卫星通信抗干扰技术的发展趋势

卫星通信抗干扰技术的发展趋势
卫星通信抗干扰技术的发展趋势

滨江学院

卫星通信

题目卫星通信抗干扰技术的发展趋势

学生姓名张洁

学号20082334019

院系滨江学院

专业通信工程

二O一一年六月二十日

卫星通信抗干扰技术的发展趋势

姓名:张洁

学校:南京信息工程大学

摘要:列出卫星通信系统可能遭受的各种干扰的类型,研究已提出的各种抗干

扰处理方法包括天线、扩频和星上处理等方法的原理、特点和国外的研究现状。指出研究基于星上信号处理、便于综合运用多种抗干扰处理措施的卫星通信系统新体制是卫星通信抗干扰技术研究的发展方向,提出今后值得进一步研究的问题。

关键词:军事卫星通信;抗干扰;扩频;星上处理

1 引言

卫星通信系统由于具有覆盖范围广、传输质量好、部署迅速、组网方便、通信系统投资几乎与通信距离无关、通信可到达地点几乎不受地理环境条件限制等特点,在军事上具有特别重要的实用价值。军事卫星通信系统负责为战时基本需求提供保密、抗干扰的指挥与通信保障,具有一定的抗干扰能力是其基本要求。深入广泛地研究抗干扰技术,提高它的抗干扰能力和抗毁性,具有很重要的意义。

本文针对军事通信中的战术干扰,列出卫星通信系统可能遭受的各种干扰的类型,研究已提出的各种抗干扰处理方法原理、特点和国外的研究现状。最后对卫星通信抗干扰技术研究的发展方向和今后值得进一步研究的问题进行论述。

2 卫星通信系统可能遭受的干扰

对卫星通信而言,其上行链路可能遭受的电磁干扰源包括陆地固定式干扰机、车载和舰载移动式干扰机、机载干扰机和干扰卫星,而干扰卫星和机载式、飞航式、伞挂式干扰机则可对下行链路进行干扰。干扰下行链路时,干扰源对于卫星转发器,虽然在功率和距离方面容易取得较大的优势,但是在覆盖面和信号辐射方向上通常都处于明显的劣势。即使采用机载干扰机在10 km以上的高空施放强干扰,其影响面也只能达一百多公里的半径,更远距离的地面站容易采用旁瓣遮挡技术排除其干扰,况且地面站容易采用综合抗干扰措施排除各种类型的干扰。

因此,相对而言,卫星通信的上行链路比较脆弱,是敌方干扰的重点,这样上行链路抗干扰的研究更为重要。无线通信系统中的干扰有很多,按照不同的分类依据,可以有很多分类方法。如按其形成方式可分为欺骗式干扰、搅扰式干扰和压制式干扰;按引导方式可分为定频守候式干扰、连续搜索干扰、重点搜索干扰、跳频跟踪干扰、扩频跟踪干扰和转发式干扰;按频谱形式可分为瞄准式干扰,阻塞式干扰,部分频带式干扰和扫频式干扰;按发射的控制方式可分为人工干扰和自动干扰等。

目前,国外有源电子干扰技术的干扰频率范围已达到0.5GHz--20GHz。干扰

功率达上百千瓦,,可同时产生多种类型的干扰。各种类型的干扰,特性相差很大,对通信信号造成的影响很不相同。因此,为了确保通信能正常进行,必须综合地采用多种抗干扰处理措施来进行对抗,从降低干扰压制比和提高系统干扰容限两个方面来增强通信系统的顽存能力。

3 目前卫星通信中常用的抗干扰技术

抗干扰的基本目的是通过对信息、信息的载体及传播方式进行特定的处理,提高通信接收端的输出信干比,使其具备较强的区分有用信号和干扰的能力,从而正确地接收所需的信号。卫星通信中常用的抗干扰技术有:抗干扰天线技术、扩展频谱技术、编码调制技术、星上处理技术、限幅和线性化技术等。

3.1 天线抗干扰技术

卫星通信系统分布在不同的地域、空域,很容易受到干扰,所以抗干扰的首要目的是实现灵活的优化的卫星覆盖,使卫星接收天线能在最大限度的接收我方信号的同时“零化”敌方干扰。因此,天线抗干扰技术是卫星通信中最常用的抗干扰措施,具体包括多波束天线、自适应调零天线和智能天线技术。

多波束天线(MBA)可根据战场形势的变化控制星上发射天线指向,使其波束覆盖范围随用户运动作相应变化,还可恰当选择卫星天线波束形状来提高通信系统的抗干扰能力,对其的研究已有二十多年的历史,多波束天线主要有3种基本类型:反射式MBA、透射式MBA和直接辐射相控阵MBA。其中,反射式MBA和透射式MBA结构简单、设计技术比较成熟,因而最先得到广泛应用。相比前两者,相控阵MBA具有一系列的优点,如较高的口面效率,无泄漏损失、可靠性高等,但同时也具有结构和制造工艺复杂、功率损耗高等缺点。

自适应调零天线利用敌我双方信号在幅度、频率和空间方位的不同,通过对天线各阵元进行自适应加权处理,自动控制和优化天线阵的方向图,在干扰源方向上产生深度调零,使信号受到的干扰最少,调零深度一般可达25dB~30dB。它能有效抑制宽带干扰、窄带干扰、同频干扰和邻道干扰等不同形式的干扰。自适应天线传统采用的是最小均方(LMS)算法及其改进算法,近年来又出现了MUSIC、MINI—NORMAL、径向基函数(RBF)神经网络等新算法,理论上,调零分辨度可以提高1~2个数量级。

在实际应用中,直接矩阵求逆(DMI)和递归最小二乘(RLS)算法均可以在干扰抑制性能方面和收敛速度方面实现很好的兼顾,因此更适用于通信卫星的天线自适应调零系统。

星载智能天线是一种安装在卫星上的能在信号入口处抑制干扰的新型天线。智能天线是吸取了自适应天线的抗干扰原理,依靠阵列信号处理和数字波束形成技术发展起来的。其基本思想是天线阵能够同时产生多个子波束(点波束)来覆盖地面上所关心的区域,并且每个子波束都能依据一定的准则自动地调整指向和零点,从而处于最佳工作状态。构成星载智能天线的天线阵,通常为多波束天线。

卫星和地球站采用抗干扰天线技术,可以有效抑制敌方干扰,地面微波扰等。这种方法已获得广泛应用。美国的第三代“国防卫星通信系统”卫星DSCS一Ⅲ的星上装载了两副19波束天线阵用于下行发送,一副6l波束天线阵用于接收。星上的探测器能测出各种人为干扰企图,并告知地面控制站,待地面测定干扰机的地理位置后,指示卫星利用其可控多波束天线的方向控制能力,避开人为干扰。军事星Milstar-2有8副可控点波束天线,两副调零点波束(NSB)天线(能针对上行链

路干扰自动调零),还有6副分布式用户覆盖天线(DUCA)。加拿大国防部曾资助研制一个能实现宽角覆盖的军用卫星通信系统,该系统工作频率为45 GHz,多波束天线采用单口面反射式MBA,能产生70个点波束,覆盖俯仰角为8。的地面圆形区域,每个点波束中心峰值增益达到43.8 dBic(圆极化增益单位),半功率宽度为0.95。,旁瓣电平小于一30 dB,交叉极化好于一26dB。

