(精选)关于圆的几个定理

(精选)关于圆的几个定理
(精选)关于圆的几个定理

关于圆的几个定理

1. 四点共圆

1.1定义:若四边形ABCD 的四点同时共于一圆上,则称A ,B ,C ,D 四点共圆 基本性质:若凸四边形ABCD 是圆内接四边形,则其对角互补

1.2定义:若存在一点O 使OA=OB=OC=OD ,则A ,B ,C ,D 四点共圆

2.若干定理

圆幂定理是圆的相交弦定理、切割线定理、割线定理、切线长定理的统一形式。 相交弦定理:P 是圆内任一点,过P 作圆的两弦AB ,CD ,则PA PB PC PD ?=?

(切)割线定理:P 是圆外任意一点,过P 任作圆的两割(切)线PAB ,PCD ,则

PA PB PC PD ?=?

圆幂定理:P 是圆O 所在平面上任意一点(可以在圆内,圆上,圆外),过点P 任作一直线交圆O 于A ,B 两点(A ,B 两点可以重合,也可以之一和P 重合),

圆O 半径为r ,则有:22||PA PB PO r ?=-

圆内接四边形判定方法

相交弦定理逆定理:如果四边形ABCD 的对角线AC ,BD 交于点P ,且满足 PA PC PB PD ?=?,则四边形ABCD 有一外接圆

切割线定理逆定理:如果凸四边形ABCD 一双对边AB 与DC 交于点P

且满足PA PC PB PD ?=?,则四边形ABCD 有一外接圆

射影定理:RTΔABC 中,BC 是斜边,AD 是斜边上的高,则

222(1)(2)(3)AD BD CD

AB BD BC

AC CD BC =?=?=?

Miquel 定理:ΔABC 中,X ,Y ,Z 分别是直线AB ,BC ,AC 上的点,则 ,,e e e 共于一点AXZ BXY CYZ O

这样的点O 称为X ,Y ,Z 对于ΔABC 的Miquel 点

Simson 定理

P 是ΔABC 外接圆上一点,过点P 作PD 垂直BC ,PE 垂直于AB ,同理PF 则D ,E ,F 是共线的三点

直线DEF 称为点P 关于ΔABC 的Simson 线

Carnot 定理:通过ΔABC 外接圆上的一点P ,引与三边BC ,CA ,AB 分别成同向等角(即∠=∠=∠PDB PEC PFB )的直线PD ,PE ,PF 与三边或其所在直线的交点分别为D ,E ,F 则D ,E ,F 是共线的三点

Ptolemy 定理:若四边形ABCD 是圆内接四边形,则?+?=?AB CD AD BC AC BD

Chapple 定理:设R 是ΔABC 的外接圆半径,r 是内切圆半径,d 是这两圆的圆心

距,则222=-d R Rr

初三下册数学圆知识点定理总结

1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理”“弧径定理”“中垂定理”. 几何表达式举例: ∵ CD过圆心 ∵CD⊥AB 2.平行线夹弧定理: 圆的两条平行弦所夹的弧相等. 几何表达式举例: 3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”;“等弦对等角”; “等角对等弧”;“等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”. 几何表达式举例: (1) ∵∠AOB=∠COD ∴ AB = CD (2) ∵ AB = CD ∴∠AOB=∠COD 4.圆周角定理及推论: (1)圆周角的度数等于它所对的弧的度数的一半; (2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图) (5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如 图) (1)(2)(3)(4) 几何表达式举例: (1)∵∠ACB=∠AOB ∴…………… (2)∵ AB是直径 ∴∠ACB=90° (3)∵∠ACB=90° ∴ AB是直径 (4)∵ CD=AD=BD ∴ΔABC是RtΔ 5.圆内接四边形性质定理: 圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD是圆内接四边形 ∴∠CDE =∠ABC ∠C+∠A =180° 6.切线的判定与性质定理: 如图:有三个元素,“知二可推一”;需记忆其中四个定理. (1)经过半径的外端并且垂直于这条 半径的直线是圆的切线; (2)圆的切线垂直于经过切点的半径; ※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心. 几何表达式举例: (1)∵OC是半径∵OC⊥AB ∴AB是切线 (2)∵OC是半径 ∵AB是切线 ∴OC⊥AB (3)…………… 7.切线长定理: 从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角. 几何表达式举例: ∵ PA、PB是切线 ∴ PA=PB ∵PO过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论: 几何表达式举例:

