直流升压电路

直流升压电路
直流升压电路

绪论 (1)

第一章直流升压电路原理分析

1.1 升压斩波电路 (2)

1.2 控制电路 (3)

1.3 保护电路 (4)

第二章直流升压电路设计

2.1 主电路设计 (6)

2.2 控制电路设计 (8)

2.3保护电路设计 (9)

2.4 总原理图 (10)

第三章直流升压电路的仿真

3.1 PSIM仿真实验 (12)

3.2 仿真实验结果及分析 (12)

心得体会 (14)

参考文献 (15)

附录A (16)

附录B (17)

电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。随着电力电子技术的迅速发展,电力设备在许多行业有了广泛的应用。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流电的任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC变换。本文设计的是一个可调的高压开关脉冲电源,利用直流升压斩波电路的原理。所谓直流斩波电路的功能就是将直流电变为另一固定电压或可调电压的直流电,也称为直流-直流变换器(DC/DC Converter)。直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点。本设计中直流斩波电路的控制电路采用集成专用的PWM控制芯片UG3525为核心,控制电路输出占空比可调的矩形波。

第1章直流升压电路原理分析和方案选择

直流升压电路包含3个部分:主电路(包含整流电路和升压斩波电路),控制电路,保护电路。各部分电路作用都非常重要,缺一不可。本设计的系统框图如图1-1所示。

图1-1 直流升压电路框图

1.1升压斩波电路(Boost Chopper)

升压斩波电路原理图及工作波形如图1-2所示。

a)电路图

b) 波形

图1-2 升压斩波电路及其工作波形

i,电容假设L和C值很大。处于通态时,电源E向电感L充电,电流恒定

1

u恒定。断态时,电源E和电感L同时向电容C充电,C向负载R供电,输出电压

并向负载提供能量。设V 通态的时间为on t ,此阶段L 上积蓄的能量为on t Ei 1,设V 断态的时间为off t ,则此期间电感L 释放能量为off t i E u 10)(-,稳态时,一个周期T 中L 积蓄能量与释放能量相等:

on t Ei 1=off t i E u 10)(- (1-1)

化简得 E t T E t t t u off

off off

on =+=0 (1-2) off t T ——升压比;升压比的倒数记作β ,即off

t T =β β和α的关系:a +β=1

所以输出电压为:

E E u α

β-==111

0 (1-3) 本电路中的主要功率器件必须是全控型。常见的全控型器件有:GTO,GTR,MOSFET,IGBT 四种,与其他全控型器件相比,IGBT 有开关速度快,开关损耗小,具有耐脉冲电流冲击的能力,通态压降低,输入阻抗高,为电压驱动,驱动功率小等优点,所以本设计采用IGBT 。

IGBT 的中文名称是绝缘栅双极晶体管,它是三端器件,具有栅极G ,集电极C 和发射极F ,其内部结构图如图1-3所示。

图1-3 IGBT 内部结构图

IGBT 与MOSFET 相比多一层P+注入区,具有很强的导电能力。其静态特性如图1-4所示。

a)发射极

栅极G E

-+-+-I D R N V J1I D R on b )

图1-4 IGBT静态特性图

1.2控制电路

控制电路需要实现的功能是产生PWM信号,用于控制斩波电路中主功率器件的通断,通过对占空比α的调节,达到控制输出电压大小的目的。产生PWM信号有很多方法,但归根到底不外乎直接产生PWM的专用芯片、单片机、PLC、可编程逻辑控制器等。本设计采用直接产生PWM的专用芯片UG3525.该芯片的外围电路只需简单的连接几个电阻电容,就能产生特定频率的PWM波,通过改变IN+输入电阻就能改变输出PWM波的占空比,故在IN+端接个可调电阻就能实现PWM控制。UG3525内部结构图如图1-5所示。