3.2 扩展频谱抗干扰技术

对无线通信来说,扩频技术和天线阵列技术相结合,就可以基本上满足抗干扰的要求。但对卫星通信来说,扩频技术在抗干扰中更加重要,因其跟用户和干扰的相对位置无关,更具有顽健性。扩频抗干扰技术已成为卫星通信中最基本的抗干扰技术,它包括直接序列扩频和跳频两种基本技术及其组合。

采用直接序列扩频,接收端解扩后有用信号变成了窄带信号,而原来频带较窄的干扰却被展宽为宽带信号,以至于大部分能量被窄带滤波器滤除,从而有效地提高信干比。直接序列扩频(DS)抗干扰技术由于提出较早,理论较成熟且易于实现,因此在卫星通信抗干扰初级系统中广泛采用。

早在1966年,美国的第一颗军事通信卫星就使用了扩频多址技术。美军目前正在使用的Milstar、租赁卫星LEASAT和舰队通信卫星FLTSATCOM系统也采用了直接扩频和星上解扩技术。近年来利用混沌理论产生直接序列扩频码已取得了许多成果,为超宽带DS扩谱的实现创造了条件。并且它无法对抗宽带阻塞式干扰。

跳频(FH)采用多个载波频率并在这些频率间随机跳变,由于载频切换需要时间,故又工作在突发传输状态,所以具有很强的抗干扰能力。对扩频带宽较宽的情况,跳频比直接序列扩频更为实用。美军目前正在使用的Milstar2的跳频范围达2 GHz带宽。在美国等西方国家提出的新一代军用卫星通信的两个方案——“弯管卫星/中心主站系统”和“多用户透明——跳频解跳系统”中均采用了跳频技术,跳频速率为4 000跳/s。跳频系统的重要参数是扩频增益和跳频速率,跳频范围越宽,抗宽带阻塞式干扰能力越强;跳频速率越高,抗跟踪式干扰能力越强。目前我国对中速跳频技术已基本掌握,对快速跳频还在跟踪研究。

目前对DS/FH信号电子对抗手段还不成熟,所以DS外H抗干扰技术是目前研究较多的扩频抗干扰技术。但在具体设计DS/FH混合扩频系统时,需要考虑跳频频点数的选择、跳频速率的选择、直扩/跳频处理增益的折衷、混合扩频同步等技术问题。目前,DS/FH系统的跳速多为(500~1 000)跳/S。采用两维甚至三维的混合扩频技术体制是国外抗干扰通信发展的一个趋势,美国的Milstar和FLTSATCOM就采用了跳/值扩混合体制。扩频技术和自适应技术相结合,能够更灵活地对抗敌方干扰。具体包括自适应地改变扩频码长,跳频频率图案和跳频速率等。一般地说,扩频码长可以在0~4 095自适应地变化。但实现上有相当大的难度,有待于进一步的研究。

3.3 编码调制技术

适用于卫星通信系统差错控制的主要方式是前向纠错(FEC),可供选用的FEC 码主要有卷积码—Viterbi译码、自正交卷积码门限译码、BCH码、R—S码、卷积码序列译码和级联码。

干扰条件下,常采用级联编码技术,级联码由两种简单码级联构成,它与单一码相比更易获得高的编码增益,随着数字卫星通信的发展,级联码将获广泛应用。适用于卫星通信的调制方式为恒包络调制方式,包括各种PSK技术,如QPSK、、

DQPSK等,以及各种连续相位调制(CPM)方式,如MSK、GMSK等。

另外还有格状编码调制技术(TCM)。在跳频信号中,可选用MFSK和DPSK等调制方式。选用合适的编码调制方式可以提高系统的性能,从而提高其干扰容限。如采用8PSK与TCM编码相结合传输的新国际标准,与相干解调QPSK相比的误码特性要好5dB。

3.4 星上处理技术

从抗干扰的角度来说,透明转发器是卫星通信系统最脆弱的环节,它很容易被敌方的强干扰推向饱和甚至摧毁,因此采用星上处理技术十分必要。星上处理可以使上、下行链路之间去耦,使上行干扰不能再对下行链路产生作用,同时设法避免转发器被推向饱和。

随着电子对抗的不断升级,星上处理技术不仅已成为卫星通信抗干扰的主要技术,也是通信卫星未来生存和发展的要求,美国的先进通信技术卫星(ACTS)、DSCS一Ⅲ卫星、Milstar和“铱”卫星都采用了星上处理技术。前面提过的“弯管卫星/中心主站系统”和“多用户透明——解跳军用卫星通信系统”,星上均有解跳/再跳的处理装置。星上首先进行解跳解调,再跳频调制后向下发送,则星上不需限幅器,不存在小信号抑制问题,与透明转发器相比,再生式转发器的抗干扰性能随扩频增益线性增加,不存在饱和效应。Milstar上行采用FDMA,下行采用TDM。这样就可充分利用行波管放大器的功率,功率的增加可减小下行用户端的天线尺寸。同时因为采用星上处理,上行的功率不需要很大就可满足需要,从而降低了对地面站设备的要求。

3.5 限幅和线性化技术

限幅技术是目前星上广泛采用的一种抗干扰措施,美军的军用通信卫星上基本都有限幅控制。其作用是避免转发器中的功率放大器被上行干扰推向饱和,分为软限幅和硬限辐。硬限幅转发器完全工作在非线性状态,大信号压缩小信号,压缩比跟输入的信干比有关和干扰类型也有关,连续波干扰引起的压缩比最为严重。软限幅转发器工作在两个区域,即线性区和限幅区。因此,软限幅的压缩比不仅同干信比和干扰类型有关,还跟限幅门限有关。相对而言,软限幅较硬限幅有大约4dB的性能改善。

限幅加窄带滤波可以有效抵消脉冲干扰,同时还可抑制高斯白噪声干扰。当输入干信比为40 dB时,软限幅器抗脉冲调幅干扰效果最佳(改善31.48 dB),抗双频干扰效果最差(改善22.49 dB)。但是透明转发器在干扰条件下限幅转发器工作于饱和区,从而产生功率“掠夺”效应,降低了扩频信号的抗干扰能力,使其远达不到理论上的干扰容限,这时可采用转发器线性化技术来提高功率的线性范围,从而提高通信卫星的抗干扰能力。

3.6 其它抗干扰处理方法

干扰抵消技术一般与扩频技术相结合,置于解扩处理之前,用于削弱强干扰,使信干比降低到解扩门限以下,以便解扩能够正常发挥作用,具体包括时域自适应滤波干扰抑制技术、变换域干扰抑制技术和时频分布抗干扰技术。其中,时域自适应滤波包括预测/估计滤波器和判决反馈滤波器,都是利用窄带干扰的相关性强而扩频信号的相关性弱实现对窄带干扰的抑制。前者是对整个接收信号进行白化处理,处理相对简单,但引入了一些信号失真;后者仅对干扰进行白化处理,增加了处理复杂度,提高了抗干扰性能。

对于自适应滤波来说,非线性处理技术比线性技术更有效。非线性函数被引入滤波器构成非线性滤波系统,进化算法和神经网络算法也被引入用于改善非线性滤波器系统的稳定性。

SmartAGC(智能自动增益控制)技术是20世纪90年代初外军开始应用的一种新型抗干扰技术,其基本原理是:利用弱信号(如DS信号)与包络呈慢变化的强干扰在幅值上的差异,检测和提取强干扰的包络,并用于自适应地调整具有截止限幅特性的放大器的工作点,使干扰大部分幅度落在截止区内,而较弱的有用信号落在线性放大区内,从而改善输出信干比。这种方法能有效地削弱强干扰,干扰越强,其抑制效果越明显。可以用来对抗恒包络于拢、单个或多个连续波干扰和AWGN等干扰,其处理增益可达20dB一30dB。

