串的匹配

串的匹配
串的匹配

1 求子串位置的定位函数Index(S,T,pos)

子串的定位操作通常称作串的模式匹配(其中T被称为模式串),是各种串处理系统中最

重要的操作之一。在以前借用串的其他基本操作给出了定位函数的一种算法。根据以前算法的基本思想,采用定长顺序存储结构,可以写出不依赖于其他串操作的匹配算法,如算法1所示。

int Index(Sstring S, Sstring T,int pos){

//返回子串T在主串s中第pos个字符之后的位置。若不存在,则函数值为0。

//其中,T非空,1≤Pos≤StrLength(S)。

i=pos;

j=1;

while(i<=S[0]&&j<=T[0]) {

if(s[i]==T[j]) { i++; j++; } //继续比较后继字符 ·

else { i=i-j+2; j=1;} //指针后退重新开始匹配

}

if(i>T[0]) return i-T[0];

else return 0;

} //Index

算法 1

在算法1的函数过程中,分别利用计数指针i和j指示主串S和模式串T中当前正待比较的字符位置。算法的基本思想是:从主串S的第pos个字符起和模式的第一个字符比较之, 若相等,则继续逐个比较后续字符,否则从主串的下一个字符起再重新和模式的字符比较之。依次类推,直至模式T中的每个字符依次和主串S中的一个连续的字符序列相等,则称匹配成功,函数值为和模式T中第一个字符相等的字符在主串S中的序号,否则称匹配不成功,函数值为零。图1展示了模式T="abcac"和主串S的匹配过程(pos=1)。

算法1的匹配过程易於理解,且在某些应用场合,如文本编辑等,效率也较高,例如,在检查模式"STING"是否存在於下列主串中时,

"A STRING SEARCHING EXAMPLE CONSISTING OF SIMPLE TEXT"

上述算法中的WHILE循环次数(即进行单个字符比较的次数)为41,恰好为

(Index+T[0]-1)+4这就是说,除了主串中呈黑体的四个字符,每个字符比较了两次以外,其它字符均只和模式进行一次比较。在这种情况下,此算法的时间复杂度为O(n+m)。其中n 和m分别为主串和模式的长度。然而,在有些情况下,该算法的效率却很低。例如,当模式串为"00000001",而主串为"00000000000000000000000000000000000000000000000000001"时,由于模式中前7个字符均为"0",又,主串中前52个字符均为"0",每趟比较都在模式的最后一个字符出现不等,此时需将指针i回溯到i-6的位置上,并从模式的第一个字符开始重新比较,整个匹配过程中指针i需回溯45次,则WHILE循环次数为46* 9(index*m)。可见,算法1在最坏情况下的时间复杂度为O(n*m)。这种情况在只有0、1两种字符的文本串处理中经常出现,因为在主串中可能存在多个和模式串“部分匹配”的子串,因而引起指针i的多次回溯。01串可以

用在许多应用之中。比如,一些计算机的图形显示就是把画面表示为一个01串,一页书就

是一个几百万个0和1组成的串。在二进位计算机上实际处理的都是01串。一个字符的ASCII 码也可以看成是八个二进位的01串。包括汉字存储在计算机中处理

时也是作为一个01串和其它的字符串一样看待。因此在下一节,我们将介绍另一种较好的

模式匹配算法。

2 模式匹配的一种改进算法

这种改进算法是D.E.Knuth与V.R.Pratt和J.H.Morris同时发现的,因此人们称它

为克努特-莫里斯-普拉特操作(简称为KMP算法)。此算法可以在O(n+m)的时间数量级上完

成串的模式匹配操作。其改进在於: 每当一趟匹配过程中出现字符比较不等时,不需回溯i

指针,而是利续进行比较。下面先从具体例子看起。

回顾图1中的匹配过程示例,在第三趟的匹配中,当i=7,j=5字符比较不等时,又从i=4,

j=1重新开始比较。然后,经仔细观察可发现,在i=4和j=1;i=5和j=1以及i=6和j=1这三

次比较都是不必进行的。因为从第三趟部分匹配的结果就可得出,主串中第4、5和6个字

符必然是…b?、…c?和…a?(即模式串中第2、3和4个字符)。因为模式中的第一个字符是

a,因此它无需再和这三个字符进行比较,而仅需将模式向右滑动三个字符的位置继续进行

i=7、j=2时的字符比较即可。同理,在第一趟匹配中出现字符不等时,仅需将模式向右移动

二个字符的位置继续进行i=3、j=1时的字符比较。由此,在整个匹配的过程中,i指针没有回溯。

现在讨论一般情况。假设主串为s[1..n],模式串为p[1..m],从上例的分析可知,为了实现改进算法,需要解决下述问题:当匹配过程中产生“失配”(即s[i]!=p[j])时,模式串“向

右滑动??可行的距离多远,换句话说,当主串中第i个字符与模式中第j个字符“失配??

(即比较不等)时,主串中第i字符(i指针不回溯)应与模式中哪个字符再比较?