图1-5UG3525内部结构图

1.3保护电路

在斩波电路中对斩波器的保护,实际上就是对全控型器件的保护。所以重要的是怎么设计好对全控型器件的保护方案。在设计对全控型器件的保护系统中,主要是针对过电流保护和开关过程中的过电压保护。本设计中,将通过设计保护电路来对IGBT进行过电压保护和过电流保护。

1.3.1IGBT的过流保护

IGBT的过流保护电路可分为2类:一类是低倍数的(1.2~1.5倍)的过载保护;一类是高倍数(可达8~10倍)的短路保护。

对于过载保护不必快速响应,可采用集中式保护,即检测输入端或直流环节的总电流,当此电流超过设定值后比较器翻转,封锁所有IGBT驱动器的输入脉冲,使输出电流降为零。这种过载电流保护,一旦动作后,要通过复位才能恢复正常工作。

IGBT能承受很短时间的短路电流,能承受短路电流的时间与该IGBT的导通饱和压降有关,随着饱和导通压降的增加而延长。通常采取的保护措施有软关断和降栅压2种。软关断指在过流和短路时,直接关断IGBT。但是,软关断抗骚扰能力差,一旦检测到过流信号就关断,很容易发生误动作。降栅压旨在检测到器件过流时,马上降低栅压,但器件仍维持导通。降栅压后设有固定延时,故障电流在这一延时期内被限制在一较小值,则降低了故障时器件的功耗,延长了器件抗短路的时间,而且能够降低器件关断时的di/dt,对器件保护十分有利。若延时后故障信号依然存在,则关断器件,若故障信号消失,驱动电路可自动恢复正常的工作状态,因而大大增强了抗骚扰能力。

1.3.2IGBT开关过程中的过电压保护

关断IGBT时,它的集电极电流的下降率较高,尤其是在短路故障的情况下,如不采取软关断措施,它的临界电流下降率将达到数kA/μs。极高的电流下降率将会在主电路的分布电感上感应出较高的过电压,导致IGBT关断时将会使其电流电压的运行轨迹超出它的安全工作区而损坏。所以从关断的角度考虑,希望主电路的电感和电流下降率越小越好。但对于IGBT的开通来说,集电极电路的电感有利于抑制续流二极管的反向恢复电流和电容器充放电造成的峰值电流,能减小开通损耗,承受较高的开通电流上升率。一般情况下IGBT开关电路的集电极不需要串联电感,其开通损耗可以通过改善栅极驱动条件来加以控制。

第2章直流升压电路设计

2.1主电路设计

2.1.1整流电路

本设计采用桥式电路整流:由四个二极管组成一个全桥整流电路。由整流电路出来的电压含有较大的纹波,电压质量不太好,故需要进行滤波。本电路采用RL低通滤波器(通过串联一个电感,滤除电流的高次谐波,并联一个电容滤除电压的高次谐波),以减小纹波。Protel原理图如图2-1所示。

图2-1 整流电路图

输入端接220V、50Hz的市电,进过变压器T1(原线圈/副线圈为4/1)后输出55V、50Hz。当同名端为正时D2、D5导通,D3、D4截止,电压上正下负。当同名端为负时D2、D5截止,D3、D4导通,电压同样是上正下负,从而实现整流。电感具有电流不能突变,通直流阻交流特性,因此串联一个电感可以提高直流电压品质。而电容具有电压不能突变,通交流阻直流特性,因此并联一个大电容可以滤除杂波,减小纹波。结合两种元器件的特性,组成上图整流电路,可以得到比较理想的直流电压(幅值为50V左右)。

2.1.2升压斩波电路

本设计为直流升压斩波(boost chopper)电路,该电路是本系统的核心。应为输出电压比较大,故斩波器件选用能够承受大电压和导通内阻小,开关频率高,开关时间小的大功率IGBT管。直流斩波电路图如图2-2所示。