随着扩频技术和CDMA研究进展,1994年开始,Me—Earthy,J.R.和Kazama 等人陆续提出了混合多址技术,即在一个转发器上共用两种多址方式,包括CDMA 叠加在窄带FDMA之上,直扩CDMA和直扩FDMA共用一个转发器,直扩FDMA叠加在高速TDM信号之上等。TDM/CDMA已在VSAT系统中得到应用,TDMA配合多波束天线,可实现星上交换时分多址(SS—TDMA)。卫星通信抗干扰技术的发展趋势干扰/抗干扰技术的研究仍将是今后军事卫星通信研究非常重要的长期任务,本文认为,卫星通信抗干扰技术的研究最重要的问题是:在继续探索新的抗干扰方法的基础上,努力探索出一种或多种新的通信体制,设计出顽存能力很强,并有最低限度通信保障的卫星通信系统。要求它既要具有星上信号处理技术能力,在星上能够综合运用多种抗干扰手段对抗各种类型的干扰,又要在组网能力和业务支持种类上具有较大的灵活性。

今后值得迸一步研究的方向有以下几个方面。

(1)智能天线技术,包括天线反射面的形状设计以获得理想波束;微带平面天线的研究;IVIBA中振幅相位的控制和异幅异相的分配;相控阵M队技术和盲波束形成技术等。

(2)研究混合扩频技术和自适应扩频技术,如借助混沌序列和密码序列设计原理,寻找性能更佳的跳扩频码,并结合自适应技术,设计相应的同步算法等。 (3)针对卫星信道的特点,寻找最佳的信号调制方式,

并研究多制式、多数据率的调制解调器,灵活控制信号形式且与不同制式的地面终端相兼容。

(4)研究复杂度低且能对抗多种复杂于扰的时频域干扰抵消算法,使其能在星上应用。

(5)考虑更易于与各种抗干扰技术相结合的信号传输体制和复用方式。

参考文献:

[1]周乐柱,李斗,郭文嘉,卫星天线多波束天线综述[J].电子学报,2001,29(6):824—828.

[2]王华力,陈长征,韩锋,等.应用于卫星多波束天线的自适应波束形成算法比较[J].电子学报,2001,29(3):358—360.

[3]陈海强.现代卫星通信中的调制技术和卫星TCP的研究[c].广西大学,2002.

[4]郭道省,周建兵.用于军事卫星通信的透明转发器特点及抗干扰研究[J],军事通信技术,2002,23(1):45—59.

[5]赵陆文,屈德新.军用EHF通信卫星中的新技术[J].军事通信

[6]李冲妮,胡光锐.一种新的重叠变换域抗窄带干扰技术[J].电子学报,28(1):117—119.

[7]陈新富,谷春燕,易克初.直扩系统中一种窄带干扰抑制方法[J],系统工程与电子技术,2003,25(8):1015—1019.

卫星导航抗干扰技术应用

卫星导航抗干扰技术应用 发表时间:2018-11-15T20:03:58.540Z 来源:《基层建设》2018年第28期作者:倪大森 [导读] 摘要:抗干扰技术一直是卫星导航领域的研究热点。 天津七六四通信导航技术有限公司天津 300210 摘要:抗干扰技术一直是卫星导航领域的研究热点。在众多的抗干扰方法中,采用基于空时联合处理的阵列天线抗干扰是目前最有效且应用最广的一种方法。而对于阵列天线抗干扰,权值精度和权值更新速度是决定其抗干扰性能优劣的重要因素。当采用相同的自适应算法时,权值精度越高,权值更新速度越快,则抗干扰处理的效果越好。为此,在接下来的文章中,将围绕卫星导航抗干扰技术应用方面展开详细分析,希望能够给相关人士提供重要的参考价值。 关键词:卫星导航;抗干扰技术 引言:卫星导航定位系统提供精确的位置、时间和速度的同时,存在着信号微弱,易受干扰的天然弱点。在定位导航过程中,导航接收机的抗干扰能力是决定导航定位服务可用性的关键因素,伴随着卫星导航的推广应用和深入研究,抗干扰技术不断迭代更新。文章对卫星导航系统的抗干扰接收技术进行分析。 1.抗干扰技术分析 抗干扰是指设备能够防止经过天线输入端,设备的外壳以及沿电源线作用于设备的电磁干扰。雷达往往工作在复杂的电磁环境中,雷达抗干扰性能的优劣直接决定了整个雷达系统的性能。然而,如何评价雷达抗干扰性能的优劣,至今还没有公认的标准。因此人们难以把握雷达抗干扰能力的好坏,严重阻碍了雷达抗干扰技术和战术的发展。目前对于雷达抗干扰性能的评估,已经有了部分研究成果,但存在以下缺点:第一,干扰和抗干扰性能分开评估,没有把两者联系起来,这不符合实际情况;第二,由于雷达系统的复杂性,往往不能表征整个雷达的抗干扰性能,而仅从雷达采取的抗干扰措施或雷达本身固有的特性来研究;第三,度量值具有不可测性,计算繁琐 1.1虚拟卫星法 虚拟卫星法是在卫星导航抗干扰接收系统中广泛应用的一种方法,利用小型无人机或者地基发射装置播发模拟卫星信号,增强导航接收机的接收信号进而改善信噪比,从而实现抗干扰的目的。 1.2天线抗干扰法 天线抗干扰法是卫星导航抗干扰系统中的关键技术,其应用具有多种优势,技术操作简单,成本相对较低。天线抗干扰法可以通过提升波速发生量的方式来完成天线阵元的加权工作,从而将外界干扰信号的强度控制在较小的范围,减小或避免对导航接收机的影响。 1.3扩展频谱抗干扰法 这种方法可使导航接收机有效抑制干扰信号。采用直接序列扩频,当接收机解扩之后将有用的信号变成了窄带信号,原来一些频带比较窄的干扰信号就会变成宽带信号,从而使得信号中的大部分能量都被窄带滤波器滤除掉,提高了信干比。当前扩展频谱抗干扰法的应用十分广泛,尤其是在工业领域普及程度很高。 1.4光通信技术 光通信技术是卫星导航干扰接收系统的主要技术之一,是结合现代科学技术产生的一种新技术。与传统的卫星导航抗干扰技术相比较而言,光通信技术更高效、科学,但是其原理相对复杂,应用成本相对较高,当前还处于推广阶段。 1.5编码调制技术 编码调制技术在卫星导航抗干扰接收系统中的应用,可以借助卫星导航系统的修正、调整、编排优势,增强抗干扰接收系统稳定工作的持续性。 2.抗干扰导航接收机实现 2.1波束形成抗干扰方法 形成抗干扰波束并借助惯性测量数据或者卫星历史数据,可以抵御和消除外界的干扰信号,从而提高导航接收机的抗干扰能力。卫星信号和干扰信号都会通过全向天线阵列进入大动态射频转换器前端,大动态射频转换器对射频信号进行初步处理再移交后端的数模转换器。大动态射频转换器的设计,可以采用自动增益控制技术,在射频与中频之间设置多个程控衰减器,每一个衰减器都会使得信号逐渐衰减变小,而且信号是逐级衰减,防止其中的敏感元件出现饱和状态。这种衰减结构是比较灵活的,可以对进入模数转换器的信号电平进行精确控制,实现对信号与噪声之间的比值的优化。当射频转换器把信号变成中频的时候,数字化中频信号就会进入波束形成算法模块,同时,在惯性测量数据可用的情况下,还可以从惯性测量数据获得自身的姿态信息,并且可以结合卫星历史数据,通过波束控制模块产生波束自适应控制权值,然后将该值传输到波束形成算法模块中,波束形成算法模块根据波束自适应控制权值,对数字化中频信号进行自适应滤波,可以降低或者消除进入导航接收机的干扰信号影响。波束形成算法模块可以对输入的数字中频数据进行处理,并且可以得到所有通道的数字波束总和,根据这个值再进入导航接收机的捕获跟踪模块。在整个传输过程中,波束形成算法模块可以同时对都不同方向的波束进行控制,在卫星信号中如果存在干扰信号,则该模块可以对数据中的干扰成分进行降低或者完全消除,从而减少干扰信号对卫星信号带来的影响,得到更准确的定位结果。 2.2自适应零陷抗干扰方法 如果缺乏惯性导航设备、电磁罗经等设备的惯性测量数据,导航接收机很难确定卫星接收天线的姿态。此种情况下,自适应零陷抗干扰方法更合适,这种方法的基本原理是功率倒置算法,确保期望信号增益为常数时输出的功率最小。按照功率倒置算法所形成的天线方向图,可以在各个干扰方向上产生对应的零陷,零陷与干扰信号的强度成正比。当卫星信号从空中传输到导航接收机的天线时,信号电平会衰减得十分微弱,甚至低于噪声,所以算法不会剔除有效的卫星信号。算法在强干扰方向上产生零陷,可以有效抑制干扰信号的影响,提高导航接收机的信噪比[1]。 2.3抗干扰导航接收机实现技术 从抗干扰导航接收机的结构来看,卫星导航系统的抗干扰导航接收机主要有两个模块,一个是自适应抗干扰模块,一个是基带接收机模块。自适应抗干扰模块中一共有7组天线,这些天线的数据经过采集之后,可以通过FPGA的SRAM存储器将数据转存送入DSP中,再对数字进行加权计算,另外也可以利用上次计算所得到的权值在FPGA中对当前采样的数据做波束形成或者零陷滤波处理,最终生成I、Q两