假设此时应与模式中第k(kk满足下列关系式而已经得到的“部分匹配”的结果推得下列等

p[1..k-1]==s[i-k+1..i-1]

而已经得到的部分结果是

p[j-k+1..j-1]==s[i-k+1..i-1]

推得以下结果

p[1..k-1]==p[j-k+1..j-1]

反之,若模式串中存在满足式的两个子串,则当匹配过程中,主串中第i个字符与模式中第j个字符比较不等时,仅需将模式向右滑动至模式中第是个字符和主串中第i个字符对齐,此时,模式中头是k-1个字符的子串p[1..k-1]必定与主串中第i个字符之前长度为k-1的子

串s[i-k+1..i-1]相等,由此,匹配仅需从模式中第i个字符与主串中第j个字符比较起继续进行。

若令next[j]=k,则next[j]表明当模式中第j个字符与主串中相应字符“失配”时,在模

式中需重新和主串中该字符进行比较的字符的位置。由此可引出模式串的next函数的定义:

next[j]=0 当j=1时

next[j]=Max{k|1

next[j]=1 其它情况

由此定义可推出下列模式串的next函数值:

在求得模式的next函数之后,匹配可如下进行:假设以指针i和j分别指示主串和模式

中正待比较的字符,令i的初值为pos,j的初值为1。若在匹配过程中s[i]==p[j],则i和j 分别增1,否则,i不变,而j退到next[j]的位置再比较,若相等,则指针各自增1,否则j 再退到下一个next值的位置,依次类推,直至下列两种可能:一种是j退到某个next值(next[next ... next[j]...])时字符比较相等,则指针各自增1继续进行匹配;另一种是j退到值为零(即模式的第一个字符“失配”),则此时需将模式继续向右滑动一个位置,即从主串的下一个字符s[i+1],起和模式重新开始匹配。下图所示正是上述匹配过程的一个例子。KMP算法如算法2所示,它在形式上和算法1极为相似。不同之处仅在於:当匹配过

程中产生“失配”时,指针i不变,指针j退回到next[j]所指示的位置上重新进行比较,并

且当指针j退至零时,指针i和指针j需同时增1。即若主串的第i个字符和模式的第1个字符不等,应从主串的第i+1个字符起重新进行匹配。

int Index_KMP( SString S,SString T,int pos){

//利用模式串T的next函数求T在主串s中第pos个字符之后的位置的

//KMP算法。其中,T非空,1≤pos≤StrLength(S)。

i=pos;

j=1;

while(i<=S[0]&&j<=T[0]){

if(j=0||S[i]==T[j]) { ++i;++j; } //继续比较后继字符

else j=next[j]; //模式串向右移动

}

if(i>T[0]) return i-T[0];//匹配成功

else return 0;.

} //Index_KMP

算法2

KMP算法是在已知模式串的next函数值的基础上执行的,那么,如何求得模式串的next函数值呢?

从上述讨论可见,此函数值仅取决于模式串本身而和相匹配的主串无关。

分析其定义出发用递推的方法求得next函数值。

由定义得知

next[1]=0

设next[j]=k, 这表明在模式串中存在下列关系:

p[1..k-1] == p[j-k+1..j-1]

其中k为满足1k满足等式。此时next[j+1]=?可能有两种情况:

(1) 若p[k]==p[j],则表明在模式串中

p[1..k]==p[j-k+1..j]

并且不可能存在kk>k满足等式,这就是说next[j+1]==k+1,即

next[j+1]==next[j]+1

(2) 若p[k]!=p[j],则表明在模式串中

p[1..k]!=p[j-k+1..j] 此时可把求next函数值的问题看成是一个模式匹配的

问题,整个模式串既是主串又是模

式串,而当前在匹配的过程中,已有p[j-k+1]==p[1],p[j-k+1]=p[2],…,p[j-1]=p[k-1],则当p[j]!=p[k]时应将模式向右滑动至以模式中的第next[k]个字符和主串中的第j个字符相比较。若next[k]==kk,且p[j]==p[kk],则说明在主串中第j+1个字符之前存在一个长度为kk,(即next[k])的最长子串,和模式串中从首字符起长度为kk的子串相等,即

p[1..kk]==p[j-kk+1..j] (1

这就是说 next[j+1]=kk+1即

next[j+1] == next[k]+1

同理,若p[j]!=p[kk],则将模式继续向右滑动直至将模式中第next[kk]个字符和p[j]对齐,……,依次类推,直至p[j]和模式中某个字符匹配成功或者不存在任何kk(1

next[j+1]=1

例如:图4中的模式串,已求得前6个字符的next函数值,现求next[7],因为next[6]=3,

又p[6]!=p[3],则需比较p[6]和p[1](因为next[3]=1),这相当于将子串模式向右滑动。

由于P[6]!=p[1],而且next[1]=0,所以next[7]=1,而因为p[7]=p[1],则next[8]=2。

根据上述分析所得结果,仿照KMP算法,可得到求next函数值的算法,如算法3所示。 void get_next( SString T,int &next[] ) {

//求模式串T的next函数值并存入数组next。

i=1;

next[l]=O;

j=0;

while(i

if(j==0||T[i]==T[j]) { ++i;++j;next[i]=j;}

else j=next[j];

}

} //get_next

算法3

算法3的时间复杂度为O(m)。通常,模式串的长度m比主串的长度n要小得多,因此,

对整个匹配算法来说,所增加的这点时间是值得的。

最后,要说明两点:

1) 虽然算法1的时间复杂度是O(n*m),但在一般情况下,其实际的执行时间近似于

O(n+m),因此至今仍被采用。KMP算法仅当模式与主串之间存在许多“部分匹配”的情况

下才显得比算法1快得多。但是KMP算法的最大特点是指示主串的指针不需回溯,整个匹配过程中,对主串仅需从头至尾扫描一遍,这对处理从外设输入的庞大文件很有效,可以边读入边匹配,而无需回头重读。