图2-2直流斩波电路图

左边接经整流之后的50V 电压,右边为斩波电压输出,IGBT 栅极接SG3525输出的PWM 斩波信号。D 为电力二极管,L 为电感,C 为电容,R 为负载。

原理分析:首先假设电感L 值很大,电容C 值也很大。当V-G 为高电平时,

Q1导通,50V 电源向L 充电,充电基本恒定为1I ,同时电容C 上的电压向负载R

供电,因C 值很大,基本保持输出电压o u 为恒值,记为o U 。设V 处于通态的时

间为on t ,此阶段电感L 上积储的能量为1on EI t 。当V 处于段态时E 和L 共同向电

容C 充电,并向负载R 提供能量。设V 处于段态的时间为off t ,则在此期间电感L

释放的能量为01()off U E I t -。当电路工作于稳态时,一个周期T 中电感L 积储的

能量于释放的能量相等,即

101()on off EI t U E I t =- (2-1)

化简得 on off 0off off t t T U E E t t +== (2-2)

上式中的off /1T t ≥,输出电压高于电源电压。式(2-1)中off /T t 为升压比,

调节其大小即可改变输出电压o U 的大小。

2.1.3电路参数计算

由设计要求知道输入电压Ud=24-60V ,输出电压为340V 恒定不变,对于斩波电路其控制波形的占空比为83%-93%,U2=Ud=24-60V ,U1=220V ,则对于变压器其变比:

K=U1/U2=220/24-60=3.3-8.25

则 I1=I2/K=13/3.3-8.25=0.29-1.81

考虑空载电流,取 I1=1.05×(0.29-1.81)=(0.3-1.89)A ,R=10Ω,则变压器的容量为:

S1=U1×I1=220×1.89=415.8VA

S2=U2×I2=60.67×6=400VA

S=(S1+S2)/2=(415.8+400)/2=407.9VA

对于整流电路,变压器二次侧电流I2=Id=(2.4-6)A,

对于晶闸管,晶闸管平均电流为 Idvt=1/2Id=(1.2-3)A

晶闸管承受最大反压 U=1.414U2=(37.7~94.3)V

考虑安全裕度,晶闸管额定电压Un=(2~3)×94.3=(188.6~282.9)V

流过晶闸管电流有效值Ivt=Id/1.414=(1.697~4.24)A

晶闸管额定电流为In=(1.5~2)4.24/1.57=(4~5.4)A

滤波电容选择C1一般根据放电的时间常数计算,负载越大,要求纹波系数越小,一般不做严格计算,多取2000 uF以上。因该系统负载不大,故

取 C1=2200 uF

耐压 1.5UDM=1.5×160=240V取250V

即选用2200uF、250V电容器。

IGBT的选择:

因为U2=60V,则取3倍裕量,选耐压为180V以上的IGBT。由于IGBT是以最大标注且稳定电流与峰值电流间大致为4倍关系,故应选用大于4倍额定负载电流的IGBT为宜,因此选用20A,额定电压为720V以上的IGBT。本设计选用额定电流25A,额定电压1200V,型号为FGA25N120AN的IGBT。

续流二极管的选择,根据公式U=(2~3)U2=(120~180)V,而电流I=(1.5~2)I2==(9~12)A,则可以选择续流二极管。

2.2控制电路设计

控制电路需要实现的功能是产生PWM信号,用于控制斩波电路中主功率器件的通断,通过对占空比α的调节,达到控制输出电压大小的目的。产生PWM信号有很多方法,但归根到底不外乎直接产生PWM的专用芯片、单片机、PLC、可编程逻辑控制器等.本电路采用直接产生PWM的专用芯片UC3525.该芯片的输入电压范围是8V到35V,这里选用15V。它的振荡频率可在100HZ到500HZ范围内调

节,本实验将频率配置为18HZ,不产生噪声。外围电路只需简单的连接几个电阻电容,就能产生特定频率的PWM波,通过改变IN+输入电阻就能改变输出PWM 波的占空比,故在IN+端接个可调电阻就能实现PWM控制。为了提高安全性,该芯片内部还设有保护电路。它还具有高抗干扰能力,是一款性价比相当不错的工业级芯片。控制电路的电路图如图2-3所示。