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

浙教版九年级上册 《圆的基本性质圆、图形旋转、垂径定理》知识点总结

《圆的基本性质:圆、图形旋转、垂径定理》知识点总结 1.圆的定义;在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的封闭曲线叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O” 2、与圆有关的概念 (1)弦和直径(连结圆上任意两点的线段BC叫做弦,经过圆心的弦AB叫做直径) (2)弧和半圆(圆上任意两点间的部分叫做弧,圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆),大于半圆的弧叫优弧(优弧用⌒和三个字母表示)、小于半圆的弧叫劣弧(用⌒和两个字母表示)。 (3)等弧:能够互相重合的两段弧 (4)等圆(半径相等的两个圆叫做等圆) (5)点和圆的位置关系: 如果P是圆所在平面内的一点,d 表示P到圆心的距离,r表示圆的半径,则: (1)dr → 圆外 (6)不在同一条直线上的三个点确定一个圆。 过不在同一条直线上的三点做圆,能找出圆的圆心 (7)三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数内接三角形。 3、图形的旋转:原图形上的所有点都绕着一个固定的点,按同一个方向,转动同一个角度,这样的图形运 动叫做图形的旋转,这个固定的点叫做旋转中心。 图形经过旋转所得到的图形和原图形全等。 对应点到旋转中心的距离相等,任何一对对应点与旋转中心连线所成的角度等于旋转的角度。 旋转作图基本步骤:

1、明确旋转三要素(旋转中心、旋转方向、旋转角度); 2、找出关键点; 3、找出关键点的对应点; 4、作出新图形; 5、写出结论。 4、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)平分弧的直径,垂直平分弧所对的弦。 注:用于计算时,一般先连结过弦的一个端点的半径或者作弦心距,构造Rt△,再结合勾股定理求解. 推论:圆中两平行弦所夹的弧相等 选择题 1.如图,已知⊙O的直径AE=10 cm,∠B=∠EAC,则的长为() 【A】5cm【B】5cm【C】5cm【D】6cm 【答案】B. 【解答】连接EC,由圆周角定理得,∠E=∠B,∠ACE=90o, ∵∠B=∠EAC, ∴∠E=∠EAC, ∴CE=CA, ∴AC=AE=5cm, 故选B

(word完整版)初中数学几何证明题技巧

初中数学几何证明题技巧 几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换

人教版初三数学上册与圆有关的几个定理

蔡甸区常福中学九年级数学下册教学案 课题:几何计算专题复习--与圆有关的定理 第13周 主备人:袁劲梅 教研组长:向俊伟 审核人______ 授课人: 袁劲梅 授课时间2017.5.28 编号______ 学案 教案 一、课堂导入: 本节课我们学习几何知识里几个新的定理,进一步掌握这些定理的推导和灵活运用。 二、揭示目标: 学生齐读学习目标,了解本节课的学习内容及应达到的目标。 三、合作探究: 1、小组合作探究(讨论质疑) 学生合作完成该部分题目。①要求小组各成员都能不同程度的解答各题,先完成的帮助后进生,老师巡视了解学生的完成情况;②选代表上台讲解解法。 2、组间合作探究(交流释疑) 各组成员可随意请求质疑或发表不同解法; 四、归纳小结 总结:本节课学习了与圆有关的几个定理: 弦切角定理 切割线定理 射影定理 1、熟练掌握这些定理的推导过程; 2、通过这些定理结论,直接解题,提高解题速 一、考点分析 此题型为中考题中的第21题圆的综合题,主要考查圆与直角三角形、切线有关定理、三角函数、相似的计算,命题极为灵活,考查知识面广,有一定的难度。结合图形特征利用定理结论求线段的长度是必考的知识点。 二、学习目标 1、学习一些新的定理,并推导出结论。 2、能够灵活运用这些结论解决圆中线段的长,角的三角函数的计算。 三、课堂前置 如图:在⊙O 中,弦AB 、CD 相交于P, 求证:PA ·PB=PC ·PD 四、课堂新授 知识一:弦切角定理 如图,已知PC 为⊙O 的切线,PBA 为割线. 求证:∠1=∠A 例1:如图:PA 、PB 与⊙O 相切与A 、B 两点,C 为优弧AB 上的一点,若tan ∠ACB=2,则sin ∠APB 的值为______.