2) 前面定义的next函数在某些情况下尚有缺陷。例如模式"aaaab"在和主串"aaabaaaab"

匹配时,当i=4,j=4时s.ch[4]!=t.ch[4],由next[j]的指示还需进行i=4、j=3,i=4、j=2,i=4、j=1 等三次比较。实际上,因为模式中第1、2、3个字符和第4个字符都相等,因此不需要再和主串中第4个字符相比较,而可以将模式一气向右滑动4个字符的位置直接进行i=5,j=1

时的字符比较。这就是说,若按上述定义得到next[j]=k,而模式中p[j]==p[k],则当主串中字符s[i]和p[j]比较不等时,不需要再和p[k]进行比较,而直和P[next[k]]进行比较,换句话说,此时的next[j]应和next[k]相同。由此可得计算next函数修正值的算法如算法4所示。

此时匹配算法不变。

void get_nextval(SString T,int &nextval[] ){

//求模式串T的next函数修正值并存入数组nextval。

i=1;

nextval[1]=0;

i=0; while(i

if(j=0 || T[i]==T[j]) {

++i; ++j;

if(T[i])!=T[j]) nextval[i] = j;

else nextval[I] = nextval[j]; }

else j=nextval[j];

}

}

(End)

第1页第2页第3页第4页

实验三 串的模式匹配

实验三串的模式匹配 一、实验目的 1.利用顺序结构存储串,并实现串的匹配算法。 2.掌握简单模式匹配思想,熟悉KMP算法。 二、实验要求 1.认真理解简单模式匹配思想,高效实现简单模式匹配; 2.结合参考程序调试KMP算法,努力算法思想; 3.保存程序的运行结果,并结合程序进行分析。 三、实验内容 1、通过键盘初始化目标串和模式串,通过简单模式匹配算法实现串的模式匹配,匹配成功后要求输出模式串在目标串中的位置; 2、参考程序给出了两种不同形式的next数组的计算方法,请完善程序从键盘初始化一目标串并设计匹配算法完整调试KMP算法,并与简单模式匹配算法进行比较。 四、程序流程图、算法及运行结果 3-1 #include #include #define MAXSIZE 100 int StrIndex_BF(char s[MAXSIZE],char t[MAXSIZE]) { int i=1,j=1; while (i<=s[0] && j<=t[0] ) { if (s[i]==t[j]){ i++; j++; } else { i=i-j+2; j=1; } } if (j>t[0]) return (i-t[0]); else

return -1; } int main() { char s[MAXSIZE]; char t[MAXSIZE]; int answer, i; printf("S String -->\n "); gets(s); printf("T String -->\n "); gets(t); printf("%d",StrIndex_BF(s,t)); /*验证*/ if((answer=StrIndex_BF(s,t))>=0) { printf("\n"); printf("%s\n", s); for (i = 0; i < answer; i++) printf(" "); printf("%s", t); printf("\n\nPattern Found at location:%d\n", answer); } else printf("\nPattern NOT FOUND.\n"); getch(); return 0; }

模式匹配的KMP算法详解

模式匹配的KMP算法详解 模式匹配的KMP算法详解 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

字符串的模式匹配算法

在前面的图文中,我们讲了“串”这种数据结构,其中有求“子串在主串中的位置”(字符串的模式匹配)这样的算法。解决这类问题,通常我们的方法是枚举从A串(主串)的什么位置起开始与B串(子串)匹配,然后验证是否匹配。假设A串长度为n,B串长度为m,那么这种方法的复杂度是O(m*n)的。虽然很多时候复杂度达不到m*n(验证时只看头一两个字母就发现不匹配了),但是我们有许多“最坏情况”,比如: A=“aaaaaaaaaaaaaaaaaaaaaaaaab”,B=“aaaaaaaab”。 大家可以忍受朴素模式匹配算法(前缀暴力匹配算法)的低效吗?也许可以,也许无所谓。 有三位前辈D.E.Knuth、J.H.Morris、V.R.Pratt发表一个模式匹配算法,最坏情况下是O(m+n),可以大大避免重复遍历的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。 假如,A=“abababaababacb”,B=“ababacb”,我们来看看KMP是怎样工作的。我们用两个指针i和j分别表示,。也就是说,i是不断增加的,随着i 的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。 例子: S=“abcdefgab” T=“abcdex” 对于要匹配的子串T来说,“abcdex”首字符“a”与后面的串“bcdex”中任意一个字符都不相等。也就是说,既然“a”不与自己后面的子串中任何一字符相等,那么对于主串S来说,前5位字符分别相等,意味着子串T的首字符“a”不可能与S串的第2到第5位的字符相等。朴素算法步骤2,3,4,5的判断都是多余,下次的起始位置就是第6个字符。 例子: S=“abcabcabc” T=“abcabx”