铁路电力远动系统抗干扰技术

探讨铁路电力远动系统及抗干扰技术中图分类号:tm712 文献标识码: a 文章编号: 摘要:铁路电力系统肩负着为铁路信号设备可靠供电的艰巨任务,是铁路行车安全的基础。铁路电力远动系统在新建及改造铁路上比较常用的,本文对铁路电力远动系统进行了阐述分析。介绍了我国铁路电力远动系统的组成及特点,分析了铁路电力远动系统的主要干扰因素及远动系统的抗干扰措施。 关键词:铁路电力,远动系统,供电,干扰分析 abstract: the railway power system has the responsibility to railway signal equipment reliable power supply of the task, it is the foundation of the railway traffic safety. railway power far in the new and dynamic system transformation railway are frequently used in this paper, dynamic system of railway power far described analysis. introduced in railway power far dynamic system composition and characteristics, analyzed the railway power far move system’’s main interference factors of the system and far move anti-jamming measures. keywords: railway power, far dynamic system, power supply, interference analysis 1. 铁路电力运动系统简介 铁路电力远动系统是保障铁路行车重要措施。铁路电力远动系统

大学-关于通信的论文解析

通信电子战系统现状及应对 自海湾战争以来,电子战的威力已被世界所公认。电子战是现代高技术战争中的一个攻防兼备的双刃“杀手锏”,其作战目的是降低或削弱敌方战斗力并保持和增 强己方战斗力。电子战要“消灭”的不是敌人的有生力量,而是通过攻击或瘫痪敌方的,军事信息系统和降低敌方精确制导武器系统的攻击效率,使其丧失战斗力。电子战使用的武器不是枪炮、飞机、军舰、导弹等有形的硬杀伤武器,而是一种无形且有声的电磁能和定向能。电子战往往是在明火执仗的战争之前发起,战争尚未打响,电子战已先期进行。因此电子战是一种先机制敌、不见“刀光剑影”的特殊战争。电子战发展的历史虽不到百年,但其成功的战例却充满着不同时期战争的历史舞台,从日俄战争,第二次世界大战末的英美联军诺曼底登陆战役,越南战争和中东战争,直至海湾战争,电子战都充分显示了其巨大的威力。人们从这些成功的战例中吸取了丰富的营养,并根据现代战争的发展和高技术进步的推动,不断地深化对电子战理论、作战思想、作战方法和新技术、新装备的研究,把电子战这一新的军事科学技术推向一个新的历史台阶。从电子战发展现状、电子战发展趋势、电子战发展对策等几方面进行全面综述,并对我军电子战研究提出几点思考和建议。 电子战主要包括:即电子支援措施(ESM、电子对抗措施(ECM、电子反对抗措施;通信对抗措施既是电子对抗的重要组成部分,又是通信的伴生物,它的主要任务是:截收、检测、测向定位和识别敌方的通信信号,进而采取通信干扰措施,达到阻止破坏或削弱敌人C4I系统,同时又要保护己方通信畅通是双方在通信领域内为争夺制电磁权而展开的电子对抗,专家认为:未来战争,交战双方谁赢得了制电磁权,谁就赢 得战争的主动权,乃至整个战争。 一、外军通信干扰系统现状 外军通讯干扰系统主要包括固定、载式、和便携式三种,由于载式(车载、机载、舰载系统良好的机动性,能够尽可能的靠近被干扰的通信系统,因此应用的比较广泛。 (一车载式系统:

浅谈卫星导航抗干扰技术的发展

浅谈卫星导航抗干扰技术的发展 【摘要】卫星导航在现在的军事领域起到了至关重要的作用,本文介绍了卫星的干扰类型和工作原理。然后介绍了现有的几种抗干扰技术、工作原理和特点。最后,对卫星导航的抗干扰技术进行了预测。 【关键词】卫星导航;干扰技术;抗干扰技术 卫星导航在社会生活和军事领域当中起到了越来越多的作用,从日常的定位,到军用的精确制导,都离不开卫星导航。然而,在实际应用当中,由于种种原因,卫星系统会受到干扰,影响了使用国和用户的。因此,如何提高卫星系统的抗干扰的技术是当前各国研究者重点的研究课题[1]。本文介绍了干扰的类型和工具原理,抗干扰技术的分类和发展动向,为我国的卫星导航抗干扰技术的发展提供借鉴。 1.干扰的类型 对卫星的导航一般主要分为干扰型和压制型两种,由于卫星导航也是电子系统的一个集成,因此,一般的电子干扰技术也能用在对卫星的干扰上。 1.1压制式干扰 压制式的干扰就是利用特殊的发射装置对卫星发射电磁信号,让卫星不能正常的接受和发射信号,也无法进行导航。这种干扰方式的特点是技术难度低,使用相对简单,功率大的。但这种干扰方式也会使本方的导航通讯出现不畅,因此,使用范围比较受限制[2]。 1.2干扰型干扰 与压制式干扰不同,干扰型干扰向卫星发射假的信号,造成卫星的导航信息不准确,或者发出错误的信号,起不到应有的导航作用。这种干扰方式的特点是技术难度比较高,需要知道所要干扰的卫星系统的具体工作参数,虽然效果要比压制式干扰好,且不影响本方正常的通讯,但是掌握难度非常的高。 2.抗干扰技术的发展 所谓的抗干扰就是利用特定的手段对卫星的信息接收,传送方式和功率等进行处理,使卫星能够分辨有用和无用信号,正确的接收所需要的信号。在卫星抗干扰技术中主要有以下几种。 2.1伪卫星法 伪卫星法就是在地面设定发射装置,或者发射无人驾驶飞行器,或者小卫星