图2-3控制电路图

工作原理:通过R2、R3、C3结合UC3525产生锯齿波输入到UC3525的振荡器。

其产生的PWM信号由OUTA、OUTB输出,调节R7可以改变占空比。输出的PWM 信号通过二极管D2、D3送出,经放大后可以直接驱动IGBT。此电路具有信号稳定,安全可靠等优点。因此他适用于中小容量的PWM斩波电路。

2.3保护电路设计

在本斩波电路中对斩波器的保护,实际上就是对IGBT的保护。所以重要的是怎么设计好对开关管IGBT的保护方案。在设计对IGBT的保护系统中,主要是针对过电流保护和开关过程中的过电压保护。

过电流保护电路:过电流保护采用的是在主电路中串联一个1£的电阻,在其两端并联电磁继电器的线圈。过流保护信号取自电阻两端的电压,当主电路的电流高于一定数值时,电磁继电器的开关闭合,接通低电平,该过电流信号还送到UC3525的脚10。在UC3525内部由于T3基极与A端线相连,A端线由低电压上升为逻辑高电平,经过UC3525A的13脚输出为高电平,功率驱动电路输出至功率场效应管的控制脉冲消失。在电路中,过流保护环节还输出一个信号到

与门的输入端,当出现过流信号时,检测环节输出一低电平信号到与门的输入端,使脉冲消失,与UC3525的故障关闭功能一起构成双重保护。过电流保护电路如图2-4所示。

图2-4 过电流保护电路

过电压保护电路:过电压保护采用的是在主电路中串联一个1£的电阻,在其两端并联电磁继电器的线圈。过压保护信号取自电阻两端的电压,当主电路的电压高于一定数值时,电磁继电器的开关闭合,接通低电平,该过电压信号还送到UC3525的脚10。在UC3525内部由于T3基极与A端线相连,A端线由低电压上升为逻辑高电平,经过UC3525A的13脚输出为高电平,功率驱动电路输出至功率场效应管的控制脉冲消失。在电路中,过压保护环节还输出一个信号到与门的输入端,当出现过压信号时,检测环节输出一低电平信号到与门的输入端,使脉冲消失。过电压保护电路如图2-4所示。

图2-4 过电压保护电路

2.4总原理图

将上面各功能模块电路组合在一起,构成了本设计的总电路。总电路原理图如图2-5所示。220 V市电转换成频率不变的50V交流电(此时变压器变比为T1:T2=4:1)。变压器变压后输入到由D2、D3、D4、D5四个整流二极管组成的整流电路输入端。经整流后电压含有较大的纹波,故通过L2、C2组成的LC低通滤波器进行滤波。滤波后输出的电压就比较平滑了。接下来就是由电感L1、斩波器件IGBTQ1,电力二极管D1、电容C1组成的升压斩波电路(Boost Chopper).改变驱动信号PWM的占空比就可以调节输出到负载R1两端电压。

图2-5 升压斩波电路原理图

第3章直流升压电路的仿真

3.1. PSIM仿真实验

物理仿真需要进行大量的设备制造、安装、连接及调试工作,其投资大、周期长、灵活性差、改变参数难、模型难以重用,且实验数据处理也不方便。但是计算机仿真却可以很好的解决这个问题。只要有一台计算机就可以对不同的控制系统进行仿真和研究,而且进行一次仿真实验研究的准备工作也比较简单,主要是控制系统的建模、控制方式的确立和计算机编程。PSIM是专门为电力电子和电动机控制设计的一款仿真软件。它可以快速的仿真和便利的和用户接触,为电力电子,分析和数字控制和电动机驱动系统研究提供了强大的仿真环境。PSIM 仿真软件包括3个方面:电路示意性的程序PSIM,PSIM仿真器,波形形成过程项目SIMVIEW。本设计的仿真模型图如图3-1所示。