与圆有关的概念及性质

圆的有关概念与性质 教学目标:复习与圆有关的概念与性质。 教学重点:巩固垂径定理、圆心角、圆周角定理。并能运用这些定理进行正确的证明。 教学难点:灵活地运用这些定理进行有关的证明。 一、知识回顾 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又 是对称图形,是它的对称中心. 3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的 垂直于弦,并且平分 . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一 组量,那么它们所对应的其余各组量都分别 . 5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 6. 直径所对的圆周角是,90°所对的弦是 . 例题精讲 例1、如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l ,求弦AB的长. 对应练习1、在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=600mm,求油的最大深度.

例2、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,,连接AD,求证:△ABD≌△ACD. 对应练习2、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上的一点,OD⊥AC,垂足为E,连接BD. (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD. 例3、本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取、、 三根木柱,使得、之间的距离与、之间的距离相等,并测得长为120米,到 的距离为4米,如图所示.请你帮他们求出滴水湖的半径. 对应练习3、

圆的基本性质知识点

圆的基本性质 复习总标 1.知道圆及有关概念,确定圆的条件。三角形的内心和外心。 2.能灵活运用弧、弦、圆心角和圆心角的关系解决问题;掌握圆的轴对称性、中心对称和旋转不变性;探索并理解锤径定理。 3.会用垂径定理进行有关计算。 知识梳理 1.圆的有关概念 (1)圆心、半圆、同心圆、等圆、弦与弧。 (2)直径是经过圆心的弦。是圆中最长的弦。弧是圆的一部分。 2.圆周角与圆心角 (1)一条弧所对的圆周角等于它所对的圆心角的一半。 90圆周角所对的弦是圆的直径。(2)圆周角与半圆或直径:半圆或直径所对的圆周角是直角; (3)圆周角与半圆或等弧:同弧或等弧所对的圆周角相等;在同源或等圆中,相等的圆周角所对的弧相等。 3.圆的对称性 (1)圆是中心对称图形,圆心是它的对称中心。 (2)圆的旋转不变性:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量分别相等。 (3)圆的轴对称性:经过圆心都的任意一条直线都是它的对称轴。垂径定理是研究有关圆的知识的基础。垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。还可以概括为:如果有一条直线,1.垂直于弦;2.经过圆心;3.平分弦(非直径);4.平分弦所对的优弧;5.平分弦所对的劣弧,同时具备其中任意两个条件,那么就可以得到其他三个结论。 易错知识点

1.弧是圆的一部分,直径是圆中最长的弦,半径不是弦。 2.垂径定理的推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧。 3.理解圆心角、弧、弦三者之间的关系时,应注意“同圆或等圆中”或“等弧”这个条件。 4.同一条弦所对的圆周角有两个,它们互补。 中考规律盘点及预测 本讲点内容在中考中,圆的基本性质在淡化与降低,证明难度成了考查知识的重点。旗本性质的应用 主要有两个方面,一是应用弧、弦、弦心距、圆心角、圆周角各对量之间的关系进行证明;二是应用半径、半弦和弦心距构成直角三角形进行相关计算。多数以填空题、选择题或中等难度解答题等基本题型出现,难度一般不大。 1、(2009年安徽)如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且 CD=, ,则AB 的长为…【 】 A 、2 B 、3 C 、4 D 、5 【解析】主要考察:垂径定理、勾股定理或相交弦定理.用垂径定理得 ,由勾股定理得HB=1 ,则()2 2 2 1R R =+-由此得2R=3 或由相交弦定理得 ()2 121R =?-,由此得2R=3,所以AB=3.选 B 2、(2008 绍兴)如图,量角器外缘边上有A P Q ,,三点,它们所表 示的读数分别是180,70,30,则PAQ ∠的大小为( ) A .10 B .20 C .30 D .40 【解析】主要考察:弧的度数与它所对的圆周角度数之间的关系。一条弧所对的圆周角 等于它所对圆心角的一半。()?=?-?==∠2030702 1 21Q P PAQ 选B 3、(2008年海南) 如图, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =30°,点P 在线段 OB 上运动.设∠ACP =x ,则x 的取值范围是 . 第9题图

初中数学必背几何定理及公式

初中数学必背几何定理及公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形

圆的重要定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 【课前测试】 1. PT 切⊙O 于T ,CT 为直径,D 为OC 上一点,直线PD 交⊙O 于B 和A ,B 在线段PD 上,若CD =2,AD =3,BD =4,则PB 等于( ) A. 20 B. 10 C. 5 D. 【知识点回顾】 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . 用相交弦定理.