信号处理及抗干扰技术习题

第10章信号处理及抗干扰技术习题答案 1. 对传感器输出的微弱电压信号进行放大时,为什么要采用测量放大器? 答:因为测量放大器不但具有很高的放大倍数,而且具有十分稳定的输出特性,符合传感器微弱信号放大的要求。 2. 在模拟量自动检测系统中常用的线性化处理方法有哪些? 答:线性化方法主要有在模拟量自动检测系统中可采用三种方法:①缩小测量范围,取近似值。②采用非均匀的指示刻度。③增加非线性校正环节。 3. 说明检测系统中非线性校正环节(线性化器)的作用。 答:检测系统中非线性校正环节(线性化器)的作用是是利用它本身的非线性补偿传感器的非线性,从而使整台仪表的输出u0和输入x之间具有线性关系。。 4. 如何得到非线性校正环节的曲线? 答:一般主要是利用非线性元件或利用某种元件的非线性区域,例如将二极管或三极管置于运算放大器的反馈回路中构成的对数运算放大器就能对输入信号进行对数运算,构成非线性函数运算放大器,它可以用于射线测厚仪的非线性校正电路中。目前最常用的是利用二极管组成非线性电阻网络,配合运算放大器产生折线形式的输入-输出特性曲线。由于折线可以分段逼近任意曲线,从而就可以得非线性校正环节(线性化器)所需要的特性曲线。 5.检测装置中常见的干扰有几种?采取何种措施予以防止? 答:检测装置中常见的干扰有外部噪声和内部噪声两大类。外部噪声有自然界噪声源(如电离层的电磁现象产生的噪声)和人为噪声源(如电气设备、电台干扰等);内部噪声又名固有噪声,它是由检测装置的各种元件内部产生的,如热噪声、散粒噪声等。采用的抑制技术主要有屏蔽技术、接地技术、浮置技术、平衡电路、滤波技术和光电隔离技术等。 6.屏蔽有几种型式?各起什么作用? 答:屏蔽主要有静电屏蔽、电磁屏蔽、低频磁屏蔽和驱动屏蔽四种。静电屏蔽能防止静电场的影响,电磁屏蔽能削弱高频电磁场的影响,低频磁屏蔽主要是为了抗低频磁场的干扰,驱动屏蔽能有效地抑制通过寄生电容的耦合干扰。 7.接地有几种型式?各起什么作用? 答:接地有信号地、电源地和保护地三种。信号地主要将信号的零电位接地,电源地是电源的零电位,保护地则是系统的零电平。 8.脉冲电路中的噪声抑制有哪几种方法?请扼要表达它的抑制原理? 答:脉冲电路中的噪声抑制有积分电路、脉冲干扰隔离门和相关量法三种。积分电路的抑制原理是由于脉冲宽度大的信号输出大,而脉冲宽度小的噪声脉冲输出也小,所以能将噪声干扰滤除掉;脉冲干扰隔离门的抑制原理是用硅二极管的正向压降对幅度较小的干扰脉冲加以

卫星导航系统接收机抗干扰关键技术综述

卫星导航系统接收机抗干扰关键技术综述 卫星导航系统,就是用于对目标定位、导航、监管,提供目标位置、速度等相关信息的卫星系统。卫星导航系统具有很多优点,定位精度非常高,如美国的GPS(全球定位系统)精度可达厘米和毫米级;效率高,体现在观测时间短,可随时定位;全天候的连续实时提供导航服务。因此,卫星导航系统广泛应用于各个领域,发展前景十分广阔。但是,卫星导航系统有一个缺点,就是卫星信号的功率比较低,信道容易受到其他形式的各种干扰,导致卫星导航接收机的性能下降。因此,为了提升我国的卫星导航系统的抗干扰能力,本文主要研究探讨了卫星导航系统接收机抗干扰的关键技术。 1 卫星导航系统抗干扰技术 卫星导航系统接收机的干扰主要有三种形式,欺骗式干扰、压制式干扰、欺骗式/压制式组合干扰。欺骗式干扰有针对民码的干扰和针对军码的干扰;压制式干扰有宽带压制式干扰和窄带压制式干扰。为了应对各种干扰,卫星导航系统使用扩频技术,扩频技术具有很好的隐蔽性,能够精密测距,并且可以实现多址通信,抗干扰能力大大增加。而对于连续波干扰、窄带干扰,就要采用带阻频谱滤波方法滤掉干扰信号。而对于宽带干扰,这些方法效果都不理想,一般选择自适应阵列天线技术,这种技术能够根据外部的信号强弱,自动改变各个针元的加权系数,从而对准干扰信号方向。 1.1 自适应滤波技术 自适应滤波技术是随着自适应滤波理论与算法的发展而发展起来的,最小均方算法和最小二乘算法对自适应滤波技术起到的非常大的作用。除此以外,采样矩阵求逆算法也属于另一种自适应算法,直接矩阵求逆算法使得系统处理速度大大提升。 1.2 卡尔曼滤波技术 卡尔曼滤波技术是卡尔曼在20世纪60年代提出的,卡尔曼滤波技术是在被提取信号的相关测量中利用实时递推算法来估计所需信号的一种滤波技术。这种技术的理论基础是随机估计理论,在估计过程中,用观测方程、系统状态方程以及白噪声激励的特性作为滤波算法。卡尔曼滤波技术不仅用于估计一维的平稳的随机过程,而且可以用于多维的非平稳随机过程估计。卡尔曼滤波技术实质上属于一种最优估计方法。虽然卡尔曼滤波技术操作简单,应用范围十分广泛,但有一个基本要求,就是必须在计算机上实现。 2 抗压制式宽带干扰技术 2.1 压制式宽带干扰的工作原理 所谓压制式干扰,就是指干扰信号的强度远远高于经过扩散后的卫星信号强度,进而使卫星导航系统接收机无法获取准确信号,从而达到干扰卫星导航系统的目的。压制式干扰有窄带压制式和宽带压制式干扰。窄带单频连续波干扰,是一台干扰机对卫星导航系统发射单频信号,当单频信号与用伪码调制的宽带进行混频后,就输出宽带干扰信号。宽带扩频相关干扰,原理是利用卫星信号的伪码序列与干扰信号的伪码序列的强关联性来干扰接收机的接受能力。这种干扰可以以较小的干扰功率就能达到有效干扰目的。 2.2 自适应阵列天线技术 阵列天线的结构决定抗干扰性能,阵列天线的几何结构对抗干扰性能的影响主要体现在三个方面。第一,阵列天线的阵元间隔。第二,阵列天线的几何布局。第三,阵列天线的阵元个数。确定阵元间的相对距离,要考虑的因素有,较小的阵元之间的间隔形成的互藕效应,和半波长的阵元间隔形成的旁瓣。一般的阵元间隔选择半波长,能够有效避免大的旁瓣的产生,并且此时的互藕效应最小。阵列天线的几何结构布局不同,对应的最佳阵元的个数就不同。所以在进行干扰抑制性能的量化比较时,不能将阵元个数相同的,但阵元几何结构不同