图3-1 SIMVIEW仿真模型图

SIMVIEW仿真模型图中VDC1是电压源,提供50V点直流电压。L为电感。D 为电力二极管,单项导通,阻止电流反向流动。C为电容。IGBT为斩波器件,R 为负载。电流表A 用来测量流经L的电流。V1用来测量电源电压。V2用来测量负载两端的电压。IGBT的门极接PWM脉冲发生器,调节其占空比就可以控制输出电压的大小。

3.2仿真实验结果及分析

=24~60V之间的任意值,将电在仿真过程中,我将取输入的直流电压为U

d

感值取的尽可能的大,即L=500H ,电阻值R=1000K ,控制脉冲电压U GE 的占空比大小,即从示波器上观察输出电压U o 大小,示波器上红线表示输出直流电压,蓝线表示输入电压,而橙色表示输出电流大小。

当占空比为α=0.93,U d =24V 是,得到输出直流电压U o =336V 。

图3-2 占空比为0.93时的直流输出U d

当占空比为α=0.90,U d =35V 是,得到输出直流电压U o =344V 。

图3-3 占空比为0.90时的直流输出U d

当占空比为α=0.85,U d =50V 是,得到输出直流电压U o =342V 。

图3-4 占空比为0.85时的直流输出U d

从上面的直流输出电压图中我们可以看出来,输出电压在340V 左右,所以本设计符合设计要求。

心得体会

做课程设计是为了让我们对平时学习的理论知识与实际操作相结合,在理论和实验教学基础上进一步巩固已学基本理论及应用知识并加以综合提高,学会将知识应用于实际的方法,提高分析和解决问题的能力。另外,通过这次课程设计,学到了不少的经验和教训。不仅对课堂所学知识,比如部分芯片的使用方法,理论值与实际值的差别等,还提高了对简单的电路的设计能力。设计时应该先完全领会要求再去动手,不能急躁。更重要的是学到了科学试验中的所需的毅力与耐心。知道了有科学的态度才能完成科学的试验。

参考文献

[1]王兆安,黄俊.电力电子技术(第四版).[北京]: 机械工业出版社,2000

[2]康华光,陈大钦.电子技术基础(第四版). [北京]: 高等教育出版社,1998

[3]陈礼明.实际直流斩波电路中若干问题的浅析.梅山科技,2005

[4]陈汝全.电子技术常用器件应用手册【M】.机械工业出版社

元器件清单:

直流升压斩波电路课程设计

湖南工学院 课程设计说明书 课题名称:直流升压斩波电路的设计专业名称:自动化 学生班级:自本0903班 学生姓名:曾盛 学生学号: 09401040322 指导教师:桂友超

电力电子技术课程设计任务书 一、设计任务和要求 (1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。 (2)掌握基本电路的数据分析、处理;描绘波形并加以判断。 (3)能正确设计电路,画出线路图,分析电路原理。 (4)广泛收集相关资料。 (5)独立思考,刻苦专研,严禁抄袭。 (6)按时完成课程设计任务,认真、正确的书写课程设计报告。 二、设计内容 (1)明确设计任务,对所要设计地任务进行具体分析,充分了解系统性能,指标要求。 (2)制定设计方案。 (3)迸行具体设计:单元电路的设计;参数计算;器件选择;绘制电路原理图。 (4)撰写课程设计报告(说明书):课程设计报告是对设计全过程的系统总结。 三、技术指标 斩波电路输出电压为340±5V,直流升压斩波电路输入电压为直流流24V~60V,输出功率为100W。

绪论 ........................................................... - 1 - 第1章直流升压斩波电路的设计思想 .............................. - 3 - 1.1直流升压斩波电路原理..................................... - 3 - 1.2参数计算................................................. - 4 - 第2章直流升压斩波电路驱动电路设计 ............................ - 5 - 第3章直流升压斩波电路保护电路设计 ............................ - 6 - 3.1过电流保护电路........................................... - 6 - 3.2过电压保护电路........................................... - 6 - 第4章直流升压斩波电路总电路的设计 ............................ - 7 - 第5章直流升压斩波电路仿真 .................................... - 8 - 5.1仿真模型的选择........................................... - 8 - 5.2仿真结果及分析........................................... - 8 - 第6章设计总结 ............................................... - 10 - 参考文献 ...................................................... - 11 - 附录:元件清单 ................................................ - 12 -