串的模式匹配算法实验报告

竭诚为您提供优质文档/双击可除串的模式匹配算法实验报告 篇一:串的模式匹配算法 串的匹配算法——bruteForce(bF)算法 匹配模式的定义 设有主串s和子串T,子串T的定位就是要在主串s中找到一个与子串T相等的子串。通常把主串s称为目标串,把子串T称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串s中找到一个模式串T;不成功则指目标串s中不存在模式串T。bF算法 brute-Force算法简称为bF算法,其基本思路是:从目标串s的第一个字符开始和模式串T中的第一个字符比较,若相等,则继续逐个比较后续的字符;否则从目标串s的第二个字符开始重新与模式串T的第一个字符进行比较。以此类推,若从模式串T的第i个字符开始,每个字符依次和目标串s中的对应字符相等,则匹配成功,该算法返回i;否则,匹配失败,算法返回0。 实现代码如下:

/*返回子串T在主串s中第pos个字符之后的位置。若不存在,则函数返回值为0./*T非空。 intindex(strings,stringT,intpos) { inti=pos;//用于主串s中当前位置下标,若pos不为1则从pos位置开始匹配intj=1;//j用于子串T中当前位置下标值while(i j=1; } if(j>T[0]) returni-T[0]; else return0; } } bF算法的时间复杂度 若n为主串长度,m为子串长度则 最好的情况是:一配就中,只比较了m次。 最坏的情况是:主串前面n-m个位置都部分匹配到子串的最后一位,即这n-m位比较了m次,最后m位也各比较了一次,还要加上m,所以总次数为:(n-m)*m+m=(n-m+1)*m从最好到最坏情况统计总的比较次数,然后取平均,得到一般情况是o(n+m).

串的模式匹配

《数据结构》课程设计报告 题目:模式匹配算法KMP及其应 用 学院 (系): 班级: 学生学 号: 姓名: 指导教 师: 日期: 目录

摘要 (1) 一、绪论 (2) 1. 课程设计的背景 (2) 2. 课程设计的意义 (3) 3. 开发平台及其简介 (3) 二、需求分析 (3) 三、可行性分析 (5) 四、概要设计 1. 功能设计要求 (5) 2. 总体结构设计 (6) 3. 抽象数据类型串的定义 (9) 4. 函数调用关系 (10) 5. 主程序调用 (11) 五、详细设计 (12) 1. 宏定义 (12) 2. 数据元素结构定义 (13)

3. 功能具体实现 (13) 4. 主程序和菜单设计 (29) 六、设计和调试分析 (31) 七、测试结果 (33) 八、设计心得体会 (37) 九、用户手册 (37) 一十、附录 (43) 一十一、参考文献 (44) 摘要 本程序主要是通过获取一个子串,或新建一个新的文本文件,或和已有的文本文件进行匹配,分别利用了串的朴素模式匹配算法、串的模式匹配KMP算法、串的模式匹配改进算法等数据结构中学的知识实现了,在和文本文件中的主串进行匹配后返回子串在文本文件中出现的次数和出现位置所在的行的行号。 本程序除了实现串在定长顺序存储结构下的三种模式匹配算法,还实现了串在单链表存储结构下的模式匹配KMP算法,通过比较了串的不同存储结构下串的模式匹配算法,进一步加强了对串的理解及串的各类模式算法的掌握。 在使用串的定长存储结构时,考虑到书本上实现串的KMP算法时,储存串的数组下标是从1开始,为了进一步理解串,本程序另辟蹊径,特地定义了一个结构体,结构体中用来存储串的数组下标是从0开始,实现了串的模式匹配KMP算法。

模式匹配算法的设计与实现

五、详细设计 #include #include #include #include using namespace std; #define MAX 100000 #define M 69 class String { private: int n; char *str; int *count; //记录子串在主串中出现的位置 int Find(int i,String &P); // 简单匹配算法找到最近的匹配串后立即停止,而不向下继续且缺乏一个数组记录位置 int *f ; //记录失败函数 void Fail(); int KMPFind(int i,String &P); //改进的失败函数 void ImproveFail(); int KMPFindImprove(int i,String &P); public: String(); //建立一个空串 String(const char *p); String(const String &p); //拷贝函数 ~String(); int Length() {return n;}; //返回当前串对象长度 void Output() {cout<

int KMPFindImprove(String &P); //改进的KMP匹配算法 void Output2(); //输出子串在主串中出现的位置 }; int String::KMPFindImprove(String &P) { int sum=0; int j=KMPFindImprove(0,P); while(j!=-1) { count[sum++]=j; if(j<=n-P.n) j=KMPFindImprove(j+P.n,P); } return sum; } void String::Output2() //输出子串在主串中的位置 { int i=0; while(count[i]!=count[i+1] && i

关于快速高效的模式匹配算法的剖析与改进

关于快速高效的模式匹配算法的剖析与改进 摘要:模式匹配算法是现代化网络入侵检测中的关键环节,本文主要介绍了几种常用的模式匹配算法,并在此基础上,提出一种更快捷、更高效的改进方法,以提高模式匹配的效率与质量,确保网络安全。 关键词:模式匹配入侵检测改进 随着我国计算机与网络技术的飞速发展,网络应用已涉及到人们生产、生活的各个领域,其重要性日益凸显。随之而来的网络攻击问题也备受关注,给网络安全性带来挑战。传统的网络防御模式,主要采取身份认证、防火墙、数据加密等技术,但是与当前网络发展不适应。在此背景下,入侵检测技术营运而生,并建立在模式匹配基础上,确保检测的快捷性、准确性,应用越来越广泛。 1、模式匹配原理概述 模式匹配是入侵检测领域的重要概念,源自入侵信号的层次性。结合网络入侵检测的底层审计事件,从中提取更高层次的内容。通过高层事件形成的入侵信号,遵循一定的结构关系,将入侵信号的抽象层次进行具体划分。入侵领域大师kumar将这种入侵信号划分为四大层次,并将每一个层次与匹配模式相对应。以下将分别对四大层次进行分析: (1)存在。只要存在审计事项,就可以证明入侵行为的发生,并深层次挖掘入侵企图。存在主要对应的匹配模式就是“存在模式”。可以说,存在模式就是在固定的时间内,检查系统中的特定状态,