卫星通信基础知识五EIRGT值的意义完整版

卫星通信基础知识五E I R G T值的意义 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

卫星通信基础知识(五)EIRP值,G/T值的意义 在卫星通信中常常看到 EIRP、G/T 他们是什么意思呢 EIRP EIRP(Effective Isotropic Radiated Power)有效全向辐射功率 EIRP也称为等效全向辐射功率,它的定义是地球站或卫星的天线发送出的功率(P)和该天线 增益(G)的乘积,即: EIRP=P*G 如果用dB计算,则为 EIRP(dBW) = P(dBW) + G(dBW) EIRP表示了发送功率和天线增益的联合效果。 EIRP是卫星通信和无线网络中的一种重要参数。有效全向辐射功率EIRP为卫星转发器在指定 方向上的辐射功率。它为天线增益与功放输出功率之对数和,单位为dBW。EIRP的计算公式为 EIRP = P – Loss + G式中的P为放大器的输出功率,Loss为功放输出端与天线馈源之间的馈线损耗,G 为卫星天线的发送增益。 通过对比同一颗通信卫星的C频段EIRP分布图和Ku频段EIRP分布图可知,C频段转发器的服务区大,通常覆盖几乎所有的可见陆地,适用于远距离的国际或洲际业务;Ku频段转发器的服务区小,通常只覆盖一个大国或数个小国,只适用于国内业务。C频段转发器的EIRP通常为36到 42dBW,G/T通常为-5到+1dB/k,地面天线的口径一般不小于1.8米;Ku频段转发器的EIRP通常为44到56dBW,G/T通常为-2到+8dB/k,地面天线口径有可能小于1米。另一方面,C频段因为电波 传播通常不受气候条件的影响,适用于可靠性较高的业务;Ku频段转发器则因电波传播可能遭受降雨衰耗的影响,只适用于建网条件较差、天线尺寸和成本受限的业务。下表是亚洲卫星公司四颗卫星的最大EIRP、G/T值 地面站性能指数G/T值是反映地面站接收系统的一项重要技术性能指标。其中G为接收天线增益,T 为表示接收系统噪声性能的等效噪声温度。G/T值越大,说明地面站接收系统的性能越好。 目前,国际上把G/T≥35dB/K的地面站定为A型标准站,把G/T≥31.7dB/K的站定为B型标准站,而把G/T<31.7dB/K的站称为非标准站。

第五章 信号的变换

第五章 中间转换电路 一. 是非题 1.电桥是一个调幅装置,其输出是调幅波。( ) 2.电桥是乘法器,其输出是调幅波。( ) 3.直流电桥的平衡条件是R1R3=R2R4。其电桥灵敏度是供桥电源的函数。( ) 4.交流电桥达到平衡时条件必须满足4321z z z z =,4321φφφφ+=+。( ) 5.交流电桥可测静态应变,也可测动态应变。( ) 6.调幅波是将载波与调制波相乘而获得。( ) 7.调幅波是频率不变而幅值发生变化的已调波。( ) 8.调频波是频率不变,幅值也不变的已调波。( ) 9.调相波是其频率、幅值与其相位都发生变化的已调波。( ) 10.同步解调指的是解调时所乘的信号与调制时的载波具有相同频率和相位。( ) 11.调幅过程就是频率搬移“过程”。( ) 12.电压放大器的连接电缆长度发生变化时,仪器的灵敏度不发生变化。( ) 13.电荷放大器的作用是将传感器的高阻抗输出变换为低阻抗输及放大传感器的微弱信号。( ) 14.缓变信号经高频调制后才可利用交流放大器。( ) 15.压电式传感器利用电荷放大器或电压放大器,其测量效果相同。( ) 16.RC 低通滤波器是一阶系统。( ) 17.滤波器的带宽表示它的频率分辨力,通频越窄则分辨力越低。( ) 18.RC 带通滤波器可以看成是低通滤波器和高通滤波器串联组成。( ) 19.在高频段,恒带宽滤波器比恒带宽比滤波器的频率分辨力高。 20.A/D 转换器作用将数字信号转换成模似信号。( ) 二. 选择题: 1.直流电桥中,由于接法不同,输出电压灵敏度也不同,_________接法可获得最高灵敏度。 A.全桥 B.半桥单臂 C.半桥双臂 2.在动态测量中,电桥的输出量通常利用______。 A.电流量 B.电感量 C.电阻量 D.电压量 3.若提高电桥灵敏度,可采取______。 A.增加应变片的初始电阻值 B.半桥双臂各串联一片电阻应变 C.适当提高电桥的电源电压 D.半桥双臂各串联一片电阻应变片 4.直流电桥同一桥臂增加应变片数,则电桥灵敏度____。 A.增大 B.不变 C.减少 D.变化不定 5.欲保证极矩变化型差动电容传感器工作,传感器两个电容应当连成____电路。 A.电桥 B.串联 C.并联 6.由两个电容构成的差动电容传感器与两个电感接成电桥电路。其电桥供压____。 A.交流 B.直流 C.交直流 7.调制可看成是调制信号与载波信号____。 A.相加 B.相乘 C.相减 D.相除 8.幅值调制装置实质上是____。 A.加法器 B.除法器 C.减法器 D.乘法器 9.幅值解调过程中,相敏检波器的作用____。

卫星通信技术及其发展趋势

卫星通信技术及其发展趋势 朱军王培国 (成都军区) 摘要:综述了卫星通信网中使用的CDMA、抗干扰、MPLS等技术和卫星通信的发展趋势,并对我国卫星通信的发展进行了展望。 关键词:卫星通信CDMA 抗干扰MPLS 发展趋势 卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。 1 卫星通信网络的定义 卫星通信网络是利用人造地球卫星作为中继站转发无线电波,从而实现两个或多个地面站之间通信的网络。其中,地面站是指设在地球表面(包括地面、水面和大气层)的通信站,也称为地球站。通信卫星的作用相当于离地面很高的中继站。卫星通信网络分为延迟转发式通信网络和立即转发式通信网络。 当卫星的运行轨道属于低轨道时,对于相对较远的地面站而言,要进行远距离实时通信,除采用延迟转发方式(利用一颗卫星)外,也可以利用多颗低轨道卫星进行转发,这种网络就是通常所说的低轨道移动卫星通信网络。 2 卫星通信中的主要技术 2.1 CDMA技术 CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现

全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。 CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。 2.2 抗干扰技术 现代军事斗争中,敌我双方对卫星通信干扰与抗干扰技术对抗越来越激烈。未来战争中电磁环境将变得越来越复杂,卫星通信因其固有的特点而面临极大的威胁。由于通信卫星始终暴露在太空中,且信道是开放的,易于受对方攻击。因此,军事卫星通信中干扰和抗干扰是斗争双方关注的焦点,研究在复杂电磁环境下卫星通信抗干扰技术体制已成为提高军事通信装备生存能力、确保军事指挥顺畅的关键。 卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。 传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。 特别值得一提的一种抗干扰、抗搜索、抗截获的技术是跳频通信技术,它是在现代信息对抗日益激烈的形势下迅速发展起来的。各国军方对这一先进技术的发展和应用十分重视,不断加强对跳频抗干扰通信的研究和推广应用。目前,跳频技术装备正朝着宽频带、高速率、数字化、低功耗的方向快速发展,其信息战潜力巨大。 2.3 基于MPLS的移动卫星通信网络体系构架 MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