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

12v升压48v电路图大全(五款模拟电路设计原理图详解)

12v升压48v电路图大全(五款模拟电路设计原理图详解) 12v升压48v电路图(一)直流-直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为48V,由于在通信系统中仍存在24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将48V基础电源通过直流-直流变换器变换到相应电压种类的直流电源,以供实际使用。 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制 (1)Buck电路--降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路--升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 还有Sepic、Zeta电路。 上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。 12v升压48v电路图(二)SX1328是一款宽电压输出,DC-DC转换器。输入电压范围是15V至32V,输出电压范围是5V至42V可调,内部MOSFET输出开关电流可高达3A,400KHz开关频率,内置软启动功能、过压保护、短路保护,采用标准的TO263-5无铅封装。同时,该芯片可用于升降压稳压方案:10V~30V输入、输出稳定在12V,高效率、低成本、性能卓越。SX1328应用电路非常简单,外围器件极少。 12v升压48v电路图(三)电动车用,48V/12V直流转换器是为了给整车照明及信号供电的装置,其电压输出为满足大灯照明(12V/35W)、转向灯(12V/8W2)和喇叭(12V /36W)分别使用或共同使用而设计,并能对负载过载起保护作用,其工作原理图见图1。

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

直流升压电路原理图

几款直流升压电路 直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。 直流升压电压电路图集锦: 三极管升压电路:

开关直流升压电源(BOOST)设计

电气与电子信息工程学院 《电力电子装置设计与制作》 课程设计报告 名称:开关直流升压电源(BOOST)设计专业名称:电气工程及其自动化 班级: 13级电气工程及其自动化(专升本)班学号: 姓名: 指导教师:南光群张智泉 设计时间:2014年11月24日——12月5日 设计地点:K2-306及K2-414实验室

开关电源装置设计与制作报告成绩评定表 指导教师签字:

《电力电子装置设计与制作》课程设计任务书 2014~2015学年第一学期 学生姓名:专业班级:13级电气工程及其自动化(专升本)班指导教师:张智泉南光群工作部门:电气与电子信息工程学院 一、课程设计题目:电力电子装置设计与制作 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 设计题目选: 题目二:开关直流升压电源(BOOST)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在8-18V之间。 3)输出直流电压10-25V,输出电压相对变化量小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。

三、进度安排 四、基本要求 1、独立设计原理图各部分电路的设计; 2、制作硬件实物,演示设计与调试的结果。 3、写出课程设计报告。内容包括电路图、工作原理、实际测量波形、调试分析、测量精度、结论和体会。 4、写出设计报告:不少于3000字,统一复印封面并用A4纸写出报告。 ○1封面、课程设计任务书 ○2摘要,关键词(中英文) ○3方案选择,方案论证 ○4系统功能及原理。(系统组成框图、电路原理图) ○5各模块的功能,原理,器件选择 ○6实验结果以及分析 ○7设计小结 ○8附录---参考文献

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

直流升压斩波电路..

安阳师范学院课程实践报告书 电力电子课程实践 ——直流升压斩波电路 作者 系(院)物理与电气工程学院 专业电气工程及其自动化(专升本)年级 2014级 学号 指导教师 日期 2014

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路.直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键词:直流;升压斩波;IGBT

目录 摘要 (1) 1 升压斩波电路 (3) 1.1 升压斩波电路的基本原理 (3) 1.2 斩波电路的控制方式 (4) 2.升压斩波电路的典型应用 (5) 3 结果分析 (9) 4 小结 (10) 参考文献 (11)

