问题分析与模型建立 物资通过量纲化后,分别为:M1=6,M2=100,M3=200.假设至少每

地震灾后物资分配模型(数学建模)范文

[ 请输入文档摘要,摘要通常是 对文档内容的简短总结。输入文档摘要,摘要通常是对文档内容的简短总结。] 汶川地震原油供应的数学建模 一、问题的提出 2008年5月12日14:28在我国四川汶川地区发生了8.0级特大地震,给人民生命财产和国民经济造成了极大的损失。地震引发的次生灾害也相当严重,特别是地震造成的34处高悬于灾区人民头上的堰塞湖,对下游人民的生命财产和国家建设构成巨大威胁。加强对震后次生灾害规律的研究,为国家抗震救灾提供更有力的科学支撑是科技工作者义不容辞的责任。唐家山堰塞湖是汶川大地震后山体滑坡后阻塞河道形成的最大堰塞湖,位于涧河上游距北川县城6公里处,是北川灾区面积最大、危险最大的堰塞湖,其堰塞体沿河流方向长约803米,横河最大宽约611米,顶部面积约为30万平方米,主要由石头和山坡风化土组成。由于唐家山堰塞湖集雨面积大、水位上涨快、地质结构差,溃坝的可能性极大,从最终的实际

情况看,从坝顶溢出而溃坝的可能性比其它原因溃坝的可能性大得多。 经过专家分析,采取有效措施,最终完成了唐家山堰塞湖的成功泄洪。当时的科技工作者记录了大量的珍贵数据,新闻媒体也对唐家山堰塞湖进展情况进行了及时的报道,通过对这些数据的收集(由于数据来源不同,数据有些冲突,以新华社报道的相关数据为准),我们对堰塞湖及其泄洪规律进行了初步研究,完成以下工作: 1.建立唐家山堰塞湖以水位高程为自变量的蓄水量的数学模型,并以该地区天气预报的降雨情况的50%,80%,100%,150%为实际降雨量预计自5月25日起至6月12日堰塞湖水位每日上升的高度(不计及泄洪)。(由于问题的难度和实际情况的复杂性及安全方面的考虑,没有充分追求模型的精度,以下同); 2.唐家山堰塞湖泄洪时科技人员记录下了大量宝贵的数据。我们在合理的假设下,利用这些数据建立堰塞湖蓄水漫顶后在水流作用下发生溃坝的数学模型,模型中包含缺口宽度、深度、水流速度、水量、水位高程,时间等变量。 3.根据数字地图,给出坝体发生溃塌造成堰塞湖内1/3的蓄水突然下泻时(实际上没有发生)的洪水水流速度及淹没区域(包括洪水到达各地的时间),并在此基础上考虑洪水淹没区域中人口密集区域的人员撤离方案。 4.根据我们所建立的数学模型分析当时所采取对策的正确性和改进的可能性。讨论应对地震后次生山地灾害 (不限堰塞湖) ,科技工作中应该设法解决的关键问题,并提出有关建议。 3 二、符号说明 W:堰塞湖内蓄水量,即总库容,单位:亿立方米 ()Ht:坝前水位高程,单位:米 0bH:堰塞湖底部高程,常数667.4 ()Lht:堰塞湖内水深,单位:米 ()Rt:堰塞湖每天的新增水量,单位:亿立方米 ()Jt:第t天的降雨量,单位:毫米 ()bt:泄流槽的宽度,单位:米 ()INQt:t时刻的单位入湖流量,单位:立方米/秒 ()OUTQt:t时刻的单位泄流量,单位:立方米/秒 4 三、模型的建立与求解

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

相关文档
最新文档