同时判断系统状态。 (2)序列。一些入侵的发生,是遵循一定的顺序,而组成的各种行为。具体表现在一组事件的秩序上。序列对应的是“序列模式”,在应用序列模式检测入侵时,主要关注间隔的时间与持续的时间。 (3)规则。规则表示的是一种可以扩展的表达方式,主要通过and 逻辑表达来连接一系列的描述事件规则。一般适用于这种模式的攻击信号由相关活动组成,这些活动之间往往不存在事件的顺序关系。 (4)其他。其他模式是不包含前面几种方法的攻击,在具体应用过程中,难以与其他入侵信号进行模式匹配,大多为部分实现方式。 2、几种常用的模式匹配算法 2.1 ac算法 ac算法(aho-corasick)是一种可以同时搜索若干个模式的匹配算法,最早时期在图书馆书目查询系统中应用,效果良好。通过使用ac算法,实现了利用有限状态自动机结构对所有字符串的接收过程。自动机具有结构性特征,且每一个前缀都利用唯一状态显示,甚至可同时应用于多个模式的前缀中。如果文本中的某一个字符不属于模式中预期的下一个字符范围内,或者可能出现错误链接的指向状态等,那么最长模式的前缀同时也可作为当前状态相对应的后缀。ac算法的复杂性在于o(n),预处理阶段的复杂性则在于o(m)。在采取ac算法的有限状态自动机中,应该在每一个字符的模式串中分别建立节点,提高该算法的使用效率与质量。目前,应用有限

串的朴素模式匹配算法(BF算法)

//算法功能:串的朴素模式匹配是最简单的一种模式匹配算法,又称为 Brute Force 算法,简称为BF算法 #include #include #define MAXL 255 #define FALSE 0 #define TRUE 1 typedef int Status; typedef unsigned char SString[MAXL+1]; //生成一个其值等于串常量strs的串T void StrAssign(SString &T, char *strs) { int i; T[0] = 0; //0号单元存储字串长度 for(i = 0; strs[i]; i++) //用数组strs给串T赋值 T[i+1] = strs[i]; T[0] = i; } //返回子串T在主串S中第pos个字符开始匹配的位置,若不存在,则返回0 int Index(SString S, SString T, int pos) { int i = pos, j = 1; while(i <= S[0] && j <= T[0]) { if(S[i] == T[j]) //继续比较后面的字符 { i++; j++; } else//指针回退,重新开始匹配 { i = i -j + 2; j = 1; } } if(j > T[0]) return i - T[0]; else return 0;

int main() { SString S, T; int m; char strs1[MAXL]; //建立主串S char strs2[MAXL]; //建立模式串T printf("请输入主串和子串:\n"); printf("主串S: "); scanf("%s", strs1); printf("子串T: "); scanf("%s", strs2); StrAssign(S, strs1); StrAssign(T, strs2); m = Index(S, T, 1); if(m) printf("主串 S = {%s}\n子串 T = {%s}\n在第 %d 个位置开始匹配!\n", strs1, strs2, m); else printf("主串 S = {%s}\n子串 T = {%s}\n匹配不成功!\n", strs1, strs2); return 0; }

字符串匹配算法总结

Brute Force(BF或蛮力搜索) 算法: 这是世界上最简单的算法了。 首先将匹配串和模式串左对齐,然后从左向右一个一个进行比较,如果不成功则模式串向右移动一个单位。 速度最慢。 那么,怎么改进呢? 我们注意到Brute Force 算法是每次移动一个单位,一个一个单位移动显然太慢,是不是可以找到一些办法,让每次能够让模式串多移动一些位置呢? 当然是可以的。 我们也注意到,Brute Force 是很不intelligent 的,每次匹配不成功的时候,前面匹配成功的信息都被当作废物丢弃了,当然,就如现在的变废为宝一样,我们也同样可以将前面匹配成功的信息利用起来,极大地减少计算机的处理时间,节省成本。^_^ 注意,蛮力搜索算法虽然速度慢,但其很通用,文章最后会有一些更多的关于蛮力搜索的信息。 KMP算法 首先介绍的就是KMP 算法。 这个算法实在是太有名了,大学上的算法课程除了最笨的Brute Force 算法,然后就介绍了KMP 算法。也难怪,呵呵。谁让Knuth D.E. 这么world famous 呢,不仅拿了图灵奖,而且还写出了计算机界的Bible (业内人士一般简称TAOCP). 稍稍提一下,有个叫H.A.Simon的家伙,不仅拿了Turing Award ,顺手拿了个Nobel Economics Award ,做了AI 的爸爸,还是Chicago Univ的Politics PhD ,可谓全才。 KMP 的思想是这样的: 利用不匹配字符的前面那一段字符的最长前后缀来尽可能地跳过最大的距离 比如 模式串ababac这个时候我们发现在c 处不匹配,然后我们看c 前面那串字符串的最大相等前后缀,然后再来移动 下面的两个都是模式串,没有写出来匹配串 原始位置ababa c 移动之后aba bac 因为后缀是已经匹配了的,而前缀和后缀是相等的,所以直接把前缀移动到原来后缀处,再从原来的c 处,也就是现在的第二个b 处进行比较。这就是KMP 。 Horspool算法。 当然,有市场就有竞争,字符串匹配这么大一个市场,不可能让BF 和KMP 全部占了,于是又出现了几个强劲的对手。