卫星通信抗干扰系统

卫星通信抗干扰系统 一般可理解为,通信装备及系统为对抗干扰方利用电磁能和定向能控制、攻击通信电磁频谱,以提高其在通信对抗中的生存能力所采取的通信反对抗技术体系、方法和措施。 一般说,通信抗干扰的基本体系、方法、措施可分为三类: 1、信号处理。如直接序列扩频技术(DS-SS),其关键参量是作为时间函数的相位;跳频技术(FH-SS)其关键参量是作为时间函数的载频;等等。 2、空间处理。如采用自适应天线调零技术,当接收端受到干扰时,使其天线方向图零点自动指向干扰方向,以提高通信接收机的信干比。 3、时间处理。如猝发传输技术,由于通信信号在传输过程中暴露的时间很短暂,从而大大降低了被干扰方侦察、截获的概率。 通信抗干扰技术研究的就是在已知或预测敌方的干扰手段情况下,在上述技术基础上(当然不排除以后有新的技术类别)选取适当的技术手段来消除或减轻敌方干扰,而使我方需要进行的通信能够延续的一项技术。对敌方的干扰性质,强度、种类、手段、采用的体系,了解得越清楚,采取的措施越有针对性,取得的效果也越好。由于敌方的对抗手段往往是综合的、多变的,有的可能是完全新颖的,所以抗干扰的手段也必须采取多种方式的结合才能取得较好的效果。 通信抗干扰技术的特点: 1、对抗性强,技术综合性强,难度高,发展快,某种程度上说是敌我双方智慧和技术的斗争。通信的成败关系着战争的胜负,所以此技术对抗性很强。通信抗 干扰有了新技术,搞对抗的就想新的对策,反过来也一样,这样就促进了技术的发展和难度的提高。 2、对技术的实用性和可靠性的要求高,通信抗干扰必须在战场上实际解决问题。指标高而不可靠或不实用是不能容忍的,其后果不堪设想。 [相关技术]通信对抗;扩频技术;抗干扰电台;卫星通信抗干扰 [技术难点] 1、提高跳频速率有利于抗干扰,但跳速提高需解决如下问题:接收机中频滤 波器产生的瞬时扰动问题;发射机功率输出截止状态产生的过渡问题;频率合成器

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简 单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放 重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的

卫星通信抗干扰技术及其发展趋势概述

卫星通信抗干扰技术及其发展趋势概述 摘要现代通信的发展过程,卫星通信技术作为主要通信方式,在社会环境和自身条件等因素的干扰下,信号传输会随之受到直接影响,若要全面提升信息的传输效果,则应该加强卫星通信的抗干扰技术研究,同时对其发展趋势进行深入了解,以促进现代通信的发展。文章首先分析卫星通信抗干扰,其次进行抗干扰技术的阐述,最后研究其发展趋势。 关键词卫星通信;抗干扰技术;发展趋势 卫星通信技术是指:将人造卫星作为中继站,利用无线电波实现地球间的有效通信,以组成角度进行分析发现,系统主要包括:地球站和通信卫星。在我国科学技术持续发展下,卫星通信技术随之取得明显进步,除了可以弥补其他通信存在的问题,而且还能广泛应用音频广播和大众传媒等领域,与此同时,工作人员还应进行卫星通信抗干扰技术的优化和完善。 1 卫星通信抗干扰的浅析 对于卫星通信来讲,可能会对其造成干扰因素比较多样化,按照其来源进行划分发现,其主要包括以下几点内容:首先,通信系统干扰,卫星通信技术发展中,与以往技术相比较发现,其卫星间隔随之出现较大变化,即由5°转变为2.5°,在缩短卫星间隔的同时,使卫星间干扰明显增加。其次,卫星通信和地面系统之间存在干扰情况,其主要表现在无线通信方面,例如:调频广播或雷达系统等,同时还包括医院或工程等设备干扰[1]。最后,自然因素干扰,如雨衰等,在电波空中传输过程,在穿过雷电和雨水区域时,此区域内障碍物、雨滴的存在,均会对电波起到衰减作用,实际衰减情况和雨滴半径存在较大联系。与此同时,日凌和电离层的闪烁情况,均属于自然界常见干扰类型,如果电磁波出现在电离层中,往往会因为电离层缺少稳定特点,使其信号出现延迟突变等问题,最终造成电离层出现闪烁情况,需要工作人员予以重视。 2 卫星通信常见抗干扰技术 2.1 天线抗干扰技术 在卫星通信系统中,因其具有覆盖广的特点,使其经常面临不同干扰,在不同抗干扰技术在中,天线抗干扰属于比较常见技术,包括自适应调零技术等。对于智能天线应用,主要是按照无线信道变化进行天线图方向的调整,从而保证天线各项性能处于良好状态,以便于对不同干扰因素进行有效控制。在智能天线中,其构成部分包括:信号通道与天线阵列等,需要特别注意:短时间内对干扰方向予以判断,同时调至零标准尤为重要,要求人员对其予以重视[2]。 2.2 限幅技术

导航战及GPS干扰导航战是指在战场环境下用电子干扰的方法对敌

1. 导航战及GPS干扰 导航战是指在战场环境下,用电子干扰的方法对敌方导航系统进行干扰或攻击,使其不能正常导航或降低导航精度,并对敌方对己方导航系统所实施的干扰进行抗干扰,使其在干扰条件下仍能高精度地工作。 GPS干扰: (1) 瞄准式阻塞干扰 保证阻塞式干扰在GPS 接收机的带宽内产生均匀的干扰频谱(梭状和连续波) , 在时域上呈等幅包络, 该干扰信号的功率达到一定程度时, 便可对GPS 信号产生全面的阻塞作用. (2) 伪随机噪声阻塞干扰 人为地产生伪随机码噪声, 这些伪随机码噪声在被GPS 接收机相关解扩过程后的信号功率只要大于GPS 接收机的干信比, 就足以有效干扰GPS接收机. (3) 转发式欺骗干扰 将某一区域内GPS 卫星信号通过一些特殊的设备(如DRFM) 进行降频、采样、存储、延时、调制、再升频后转发出去. 这样在空中就形成与GPS接收机真实信号相参性很好的欺骗信号, 通过GPS接收机相关解扩后, 起到欺骗使用. 这些信号人为地改变了在空中的传输时间、相位和频率. 最终使得GPS 接收机的定位精度产生很大误差. (4) 组合干扰 由于每一种干扰方式的优缺点不尽相同, 为了取长补短, 我们可以同时采用两种或两种以上的干扰方式, 以求达到更好的干扰效果. 如伪随机噪声阻塞干扰与转发式欺骗干扰的组合. 2. GPS抗干扰措施 由于GPS空间卫星的设计起点主要考虑战争环境下导航和定位的军事安全,而没有把干扰环境下的工作能力提到突出的位置。实际上,GPS卫星信号到达地面用户时其信号很弱,信噪比很低,从而导致了GPS用户接收机很容易遭受欺骗性干扰和压制性干扰。加上导航战中民用频段的军用化,导致美国与其敌对双方突出较量于战场,迫使其GPS系统不得不采取抗干扰措施或者改革其体制。为此,美军正在从GPS卫星、地面控制站、用户接收设备等方面采取措施,提高该系统的抗干扰能力。其中主要包括:①提高GPS星座后续星的发射功率,研制第三代GPS卫星;②军用GPS接收机采用保密结构、自适应调零天线、抗干扰信号处理技术;③在武器应用方面,特别强调复合使用GPS与惯性制导系统(INS),“联合直接攻击弹药”(JDAM)就是如此;④研制GPS干扰源探测定位系统。 2.1 美国GPS抗干扰技术研究现状: 一、研制抗干扰GPS 接收机天线。 美国陆军航空与导弹司令部导弹研究发展与工程中心将投资“创新研究”工程,研制小型廉价的GPS 接收机天线,用于各种导弹和火箭弹上的GPS 接收机。目前这类弹药上的GPS 接收机天线对干扰信号的跟踪和抑制过程需要50 秒,而有效制导多管火箭炮和陆军战术导弹系统要求该过程不能超过10 毫秒,所以必须使用小于10 ×10 ×2. 5cm3 的天线。“创新研究”计划的目标是研制一种可抗连续波、宽带噪声、脉冲等多种干扰的抗干扰GPS 接收机天线,并用其取代现有天线。如果获得成功,将制造10 套天线用于飞行等各种试验。