1 升压斩波电路 1.1 升压斩波电路的基本原理 升压斩波电路(Boost Chopper)的原理及工作波形如图1-1所示。该电路中也是一个全控型器件。 图1-1直流升压斩波电路原理图 首先假设电路中电感L值很大,电容C值也很大,当可控开关V处于通态时,电源E向电感L充电,充电电流基本恒定为I 1 ,同时电容C上的电压向负载R 供电,因C值很大,基本保持输出电压u o 为恒定值。记为U 。设V处于通态的 时间为t on ,此阶段电感L上积蓄的能量为EI 1 t on 。当V处于断态时,电源E和电 感L同时向电容C充电并向负载提供能量。设V处于断态的时间为t off , 则此期间电感L释放能量为:(U -E)I 1 t off 。当电路工作与稳态时,一个周期T中电感L积蓄能量与释放能量相等,即 EI 1 t on =(U -E)I 1 t off (1-1) 化简得

升压降压电源电路工作原理

boost升压电路工作原理 boost升压电路是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一: 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。

说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-

升压降压电源电路工作原理

b o o s t升压电路工作原理 boost升压电路是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一: 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付.

升压直流斩波电路

《电力电子技术》课程设计说明书升压直流斩波电路设计 院、部:电气与信息工程学院 学生姓名: 指导教师:职称 专业:电气工程及其自动化 班级: 完成时间:

电力电子课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化专业

电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输 入点能变换成另外一种形式的电能输出,从而满足不同负载的要求。电能的 形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将 电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器。该设计将主要介绍其中的DC-DC变换器。 随着半导体工业的发展,DC/DC变换是将固定的直流电压变换成可变的直 流电压,也称为直流斩波。目前直流变换电路的用途非常广泛,无论是从性能、功率还是节能性上,都处于不断地发展之中。其中升压直流斩波电路是输出电 压高于电源电压的一种斩波电路,主要运用于直流电动机传动、单相功率因数 校正以及交直流电源中。该设计中,运用了单相桥式全控整流电路和升压斩波 电路结合,从而实现升压直流斩波。 通过方案选定,电路构造以及电路调试,最终基本实现升压直流斩波电路 功能。由于知识浅薄,该课程设计说明书里还存在不少纰漏和错误,殷切希望 老师和同学们的批评指正。 关键词:直流;斩波;升压

1 绪论 (1) 1.1 电力电子技术的介绍 (1) 1.2 电力电子技术的应用 (1) 1.3 直流直流变流技术 (2) 1.4 设计要求 (2) 2 系统总体方案设计 (2) 2.1 总体电路设计框图 (2) 2.2 整流电路选择 (2) 3 主电路设计 (5) 3.1 整流电路 (5) 3.1.1 整流电路图及工作波形 (5) 3.1.2 整流电路工作原理 (6) 3.2 升压斩波电路 (6) 3.2.1 升压斩波电路及工作波形 (6) 3.2.2 升压斩波电路工作原理 (7) 3.3 元器件参数及选型 (7) 3.3.1 晶闸管的选型 (7) 3.3.2 绝缘栅双极晶体管(IGBT)选型 (9) 4 控制电路及驱动电路 (11) 4.1 控制电路 (11) 4.1.1 SG3525控制芯片介绍 (11) 4.1.2 SG3525外部引脚功能 (12) 4.2 驱动电路 (13) 4.3 控制和驱动电路原理图 (13) 5 保护电路设计 (15) 5.1 过电流保护 (15) 5.2 过电压保护 (15) 6 仿真电路图及结果 (16)