BM模式匹配算法图解

Boyer-Moore 经典单模式匹配算法 BM模式匹配算法-原理(图解) 由于毕业设计(入侵检测)的需要,这两天仔细研究了BM模式匹配算法,稍有心得,特此记下。 首先,先简单说明一下有关BM算法的一些基本概念。 BM算法是一种精确字符串匹配算法(区别于模糊匹配)。 BM算法采用从右向左比较的方法,同时应用到了两种启发式规则,即坏字符规则和好后缀规则,来决定向右跳跃的距离。 BM算法的基本流程: 设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较,如下图所示: 若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则和好后缀规则,来计算模式串向右移动的距离,直到整个匹配过程的结束。 下面,来详细介绍一下坏字符规则和好后缀规则。 首先,诠释一下坏字符和好后缀的概念。 请看下图:

图中,第一个不匹配的字符(红色部分)为坏字符,已匹配部分(绿色)为好后缀。 1)坏字符规则(Bad Character): 在BM算法从右向左扫描的过程中,若发现某个字符x不匹配,则按如下两种情况讨论: i. 如果字符x在模式P中没有出现,那么从字符x开始的m个文本显然不可能与P匹配成功,直接全部跳过该区域即可。 ii. 如果x在模式P中出现且出现次数>=1,则以该字符所在最右边位置进行对齐。 用数学公式表示,设Skip(x)为P右移的距离,m为模式串P的长度,max(x)为字符x在P中最右位置。 可以总结为字符x出现与否,将max(x)=0作为初值即可。

例1: 下图红色部分,发生了一次不匹配。 计算移动距离Skip(c) = m-max(c)=5 - 3 = 2,则P向右移动2位。 移动后如下图: 2)好后缀规则(Good Suffix): 若发现某个字符不匹配的同时,已有部分字符匹配成功,则按如下两种情况讨论: i. 如果在P中位置t处已匹配部分P'在P中的某位置t'也出现,且位置t'的前一个字符与位置t的前一个字符不相同,则将P右移使t'对应t方才的所在的位置。 ii. 如果在P中任何位置已匹配部分P'都没有再出现,则找到与P'的后缀P''相同的P的最长前缀x,向右移动P,使x对应方才P''后缀所在的位置。

KMP字符串模式匹配算法解释

个人觉得这篇文章是网上的介绍有关KMP算法更让人容易理解的文章了,确实说得很“详细”,耐心地把它看完肯定会有所收获的~~,另外有关模式函数值next[i]确实有很多版本啊,在另外一些面向对象的算法描述书中也有失效函数f(j)的说法,其实是一个意思,即next[j]=f(j-1)+1,不过还是next[j]这种表示法好理解啊: KMP字符串模式匹配详解 KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。 一.简单匹配算法 先来看一个简单匹配算法的函数: int Index_BF ( char S [ ], char T [ ], int pos ) { /* 若串S 中从第pos(S 的下标0≤pos

模式匹配KMP算法实验步骤

一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样: ...ababd... ababc ->ababc 这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。 《数据结构》上给了next值的定义: 0 如果j=1 next[j]={Max{k|1aaab ->aaab ->aaab 像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。 到这里,就实现了KMP的大部分内容,然后关键的问题是如何求next值?先看如何用它来进行匹配操作。 将最前面的程序改写成: int Index_KMP(String S,String T,int pos) { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) {

数据结构-模式匹配算法

模式匹配算法 源程序如下: #include #include int index_KMP(char *s,char *t,int pos); void get_next(char *t,int *); char s[100],t[20]; int next[20],pos=0; //主函数 main() { printf("------------------------模式匹配算法 ----------------------\n"); printf("0---匹配失败,k---匹配成功,k--指主串中第一个字符出现的位置\n"); int n; printf("请输入主串s:\n"); gets(s); printf("请输入模式串t:\n"); gets(t); get_next(t,next); n=index_KMP(s,t,pos);

printf("匹配的结果:%d\n",n); } //KMP模式匹配算法 int index_KMP(char *s,char *t,int pos) { int i=pos,j=1; while (i<=(int)strlen(s)&&j<=(int)strlen(t)) { if (j==0||s[i]==t[j-1]) { i++; j++; } else j=next[j]; } if(j>(int)strlen(t)) return i-strlen(t)+1; else return 0; }

void get_next(char *t,int *next) { int i=1,j=0; next[0]=next[1]=0; while (i<(int)strlen(t)) { if (j==0||t[i]==t[j]) { i++; j++; next[i]=j; } else j=next[j]; } } 运行效果如下:

串的模式匹配算法

串的匹配算法——Brute Force (BF)算法 匹配模式的定义 设有主串S和子串T,子串T的定位就是要在主串S中找到一个与子串T相等的子串。通常把主串S称为目标串,把子串T称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串S中找到一个模式串T;不成功则指目标串S中不存在模式串T。 BF算法 Brute-Force算法简称为BF算法,其基本思路是:从目标串S的第一个字符开始和模式串T中的第一个字符比较,若相等,则继续逐个比较后续的字符;否则从目标串S的第二个字符开始重新与模式串T的第一个字符进行比较。以此类推,若从模式串T的第i个字符开始,每个字符依次和目标串S中的对应字符相等,则匹配成功,该算法返回i;否则,匹配失败,算法返回0。 实现代码如下: /*返回子串T在主串S中第pos个字符之后的位置。若不存在,则函数返回值为0. /*T非空。 int index(String S, String T ,int pos) { int i=pos; //用于主串S中当前位置下标,若pos不为1则从pos位置开始匹配int j =1; //j用于子串T中当前位置下标值 while(i<=S[0]&&j<=T[0]) //若i小于S长度且j小于T的长度时循环 { if(S[i]==T[j]) //两个字母相等则继续 { ++i; ++j; } else //指针后退重新开始匹配 { i=i-j+2; //i退回到上次匹配首位的下一位 j=1; } if(j>T[0]) return i-T[0]; else return 0; } }

BF算法的时间复杂度 若n为主串长度,m为子串长度则 最好的情况是:一配就中,只比较了m次。 最坏的情况是:主串前面n-m个位置都部分匹配到子串的最后一位,即这n-m位比较了m 次,最后m位也各比较了一次,还要加上m,所以总次数为:(n-m)*m+m=(n-m+1)*m 从最好到最坏情况统计总的比较次数,然后取平均,得到一般情况是O(n+m).

串的模式匹配

实验内容与要求 内容: 问题描述:从键盘输入一个目标串S,并输入要匹配的模式串T,利用串的简单的模式匹配和KMP算法,定位模式串在主串中的位置。 要求: 设计要求 首先设计一个含有多个菜单项的主控菜单程序,然后再为这些菜单项配上相应的功能。 主控菜单设计要求:程序运行后,显示一个标题“模式匹配算法”,标题下方给出6个菜单项的内容和输入提示: 1.输入一个主串S 2.输入一个模式串T 3. 计算模式串T的next函数值 4.实现简单模式匹配 5.实现KMP模式匹配 6. 继续/否?(y/n?) #include #include typedef char String[100]; int next[10]; void GetNext(String T,int next[]) { int i=1,j=0; next[1]=0; while(i

j=next[j]; } } void printNext(String T) { int i; for(i=1;i<=T[0];i++) { printf("next[%d]:%d ",i,next[i]); } printf("\n"); } int KMP_INDEX(String S,String T,int pos) { int i=pos,j=1; while(i<=S[0] &&j<=T[0]) { if(j==0||S[i]==T[j]) { i++; j++; } else j=next[j]; } if(j>T[0]) return i-T[0]; else return 0; } int Index(String S,String T,int pos) { int i=pos,j=1; while(i<=S[0] &&j<=T[0]) {

C语言字符串模式匹配

数据结构面试之十四——字符串的模式匹配 题注:《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。 十四、字符串的模式匹配 1. 模式匹配定义——子串的定位操作称为串的模式匹配。 2. 普通字符串匹配BF算法(Brute Force 算法,即蛮力算法) 【算法思想】: 第(1)步;从主串S的第pos个字符和模式的第一个字符进行比较之,若相等,则继续逐个比较后续字符;否则从主串的下一个字符起再重新和模式串的字符比较之。 第(2)步骤;依次类推,直至模式T中的每一个字符依次和主串S中的一个连续的字符序列相等,则称匹配成功;函数值为和模式T中第一个字符相等的字符在主串S中的序号,否则称为匹配不成功,函数值为0。 比如对于主串S=”abacababc”; 模式串T=”abab”; 匹配成功,返回4。 对于主串S=”abcabcabaac”; 模式串T=”abab”; 匹配不成功,返回0。 【算法实现】: //普通字符串匹配算法的实现 int Index(char* strS, char* strT, int pos) { //返回strT在strS中第pos个字符后出现的位置。 int i = pos; int j = 0; int k = 0; int lens = strlen(strS);

int lent = strlen(strT); while(i < lens && j < lent) { if(strS[i+k] == strT[j]) { ++j; //模式串跳步 ++k; //主串(内)跳步 } else { i = i+1; j=0; //指针回溯,下一个首位字符 k=0; } }//end i if(j >= lent) { return i; } else { return 0; } }//end [算法时间复杂度]:设主串长度为m,模式串的长度为n。一般情况下n

串匹配问题:BF算法、KMP算法、BM算法

一、实验内容和目的 1、深刻理解并掌握蛮力算法的设计思想; 2、提高应用蛮力算法设计算法的技能; 3、理解这样一个观点:用蛮力法设计的算法,一般来说,经过适度的努 力后,都可以对算法的第一个版本进行一定程度的改良,改进其时 间性能。 二、实验原理及基本技术路线图(方框原理图) 串匹配问题——给定两个串S=“s1s2…s n” 和T=“t1t2…t m”,在主 串S中查找子串T的过程称为串匹配,也称模式匹配。 串匹配问题属于易解问题。 串匹配问题的特征: (1)算法的一次执行时间不容忽视:问题规模n 很大,常常需要在 大量信息中进行匹配; (2)算法改进所取得的积累效益不容忽视:串匹配操作经常被调用,执行频率高。 BF算法: 基本思想:从主串S的第一个字符开始和模式T的第一个字符进行比 较,若相等,则继续比较两者的后续字符;若不相等,则从主串S 的第二个字符开始和模式T的第一个字符进行比较,重复上述过程,若T中的字符全部比较完毕,则说明本趟匹配成功;若最后一轮匹配 的起始位置是n-m,则主串S中剩下的字符不足够匹配整个模式T, 匹配失败。这个算法称为朴素的模式匹配算法,简称BF算法。 KMP算法: 1. 在串S和串T中分别设比较的起始下标i和j; 2. 循环直到S中所剩字符长度小于T的长度或T中所有字符均比较 完毕 2.1 如果S[i]=T[j],则继续比较S和T的下一个字符;否则 2.2 将j向右滑动到next[j]位置,即j=next[j];