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

初中数学基本定理(八)

初中数学基本定理(八) 为您提供初中数学基本定理(八): 7、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 8、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积

计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 9、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。 几何变换包括:(1)平移;(2)旋转;(3)对称。 10、客观性题的解题方法 选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以

圆有关定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 如图1对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角(如图2):顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)∠APC,∠APD,∠BPD,∠BPC 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。即如上图中∠APC=∠CDP等 证明:如图2,连接CD、OC、OP,因为∠CPO=∠PCO,所以∠COP=180?-2∠CPO而∠CPO=90?-∠APC,故∠COP=2∠5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理图形已知结论证法 相交 弦定 理 ⊙O 中,AB、 CD为 弦,交于 P. PA·PB=PC·PD 连结AC、BD,∠C=∠B,∠A=∠D, 所以△APC∽△DPB 相交 弦定 理的 推论 ⊙O中, AB为直 径,C D⊥AB 于P. PC2=PA·PB 用相交弦定理. 切割 线定 理 ⊙O 中,PT切 ⊙O于T, 割线PB 交⊙O于 A PT2=PA·PB 连结TA、TB,则∠PTA=∠B(弦 切角等于同弧圆周角)所以 △PTA∽△PBT,所以 PT2=PA·PB 图1 图2

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系 【考纲要求】 1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现; 2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活. 【知识网络】 【考点梳理】 考点一、圆的有关概念及性质 1.圆的有关概念 圆、圆心、半径、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧; 三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定 不在同一直线上的三个点确定一个圆. 要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条

件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径. 5.圆心角、弧、弦之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角 圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点进阶:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形 (1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系 1.点和圆的位置关系 设⊙O的半径为r,点P到圆心的距离OP=d,则有: 点P在圆外?d>r; 点P在圆上?d=r; 点P在圆内?d<r. 要点进阶:圆的确定: ①过一点的圆有无数个,如图所示. ②过两点A、B的圆有无数个,如图所示. ③经过在同一直线上的三点不能作圆. ④不在同一直线上的三点确定一个圆.如图所示.

圆的基本性质(拔高)

D B C O A E . A C O M N B B O A P 【圆及垂径定理】第3份 1、过一点可作 个圆。过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。过 的三点确定一个圆。 2、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。三角形的外心是三角形三条边的 3、下列四个命题:① 经过任意三点可以作一个圆;② 三角形的外心在三角形的内部;③ 等腰三角形的外心必在底边的中线上;④ 菱形一定有外接圆,圆心是对角线的交点。其中真命题的个数( ) A.4个 B.3个 C.2个 D.1个 4、如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数 5、如图,平面直角坐标系中一第圆弧经过网格点A 、B 、C ,其中B 点坐标为(4,4),那么该圆弧所在圆的圆心坐标为 6、垂径定理:垂直于弦的直径 ,并且平分 7、垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分 垂径定理的逆定理2:平分弧的直径 8、如图所示,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。 O C E D B A 9、工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是 10、四边形ABCD 是直角梯形,AB ∥CD ,AB ⊥BC ,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB ,CD 旋转 一周,所得几何体的表面积分别为S 1,S 2,则| S 1-S 2|=__________(平方单位) 11、点O 是两个同心圆的圆心,大圆的半径QA, OB 分别交小圆于点C, D .给出下列结论: ①AB CD =、② AB=CD ; ③AB 的度数=CD 的度数; ④AB 的长度=CD 的长度.其中正确的结论有( ) A. 1个 B. 2个 C.3 个 D.4 个 12、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点 P 从原点O 出发,沿这条曲线向右运动,速度为每秒 2 π 个单位长度,则第2015秒时,点P 的坐标是( ) A .(2014,0) B .(2015,-1) C . (2015,1) D . (2016,0) 13、在一个圆中,给出下列命题,其中正确的是( ) A .若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直 B .若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C .若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D .若两条弦平行,则这两条弦之间的距离一定小于圆的半径 【随堂练习】 1、下列命题:① 垂直于弦的直径平分这条弦;② 平分弦的直径垂直于弦;③垂直且平分弦的直线必定经过圆心。其中正确的有( ) A.0个 B.1个 C.2个 D.3个 2、如图,⊙O 的直径为10cm ,弦AB 为8cm ,P 是弦AB 上一点,若OP 的长是整数, 则满足条件的点P 有( )个 A.2 B.3 C.4 D.5 3、半径为5cm 的圆内有两条互相平行的弦,长度分别为6cm 和8cm ,则这两弦之间的距离为 cm 4、圆的半径等于23cm ,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于 5、如图,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,如果AM=2,DE=1,EF=8,那么MN 的长为 6、如图,半径为5的⊙P 与y 轴交于点M (0,-4)、N (0,-10),函数y= k x (x<0)的图象过点P ,则k= 7、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 8、如图,已知AB 、AC 为弦,OM ⊥AB 于点M , ON ⊥AC 于点N ,BC=4,则MN= x y O A B C 第5题 O P M y x N 第6题 第7题 P O 第12题 O 1 x y O 2 O 3