升压电路原理的分析

boost升压电路 2009-06-09 16:18 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

几种简单的直流升压电路

流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰

升压电路的原理与实现

龙源期刊网 https://www.360docs.net/doc/af8817809.html, 升压电路的原理与实现 作者:袁幸杰郑轶卢涛冯向超 来源:《电子技术与软件工程》2018年第05期 摘要随着新能源技术的不断发展,对电力变换技术也提出了更高的要求,尤其许多新能源电池自身的属性决定其输出的电压较低而电流较大,无法被用电设备直接使用,需要进行电力变换。本文针对新能源电池输出电压低、电流大这一特点。对三种不同的升压方式进行了对比,提出并实现了一种基于BOOST拓扑的升压变换电路并在此基础上进行了损耗分析。最后针对溶解氧海水电池搭建了一套电池升压管理系统,实现了低电压大电流的条件下的高效率直流升压变换,并在近海测试中取得了较好的测试效果,有效解决了该问题。 【关键词】BOOST升压电路海水电池超低压升压电池管理 随着新能源电池的不断涌现对电力变换技术也提出了更高的要求,尤其是在光伏及海水发电等领域,通常电池本身输出的电压较低而电流较大,不能直接为用电设备所用。而现有的电力变换技术通常不能够高效率的进行电能由此造成了电能无法得到充分利用。国外如荷兰等国家已经针对这一问题进行了较多的探索,其采用DCDC方式能够高效率的进行电能转换,而 目前国内并没有相应的成熟技术与产品在实际中应用。文章在对比了推挽、全桥等多种升压方法的基础上提出了一种基于BOOST拓扑的超低压升压的实现方法,能够实现升压比大于10 的低电压、大电流情况下的高效率电压转换,转换效率达到75%以上。 溶解氧海水电池作为一种以海水为电解质能够提供长期、稳定电能的新型电池,对深海观测具有重要意义,应用前景非常广泛。但是由于海水电池采用开放式结构,输出电压低电流大并且各组电池无法进行串联对海水电池输出的低电压进行升压变换是海水电池应用于水下设备的必由之路。 1 工作原理 1.1 升压方案选择 目前,DC-DC直流升压变换电路有多种结构形式,主要方式有:单端式、半桥式、全桥式、推挽式。 其中推挽式是基于逆变升压的原理,推挽式升压电路必须使用带有中心抽头的变压器,增大了变压器偏磁的风险,而且推挽式开关电源方案不适合负载变化较大的场合。桥式升压电路同样是基于逆变升压的原理。采用推挽式与桥式升压方式需要先对海水电池输出的直流电进行逆变而后再进行整流,这两种升压方式由于结构较为复杂,转换过程中的开关损耗过高,而且由于输入过低对变压器的性能要求较高,难以实现高效率的升压变换。

Boost升压斩波电路

总目录 引言 (2) 1 升压斩波工作原理 (2) 1.1 主电路工作原理 (2) 2 升压斩波电路的典型应用 (4) 3 设计内容及要求 (6) 3.1输出值的计算 (7) 4硬件电路 (7) 4.1控制电路 (7) 4.2 触发电路和主电路 (9) 4.3.元器件的选取及计算 (10) 5.仿真 (11) 6.结果分析 (14) 7.小结 (14) 8.参考文献 (14)

引言 随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛运用开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波能领域得到了广泛的应用。但以IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。 直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点 1 升压斩波工作原理 1.1 主电路工作原理 1)工作原理 假设L和C值很大。V处于通态时,电源E向电感L充电,电流恒定I1,电容C向负载R供电,输出电压Uo恒定。 V处于断态时,电源E和电感L同时向电容C充电,并向负载提供能量。

常见直流升压电路原理

几款直流升压电路原理与设计 【进入博客】【进入论坛】更新时间:2009年08月13日浏览次数:3488 作者:来 源: 流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其

他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。

DC-DC升压(BOOST)电路原理

BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS 开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!! 电感升压原理: 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 电感型升压转换器应用在哪些场合? 电感型升压转换器的一个主要应用领域是为白光LED供电,该白光LED能为电池供电系统的液晶显示(LCD)面板提供背光。在需要提升电压的通用直流-直流电压稳压器中也可使用。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压.

DC-DC升压电路原理

DC-DC升压电路原理 BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS 开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!! 電感升壓原理: 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么?

相关文档
最新文档