卫星通信的基础知识

卫星通信的基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙通信是指以宇宙飞行体为对象的无线电通信,它有三种形式: (1)宇宙站与地球站之间的通信;(直接通信) (2)宇宙站之间的通信;(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为35800km (为简单起见,经常称36000km)。 静止卫星通信的特点 (1)静止卫星通信的优点 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M),传输容量大 d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2)静止卫星通信的缺点 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 极),而且地球的高纬度地区通信效果不好。 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 现象。——(现今可通过处理缩短这种现象)

军事短波通信抗干扰措施

【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通信抗干扰 短波通信通常是指利用波长为100―10m (频率为3―30mhz)的电磁波进行的无线电通信。目前也有把中波的高频段(1.5―3mhz)归到短波波段中去,所以现有的许多短波通信设备,其波段范围往往扩展到1.5―30mhz。在许多国家,也把短波通信认为是高频(hf)无线电通信。 多年来,短波通信被广泛地用于政府、军事、气象、商业等部门,用以传送语言、文字、图像、数据等信息。尤其在军事部门,它始终是军事指挥通信的重要手段之一,是军事指挥决策部门与下级所属单位有效沟通和信息传递的重要工具,也是构建我军c4i指挥体系的重要环节,在现代日益复杂的战场环境下,如何提高电台抗干扰能力,保护己方通信畅通尤为迫切。 一、短波通信干扰类型 能够对设备形成干扰的前提是在时间域对齐,频率域对准,空间域相同,能量域足够,这是干扰的总体原则,具体到各个干扰样式和原理,则有不同的表现形式,通信干扰主要有以下几种类型: 以上几种干扰措施是以前常用的干扰方式,随着通信设备的发展,有些干扰方式现在已基本不再使用,比如单频干扰或窄带连续波干扰,随着军事电台大量采用抗干扰措施,现在已少见单频电台干扰,但宽带噪声干扰、多音干扰和脉冲干扰、扫频干扰仍然应用较多。 此外,为了对抗跳频扩频通信、直接伪码序列扩频通信和混合扩频通信抗干扰能力强的新体制通信系统,出现了一些新的通信对抗技术样式,如宽带拦阻式干扰、跟踪引导式干扰、快速转发式干扰、部分频带噪声干扰等。这些新的干扰样式必须引起我们足够的重视,寻扎相应的对抗策略。 二、短波通信抗干扰技术 通信抗干扰技术的体系、方法、措施可分为4类: (1)以扩频技术为主的频域抗干扰技术,如直接序列扩频( ds-ss),其关键参量是时间函数的相位;跳频( fh)的关键参量是时间函数的载频;ds/ fh混合扩频技术;自适应选频技术,当通信信道干扰严重时,通信双方同时改换到最优化频道;自适应频域滤波技术。其中,跳频技术是目前军事通信抗干扰技术中应用最广泛、最有效措施之一,其原理是信息码同伪随机码模相加后,去离散地控制射频载波振荡器输出频率,使发射信号的频率随伪码的变化而跳变。跳频技术抗干扰能力得益于信号载波频率在很宽的频带内跳变,使干扰方难以跟瞄,但其瞬时带宽同定频一样。现阶段,中高速跳频技术仍是对付跟踪(引导)式和宽带阻拦式干扰的有效措施。有效提高跳频抗干扰效率的方法是:提高跳频速率、加大跳频带宽、变速跳频、适当增加跳频组网数目。跳频带宽宽,可跳频道数多,抗干扰能力就愈强。对于宽带阻拦式干扰来说,干扰效率与干扰的带宽成正比。例如对于10mhz中频带宽,信道间隔25 khz,共400信道,当干扰机对该跳频台实施10 mhz拦阻式干扰时,干扰功率平分在400个信道上,干扰强度仅为定频干扰的1/ 400。若带宽再增加,抗干扰力会更强。当前,跳频通信电台朝着跳频速率更快,跳频带宽更宽、智能化跳频的方向发展。 (2)以自适应时变和处理技术为主的时域抗干扰技术,含猝发通信、低速率通信技术、跳时(th)技术、自适应信号功率管理技术。跳时就是一种时分信道,用伪随机码随机选择信道工作时间,可视为一种伪码调制系统,它具有很好的远近效应一致性,模拟和数字体制都可使用。跳时的优点是用时间的合理分配来避开干扰,干扰机必须连续发射才可能收到效果,增大了干扰代价,也就具有一定的抗干扰能力。猝发通信是首先将正常速率的信息存贮

浅谈卫星通信抗干扰技术及发展趋势

浅谈卫星通信抗干扰技术及发展趋势 摘要数字通信技术是现代远程通信中的重要手段之一,在运用卫星通信的过程中,其会受到各种因素的影响,主要有自身因素还有一些环境因素。特别是一些开放系统,更容易受到恶性干扰。所以,在实际应用的过程中,必须加大抗干扰技术,不断增强卫星通信的抗毁性以及抗干扰能力。本文结合目前我国卫星通信技术的发展现状,分析卫星通信可能遭受的干扰,并针对一些具体的抗干扰技术进行详细的分析,最后展望了卫星通信抗干扰技术的发展趋势。 关键词卫星通信;抗干扰技术;发展趋势 1 我国卫星通信发展现状 随着现代化进程的加快,我国也十分的重视卫星通信的建设与发展,在这方面投入了大量的资金支持,不断完善卫星通信系统,为现代的卫星通信需求不断创新,我国的卫星通信发展现状主要表现如下两个方面。 1.1 宽带多媒体卫星通信 宽带多媒体卫星通信主要是将卫星通信技术建立在一定的多媒体技术以及互联网技术的基础上,使得卫星通信的传播更加的高效和快速。这项应用主要是从地面宽带IP技术中发展而来,它可以承载各种业务,包括图像、声音、视频等,所展现出的是高速度、创新的特点,并且能为用户提供大量的分组数据业务,其所花费的成本较低。目前宽带多媒体卫星通信对卫星应用产业的一项重要的发展趋势,国家已经针对这些能够应用做了长远的规划[1]。 1.2 规划研究S频段同步轨道移动通信系统 我国相对于一些发达国家来说,卫星通信技术兴起的较晚,很多的技术也是借鉴一些发达国家的经验,很久都没有建立自主的卫星通信系统。S频段卫星移动通信系统具有十分广阔的应用价值,其应该作为我国的基础信息设施来建设。目前规划研制的S频段地球同步轨道卫星移动通信系统,它包括很多设备,主要包括有效载荷、移动载体、嵌入式终端和信关站等设,覆盖范围广,设计的业务类型也广,能够为各种用户提供移动通信保障。 2 卫星通信可能遭受的干扰 在卫星通信中,可以分为上行链路和下行链路,不同的链路所受到的干扰源不同,对于上行链路来说,其有可能受到的干扰源有车载、固定式干扰机、与干扰卫星等,通常情况下这些干扰源不会对下行链路造成干扰。如果下行链路被干扰,其在信号辐射以及覆盖面积上会受到很大的局限。 卫星通信系统所受到的干扰类型是多种多样的,并且这些类型的分类方法也

相关文档
最新文档