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

圆中的基本概念及定理(习题)

圆中的基本概念及定理(习题) ? 巩固练习 1. 一条排水管的截面如图所示,已知排水管的截面圆半径OB 为10,截面圆圆 心O 到水面的距离OC 为6,则水面宽AB 的长为( ) A .16 B .10 C .8 D .6 第2题图 2. 如图,AB 是⊙O 的弦,OD ⊥AB 于点D ,交⊙O 于点E ,则下列说法不一定 正确的是( ) A .AD =BD B .∠ACB =∠AOE C .AE ︵=BE ︵ D .OD =DE 3. 如图,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,若∠BOC =70°,则∠A 的度 数为( ) A .70° B .35° C .30° D .20° A O D C O C B A 第3题图 第4题图 4. 如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦 BC 的长为( ) A .1 B C .2 D .5. 6. E O D C B A

A 第6题图 第7题图 7. 如图,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB = __________. 8. 如图,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,若点D 在AB 的延长 线上,且BD =BC ,则∠D =_________. O D C B A 第8题图 第9题图 9. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C , D 为第一象限内⊙O 上的一点,若∠DAB =20°,则∠OCD =_________. 10. 某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知 AB =16 m ,半径OA =10 m ,则中间柱CD 的高度为______m . C D B O A D C 第10题图 第11题图 11. 如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有 圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,若CE =1寸,AB =10寸,则直径CD 的长为_________. 12. 如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部,若四边形OABC 为 平行四边形,则∠OAD +∠OCD =______.

九年级数学上册第三章圆的基本性质3.3垂径定理第1课时垂径定理随堂练习(含解析)(新版)浙教版

3.3__垂径定理__ 第1课时 垂径定理 1.[2016·黄石]如图3-3-1,⊙的半径为13,弦AB 的长度是24,ON ⊥AB 垂足为N ,则ON =( A ) 图3-3-1 A .5 B .7 C .9 D .11 2.如图3-3-2,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论不一定正确的是( B ) 图3-3-2 A .CE =DE B .AE =OE C.B C ︵=B D ︵ D .△OC E ≌△ODE 【解析】 ∵AB ⊥CD , ∴CE =DE ,BC ︵=BD ︵, ∵CO =DO ,∠CEO =∠DEO , ∴△OCE ≌△ODE . 由已知条件不能确定AE 和OE 的关系.故选B. 3.[2017·泸州]如图3-3-3,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =8,AE =1,则弦CD 的长是( B ) A.7 B .27 C .6 D .8

图3-3-3 第3题答图 【解析】 如答图,连结OC , 则OC =OB =4,OE =OB -AE =4-1=3, CE =DE =OC 2-OE 2=7, CD =2CE =27. 4.[2017·长沙]如图3-3-4,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为__5__. 图3-3-4 第4题答图 【解析】 如答图,连结OC , ∵AB 为⊙O 的直径,AB ⊥CD , ∴CE =DE =12CD =12 ×6=3, 设⊙O 的半径为x ,则OC =x , OE =OB -BE =x -1, 在Rt △OCE 中,OC 2=OE 2+CE 2 , ∴x 2=32+(x -1)2,解得x =5,∴⊙O 的半径为5. 5.[2017·眉山]如图3-3-5,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8 cm ,DC =2 cm ,则OC =__5__cm. 图3-3-5 第5题答图 【解析】 如答图,连结OA ,

初中数学基本定理总结

初中数学基本定理总结 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

相关文档
最新文档