2.3 如果j=0,则将i和j分别加1,准备下一趟比较; 2.4 如果T中所有字符均比较完毕,则返回匹配的起始下标;否则返回0; BM算法: BM算法与KMP算法的主要区别是匹配操作的方向不同。虽然BM算法仅把匹配操作的字符比突顺序改为从右向左,但匹配发生失败时,模式T右移的计算方法却发生了较大的变化。 设计思想:设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较,若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则和好后缀规则,来计算模式串向右移动的距离,直到整个匹配过程的结束。

串的模式匹配

实验四顺序串的各种模式匹配 一、实验目的 熟悉串的有关概念,掌握串的存储结构及串的模式匹配算法。 二、实验内容 由用户随意输入两个串:主串S和模式串T,设S=‘s1s2…sn’,T=‘t1t2…tm’,且0 #include using namespace std; typedef struct taglin{ int data; taglin* next; }lin; void initlin(lin* &L,int e){ lin* p=L,* s; while(p->next!=NULL) p=p->next; s=(lin*)malloc(sizeof(lin)); s->data=e;

s->next=p->next; p->next=s; } void main(){ int num,e,x,y,count=-1,c=0,e1,t=-2147483648; bool mark=false; lin* L,* tx,* p,* q; L=(lin*)malloc(sizeof(lin)); L->next=NULL; cout<<"输入个数>=2"<>num; if(num<2){ cout<<"输入比2小的值_错误"<>e; initlin(L,e); if(c==0){ e1=e; c++; } if(e>x>>y; if(y>=e) mark=true; if(e1>x) x=e1; tx=L->next; for(;tx->data<=x;tx=tx->next); p=L->next; for(;p!=NULL&&p->next!=tx;p=p->next); q=p; if(!mark){ for(;p!=NULL&&p->data<=y;p=p->next)

模式匹配算法

/** *时间:2010年8月26日7:09:57 *功能:模式匹配算法代码 */ #include"stdio.h" #include"malloc.h" void kmp(int *ikmp,char *t,int t_length) { int k=0; int q=0; ikmp[0]=k; for(q=1;q0&&t[k]!=t[q]) { k=ikmp[k]; } if(t[k]==t[q]) { k=k+1; } ikmp[q]=k; } /*测试*/ for(q=0;q

while(t[t_length]!='\0') { t_length++; } /*测试*/ printf("t_length is %d\n",t_length); /*求t的kmp值*/ ikmp=malloc(t_length*sizeof(int)); kmp(ikmp,t,t_length); /*匹配过程*/ for(q=0;q0&&t[k]!=s[q]) { k=ikmp[k-1]; } if(t[k]==s[q]) { k=k+1; } if(k==t_length) { free(ikmp); return (q-t_length+1); } } free(ikmp); return -1; } main() { int i=0; char *s;/*主串*/ char *t;/*匹配串*/ printf("input s: "); scanf("%s",s); printf("input t: "); scanf("%s",t);

基于特征值的模式匹配算法

宜宾学院学报 Journal of Yibin University 优先数字出版 —————————————————————— 收稿日期:2014-07-03 2014-09-05 基金项目:安徽电子信息职业技术学院教科研项目“基于数据挖掘技术的高职院校招生决策系统研究与应用” (ADZX1306) 作者简介:余飞(1983-),男,硕士,讲师,研究方向为计算机网络安全、数据挖掘、分布式操作系统 网络出版时间: 网络出版地址: 基于特征值的模式匹配算法 余 飞,刘思宏 (安徽电子信息职业技术学院 软件学院,安徽蚌埠233060) 摘 要:模式匹配算法广泛应用于防火墙、入侵检测等网络安全领域,其算法效能直接影响到系统的工作效率.本文首次提出了一种基于特征值的模式匹配算法——FLC (First-Last-Characters )算法.该算法打破了经典算法有序偏移的思想,突破了BMHS (Boyer-Moore-Horspool-Sunday )算法最大偏移量(m+1)的上限,从而增大了偏移距离,减 则匹配成功;若有一个字符不同,则匹配不成功,模式串向右移动一个字符的位置,继续比较,直到将文本串的所有位都比较过来.BF 算法实现简单,但模式串每次仅偏移一个字符,这导致模式串几乎要与文本串中的每一个字符进行比较,运行效率极其低下. KMP 算法[2]是BF 的一种改进算法,该算法由Knuth 等人提出.KMP 算法根据给定的模式串,定义一个next 函数.模式串与文本串按顺序进行从左到右匹配, 2014-09-12 13:00 https://www.360docs.net/doc/ad18372621.html,/kcms/detail/51.1630.Z.20141211.1054.008.html

相关文档
最新文档